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Design and analysis of a foldable / unfoldable corrugated architectural curved
envelop

Francesco Gioia∗, David Dureisseix†, René Motro‡ and Bernard Maurin§

Abstract

Origami and paperfolding techniques may inspire the design of
structures that have the ability to be folded and unfolded: their
geometry can be changed from an extended, servicing state to a
compact one, and back-forth. In traditional Origami, folds are in-
troduced in a sheet of paper (a developable surface) for transform-
ing its shape, with artistic or decorative intent; in recent times the
ideas behind origami techniques were transferred in various design
disciplines to build developable foldable / unfoldable structures,
mostly in aerospace industry [19, 16]. The geometrical arrange-
ment of folds allows a folding mechanism of great efficiency and is
often derived from the buckling patterns of simple geometries, like
a plane or a cylinder (e.g. Miura-Ori and Yoshimura folding pat-
tern) [29, 15]. Here we interest ourselves to the conception of fold-
able / unfoldable structures for civil engineering and architecture.
In those disciplines, the need for folding efficiency comes along
with the need for structural efficiency (stiffness); for this purpose
we will explore nondevelopable foldable / unfoldable structures:
those structures exhibit potential stiffness because, when unfolded,
they cannot be flattened to a plane (non-developability). In this pa-
per we propose a classification for foldable / unfoldable surfaces
that comprehend non fully developable (and also non fully fold-
able) surfaces and a method for the description of folding motion.
Then we propose innovative geometrical configurations for those
structures by generalizing the Miura-Ori folding pattern to non-
developable surfaces that, once unfolded, exhibit curvature.
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1 Introduction

Man-made objects that present folds and corrugations may be more
interesting than smooth ones: corrugations add a tactile dimension
and increase the three-dimensional perception. The morphogenetic
processes in nature form folds and corrugation, for either structural
or functional reasons, sometimes resulting in expressive shapes [5].
In design disciplines, the manipulation of a folded sheet allows
to experience directly the relation between geometry and rigidity,
and, as recognized at the Bauhaus in the 20’s, the fold is also a
powerful design method. In contemporary architecture, the fold
is described in different ways: as a morphogenetic process, as a
structural rib, and as a mean to realize deployable envelops, Fig-
ure 1. We will consider this third case, as foldable / unfoldable
structural systems are of importance, in civil engineering and ar-
chitecture, to design temporary structures or convertible roofing.
Other technologies allow as well such abilities, for instance:

• Tensegrity structures (with cables and bars) [11],

• Textile and / or inflatable structures [22],

• Panels and hinges as particular mechanisms [12, 25]

or possible hybrid structures, associating two or several of the pre-
vious solutions.

This article focuses on the case of panel and hinge mechanisms,
inspired with paperfolding techniques (origami), and we restrict
ourselves to thin planar panels assumed to be kept planar during
the folding / unfolding movement. The case of mechanisms with
one degree of mobility is particularly under concern.

The aim of this study is first to propose a classification and
description of such systems, potentially not fully developable to
exhibit potential stiffness, for design choice purposes rather than
merely for analysis of existing solutions. Second, we propose ge-
ometrical models for non-developable foldable / unfoldable sur-
faces: The detailed designed surface is not prescribed to be pla-
nar, and the average surface of the overall unfolded structure may
exhibit curvature. The resulting structures will be called foldable
corrugated meshes. In order to help the fabrication process, the
surfaces are composed as much as possible of identical units and
plates. Therefore, the increase in complexity for designing these
surfaces only lies in a larger number of types of planar elementary
plates to be produced (typically 2 types of plates, compared to only
one for classical Miura-Ori).
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Figure 1: Using folds in architecture. Top left: kinematic aspect
of a foldable gallery (T. Tachi [26]); top right: morphogenetic as-
pect of the Art Tower Mito (A. Isozaki, image by Korall, Creative
Commons 2006); bottom: static aspect for the Saint Loup Chaptel
(Localarchitecture / H. Buri, Y. Weinand / D. Mondada, 2008 [1])

2 Geometrical surfacic description

Since the targeted surfaces are only piecewise differentiable, they
are not smooth surfaces and tangential planes cannot be defined
everywhere. By analogy with ‘rigid folding’ in origami and ‘rigid
theory’ [7] in mechanism analysis [23, 9], we neglect the thickness
of the plates which are one-to-one connected with perfect hinges.
The plates themselves are delimited either with the total structure
edges, or by their hinges. All plates are assumed to be kept planar
and the edges are straight segments, [24]. Note that more gener-
ally, the plates could be considered as developable surfaces [6, 8],
if one models the bending of these surfaces (that can store bending
elastic energy as a possible energy for actuation) ; such bendings
are unavoidable if one uses curved creases to obtain a foldable / de-
ployable system [3, 4, 17, 18]. This aspect is nevertheless not un-
der the scope of the present study, for which the ‘folds’ are straight
edge segments.

2.1 Orientation

A corrugated mesh is defined as a simply connected surface com-
posed of planar polygonal faces. The neighboring relations are
established between adjacent faces along folding edges, i.e. the
shared edges of two faces. We assumed that such a surface is
orientable, i.e. a continuous orientation can be defined for each

face Fi, i = 1, . . . n, by assigning its normal unitary vector
ni. Each face Fi is composed of ki vertices V j

i , j = 1, . . . ki,
and ki edges Ej

i that can be numbered counterclockwise with
respect to the normal vector ni, see Figure 2. In such a case,
Ej

i = V
(j mod ki)+1
i − V j

i .

Figure 2: Definition of a configuration and orientation of its surface

Additionally, the ki sector angles between two adjacent
edges are defined for each face Fi with angles θj

i =
6 (Ej

i , E
(j mod ki)+1
i ), for j = 1, . . . ki. 0 ≤ θj

i ≤ 2π, since edges
are oriented.

With an orientable overall plate assembly Ω = ∪n
i=1Fi, if the

edge j of face Fi is shared with the edge k of a neighboring face
Fl, then (Figure 2): Ej

i = −Ek
l . We finally assume that two faces

share at most one straight folded edge; when two neighboring faces
share one edge, their common edge is denoted with eil = Ej

i =
−Ek

l .

2.2 Folding angles

The angle between two normals of adjacent faces is ail =
arccos(ni · nl), and 0 ≤ ail ≤ π. These angles, as well as their
corresponding edges eil are split into two groups: If we denote
the external side of the overall surface as the side toward which all
the normals are pointing to (see Figures 3 and 4), the neighboring
faces which form a convex (respectively concave) dihedral, with
respect to the external side, share a common edge called mountain
(respectively valley) fold.
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Figure 3: Mountain fold (upper left, denoted with straight lines)
and valley fold (upper right, denotes with dotted lines)

Figure 4: Possible evolutions of folds during folding movement,
and local folding angle

3 Foldability
The global foldability along an entire path, i.e. a set of successive
states of the corrugated mesh Ω when changing continuously the
folding angles but preserving planarity of each face, edge connec-
tions, and avoiding face interpenetration, is still an open question.
Nevertheless, the so-called local foldability condition (a necessary
condition) can be stated close to each fold intersection O (or cor-
ner node), Figure 5 (left), i.e. at each end point common to several
common edges as [7]:

p is even, and
p∑

m=1

(−1)mθm ∈ {0, 2π,−2π} (1)

if, without loss in generality, we number consecutively the faces
according to the global orientation as m = 1, . . . p and concerned
sector angles as θm around the point O. The sum is therefore per-
formed on the faces that share the fold intersection O. If a flat
configuration is possible, i.e. if

∑p
m=1 θm = 2π (developed state

for which ∀ij, aij = 0) this condition is equivalent to: p is even
and

∑p
m=1(−1)mθm = 0; but it is also valid for cases where the

overall sum is greater or smaller that 2π [7], Figure 5. In such
cases, no fully developed state exist.

Figure 5: Illustration of local flat foldability, for the flat unfolded
state (left), and two non-flat states (center and right)

The local foldability condition is a necessary, but not a sufficient
condition to the existence of a flat folded state (∀ij, aij = π). In-
deed, for the assembly of rigid plates and perfect hinges to exhibit a
finite mechanism, persistent compatibility of rotation rates ȧij and
global non penetrability conditions are additionally required. If it
is the case (i.e. if the corrugated mesh is foldable), the configura-
tion Ω may evolve with an external null energy driving. Eventually,
during this motion, mountain folds may transform into valley folds,
and reverse (when an aij is close to 0, but not close to π due to non
penetration condition). The set of these continuously successive
configurations is called the folding path.

It should be noted that the foldability requirement is a strong
constraint on the design of the plate assembly.

3.1 Folded and unfolded states
To describe the possible variations of the folding angles, and the
admissible path of the corresponding configurations during a fold-
ing or unfolding operation, we propose a global descriptor GΩ for
an admissible state Ω as

GΩ =
1
q

∑
ij

aij

π
(2)
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where q is the number of common edges eij and of folding an-
gles aij . Since 0 ≤ aij ≤ π, one gets 0 ≤ GΩ ≤ 1. GΩ = 0
corresponds to have all faces coplanar (∀ij, aij = 0, this is the de-
veloped state); GΩ = 1 corresponds to have all faces overlapping
(∀ij, aij = π, this is the flat-folded state).

This global descriptor allows to define the unfolded state Ω′ as
the state that minimizes the value of GΩ over the set of all the
admissible states (the total folding path): ∀Ω, GΩ′ ≤ GΩ; the
state Ω′′ that maximizes this value will be called the folded state:
∀Ω, GΩ′′ ≥ GΩ. If there exist only one continuous path between
an unfolded and a folded state, the foldable corrugated mesh has
a unique folding path, Figure 6, otherwise, it has multiple folding
paths.

Figure 6: Global descriptor GΩ as the parameter of a unique fold-
ing path (GΩ′ ≤ GΩ ≤ GΩ′′ )

3.2 Folding path and classification
The description of the folding path is quite explicit when using
the evolution of the configuration along with the values of GΩ.
Extremal reachable values allow to define:

• A developable corrugated mesh: the unfolded state is planar,
GΩ′ = 0;

• A non-developable corrugated mesh: GΩ′ > 0;

• A flat-foldable corrugated mesh: the folded state is planar,
GΩ′′ = 1;

• A non flat-foldable corrugated mesh: GΩ′′ < 1;

and four different combinations of these cases are possible. More-
over, the case where GΩ′ = GΩ′′ corresponds to an unfoldable (or
rigid) corrugated mesh. Figure 7 recalls and compares the different
possibilities, with examples of corrugated meshes.
GΩ is a useful intrinsic characteristic of a configuration Ω that

leads to smooth evolutions of folding angles. Nevertheless, it may
be difficult from a control point of view to command the folding /
unfolding movement with GΩ(t): It would correspond to exert an
identical torque on every hinge simultaneously. A small modifi-
cation of the definition of GΩ consists in using the squared val-
ues (aij/π)2, that corresponds to elastic rotational springs at each

Figure 7: Classification and examples of foldable corrugated
meshes; (a) developable and flat-foldable, (b) developable and non
flat-foldable, (c) non developable and flat-foldable, (d) non devel-
opable and non flat-foldable, (e) unfoldable (rigid)
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hinge. In such a case, these elastic springs would store the ac-
tuation energy, useful for deployment. The fact that the use of
GΩ (present, or with squared values) as a folding path parameter
leads to smooth curves for the evolution of folding angles explains
why systems with such elastic springs to store actuation energy
may easily deploy themselves with a low probability of locking
[2]. An other command would focus on one or few rotation angles
aij . To check commandability, one can plot the evolution of the
corresponding rotation angles with respect to GΩ, as in Figure 8.
With a non-univoque relationship (as for curve 1 in Figure 8) the
deployment cannot be entirely controlled. Indeed the dead center
(the velocity inversion point) separates the path into two sub-paths.
Unless an additional actuator (even for a mechanism with one mo-
bility) is added to a rotation angle that does not posses a dead center
at the same location (or using dynamical effects to pass through the
dead center, which is not a reliable command), the two sub-paths
are separated.

Figure 8: Controlability of folding path: typical evolution of two
degrees of freedom versus GΩ

4 A case study: Generalized Miura-Ori
surface

We propose herein a geometrical model of a foldable corrugated
mesh which is a generalization of the Muira-Ori origami surface
[21, 20], a developable and flat-foldable corrugated mesh, whose
unfolded state can tessellate a plane. It has a unique folding path
with a great packaging efficiency that makes it useful for deploy-
able planar structures. However, for the design of foldable / unfold-
able architecture envelops (structures that demands both packaging
efficiency and stiffness), it lacks of structural rigidity, since the un-
folded state is a plane (developable corrugated mesh), a surface
with no out-of-plane stiffness. The proposal is therefore to modify
geometrically the Miura-Ori fold in order to prevent its unfoldabil-
ity to a plane, and additionally to approximate non-planar average
surfaces.

There exist many generalizations of Miura-Ori fold approximat-
ing three-dimensional non planar surfaces, [12, 25] for instance,
see Figure 9. Though interesting from a geometrical standpoint,
these surfaces do not achieve structural efficiency, since they keep
being developable corrugated meshes: the non-planar surface is
approximated in an intermediate (geometrically changing due to

mechanisms) state during the folding path, and do not exhibit stiff-
ness. Some non-developable units nevertheless exists [27] but
cannot be assembled into larger one-degree-of-mobility corrugated
meshes unlike the developments presented herein.

Figure 9: Examples of Miura-Ori generalizations; top: genuine
Miura-Ori fold; middle: Curved pleated sheet structure [12]; bot-
tom: Generalization of quadrilateral mesh origami [25]

The aim of our generalization is to modify the geometry of the
Miura-Ori fold in order to prevents its developability while keep-
ing its kinematic efficiency (i.e. to preserve its ability to easily
unfold from a very compact folded state to a wide area coverage
unfolded state), to get a non-developable and flat-foldable corru-
gated mesh. The unfolded state then tessellates a ‘thick’ plane,
so we can define its thickness, and its folding path spreads from
this thick plane state to a completely flat-folded state. With further
geometrical modifications, this corrugated mesh can approximate
single-curved surfaces, thus tessellating thick cylinders, increasing
stiffness and keeping flat-foldability.

4.1 Miura-Ori
This wide-known developable and flat-foldable corrugated mesh is
composed of repetitive rhombuses that tessellate a plane Figure 9
(top). The rhombuses are defined by an angular parameter α and
the edge length l. Its analysis can be derived from a single basic
unit, Figure 10, on which the sector angles surrounding every fold
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intersection are: θ1 = θ4 = α, θ2 = θ3 = π − α, therefore
satisfying the local foldability condition (1), and the developability
condition (the sector angles sum to 2π).

Figure 10: Foldability properties of the Miura-Ori tessellation
(straight lines are mountain folds, dotted lines are valley folds)

If we apply a kinematic constraint (for example when decreasing
the distance between vertices A and C), Figure 11, a finite mecha-
nism is activated, and, according to [14, 13], there exists a one-to-
one map between the folding angles: a41 = a23 and a12 = a34.
Therefore, the folding path of the basic unit can be completely de-
scribed with a single parameter once the design parameter α has
been chosen. This path is depicted on Figure 12.

Figure 11: Characteristics of the Miura-Ori basic unit: Expansion
coefficients along x and y directions: ex and ey

Several characteristics of the basic unit may be drawn. For in-
stance, the evolution of the folding angles with GΩ, but also the
expansion coefficients [21]: If the unit is confined between two
external tangent planes, parallel to CA and DB, as in Figure 11,
the unit deployment happens simultaneously in two orthogonal di-
rections (lying in the tangent planes and respecting symmetries) x
and y; the expansion coefficient ex (respectively ey) is the ratio of
the length of segment CA (respectively DB) and their respective

Figure 12: Folding path for the Miura-Ori basic unit

maximum values.
The modified basic unit we propose hereafter should preserve

these properties, while leading to a non-developable corrugated
mesh in order to exhibit stiffness for the unfolded state.

4.2 Generalized unit and folding path
In a basic unit of the Miura-Ori surface, the four sector angles sum
up to 2π; we propose to modify two of them to sum to more than
2π, Figure 13. These four sector angles are now: θ1 = θ4 =
α + β, θ2 = θ3 = π − α. They still satisfy the local foldability
condition (1), but no more the developability condition since their
sum is

∑
m θm = 2π + 2β. On such a simple fold, the local

non penetration condition during folding process can be derived:
θ1 ≥ θ2, resulting in restriction range for β: β ≤ π − 2α.

If we scale up the model to l = 1 to simplify the expressions,
without loss in generality in all of the following, and choose a co-
ordinate orthonormal basis (x′, y′, z′) such that x′ = CO, y′ lies
in F2 and is close to OB as for a Gram-Schmidt orthonormaliza-
tion of (CO,OB), Figure 13(d), the vector OA is obtained by
rotation of an angle a12 of vector

[
cosβ − sinβ 0

]T
along

OB =
[
cosα sinα 0

]T
. After trigonometric developments,

this leads to its coordinates as functions of a12:

xA = cos a12 sinα sin(α+ β) + cosα cos(α+ β) (3)
yA = − cos a12 cosα sin(α+ β) + sinα cos(α+ β) (4)
zA = − sin a12 sin(α+ β) (5)

A compatible state satisfies to A = A′. Due to the symmetry plane
of normal vector n =

[
0 cos(a23/2) sin(a23/2)

]T
, this con-

dition also means thatA lies in the symmetry plane, i.e. OA·n = 0.
This relation links the two kinematic parameters a12 and a23 as a
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Figure 13: Modification of the Miura-Ori basic unit to a non-
developable corrugated unit (straight lines are mountain folds, dot-
ted lines are valley folds); (a) original Miura-Ori unit, (b) modified
unit, (c) another assembly process of the same modified unit, (d)
dedicated coordinate basis for the analysis

continuous map that describes admissible states:

tan(a23/2) = −yA/zA (6)

Finally, a41 can be obtained with a41 = arccos(n4 · n1). An other
assembly process consists in noting that the generalized unit can
be assembled along edges OD and OC, Figure 13 (c). In such a
way, one gets for the assembled admissible state 6 (CG,CF ) =
6 (OD,OB) = 6 (AH,AE) which leads to the following expres-
sion:

cos a41 =
cos2(α+ β)− cos2 α+ (sin2 α) cos a23

sin2(α+ β)
(7)

For feasible ranges of design parameters α and β, expression
(6) is a monotone relationship, and for a23 ∈ [0, π], one gets
a12 ∈ [a′′12, π] where the minimal value a′′12 is obtained from (6):
cos a′′12 = tanα/tan(α+ β). The unfolded state therefore corre-
sponds to a12 = a′′12 and a23 = 0.

The folding motion is therefore described with a unique param-
eter, and the unit has a unique folding path, depicted on Figure 14
(for α = π/3 and β = π/10). This is therefore the proof that the
proposed unit is a mechanism with a single degree of mobility.

4.3 Generalized unit characteristics
As for the Miura-Ori basic unit and assembly, the expansion coef-
ficients on the two orthogonal directions x and y can be defined.
Their evolutions along the folding path now depend on the two de-
sign parameters α and β. An interesting angle is ξ = 6 (OC,OA)
with cos ξ = OC ·OA = −xA. For the unfolded state this value is

cos ξ′′ = −cos(α+ β)/cosα (8)

Figure 14: Folding path for the non-developable unit

Then, one gets CA = 2 sin(ξ/2) andDB = 2 sinα cos(a23/2),
so the expansion coefficients are ex = sin(ξ/2)/sin(ξ′′/2) and
ey = cos(a23/2)

The evolutions of these two expansion coefficients from folded
to unfolded state are plotted in Figure 15 for different values of α
and β. Increasing α allows a larger variation of the ex coefficient.
For α → π/2, these co-evolution curves tend to two orthogonal
segments, i.e. two decoupled movements, with difficulties in the
command control.

Figure 15: Expansion coefficients for different design parameters

Another characteristic is the ‘thickness’ of the average surface
of the unfolded state, Figure 16: t = (1 + cosα) cos(ξ′′/2). This
thickness describes the non-planarity of the unfolded state, and is
related to structural efficiency: increasing the thickness also in-
creases the quadratic moments of the average surface (the coeffi-
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cients in the strength and in the stiffness expressions of a ‘thick’
surface that arise from geometry and not from material character-
istics), and consequently its load-bearing capacity.

Figure 16: Thickness of the unfolded state of the non-developable
unit (left) and of the Miura-Ori unit (right, with zero thickness)

Figure 17 (left) shows a plot of the values of this thickness. Al-
though for α = π/4 and β = π/2 the thickness is maximum, for
those design values, the surface covered (projected to (x, y) plane)
is relatively small, Figure 17 (right). This projected surface is given
with: A = 4 sin(ξ′′/2). Depending on the application, a compro-
mise should be made; for instance, Figure 18 shows plots of the
product of the thickness with the covered area t(α, β) × A(α, β).
It allows for instance, to maximize this equivalent volume on de-
sign parameters.

Figure 17: Evolution of the thickness with design parameters (left,
lighter color: not admissible states), folded state for the maximal
thickness (right)

Figure 18: Product of the thickness with the covered area of the
unfolded state

4.4 Unit assembly
As already stated, all along the folding path, two opposite sides
of the unit have the same folding angle. Moreover, considering
again the assembly process of Figure 13 (c), the edges of the plates
are parallel and stay parallel all along the folding path. Therefore,
the corner nodes of two opposite sides of the unit deduce them-
selves with a translation (of vector CA for one side, and DB for
the other one). Thanks to these properties, the basic units can be
assembled in two directions, either x or y, in a modular array. With
periodic translations along these directions, the whole thick plane
can be tessellated, and the unit characteristics pertain to the as-
sembly: a unique folding path, a mechanism with a unique degree
of freedom, non-developability, flat-foldability, evolutions of ex-
pansion coefficients and thickness. The deployment still happens
simultaneously in two orthogonal directions and is allowed from a
compact flat-folded state (packing efficiency) to an extended pre-
determined service state (unfolded state), and back-forth (folding),
following the same path. Figure 19 illustrates the folding path for a
3-by-3 array that was geometrically constructed in Grasshopper®,
a graphical algorithm editor integrated with Rhino3D® modeling
tools, allowing to draw parametrically-driven 3D geometries. The
planes into which are located the boundary nodes of the basic units
are kept plane all along the folding path. For this model, the in-
put parameters are the angles α, β, the edge dimension l (scale of
the model), and for describing the unique folding path, a kinematic
parameter.

5 Single curved surface assemblies
To modify the geometry of the basic unit, and to lead to assem-
blies that approximate single-curved surfaces, we introduce an ad-
ditional angular parameter, Figure 20. Since for the planar assem-
bly we defined two sets of folding planes that remain parallel and
mutually orthogonal during the folding path, for the single-curved
assemblies, the sets of folding planes are now parallel for one set
and radial for the other one, Figure 21. The new parameter may be
either:

• γ for obtaining an y-direction single curved surface, with a
curvature radius Ry and a circle sector angle κy;

• or δ for obtaining an x-direction single curved surface, with a
curvature radius Rx and a circle sector angle κx.

The resulting surfaces, depending on the sign of γ or δ, approx-
imate concave or convex sectors of cylinder, Figure 21. They are
still non-developable and flat-foldable corrugated meshes.

The design process for these surfaces is the following. Consider
the juxtaposition of two identical units (with the same folding state)
along one of the direction x or y. Consider that each unit is assem-
bled with infinite strips as faces, and rotate one of the unit of a
global angle κ along the other characteristic direction.

For the first type of surfaces (with x-curvature), the assembly
of two units (with subscripts 0 and 1) initially by translation along
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Figure 19: Folding path of a 3-by-3 unit assembly. Two arrays of
orthogonal planes are conserved along the path

Figure 20: Modification of the Miura-Ori basic unit to a non-
developable corrugated units with single curvature (straight lines
are mountain folds, dotted lines are valley folds); (a) original
Miura-Ori unit, (b) modified unit of first type (x-curved surface),
(c) modified unit of second type (y-curved surface)

Figure 21: Four different 3-by-3 unit assemblies to get single-
curved flat-foldable corrugated meshes. From left to right and top
to bottom: concave x-curvature, convex x-curvature, concave y-
curvature, convex y-curvature. Two arrays of orthogonal planes
are conserved along the path; one being a radial array.
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vector CA, uses also a rotation of angle κx along DB at point
A0 = C1, Figures 22 and 23. Since the upper nodes are always lo-
cated in the same plane (see Section 4.4), the corresponding faces
of the two units intersect alongA0E0 = C1F1 andA0H0 = C1G1,
all segments having the same length. This 2-unit assembly gets
useful information considering the local assembly of the former
unit (with δ = δ′ = 0, characterized with the design parameters α
and β and the folded state given for instance with angles a23 and ξ)
and of the new unit, whose characteristics are denoted with over-
lined quantities (ᾱ = α − δ, β̄ = β + δ − δ′, ā23, ξ̄), Figure 23.
Therefore, (i) the angle δ′ is directly obtained from δ, providing
identical length of segments A0E0 and C1F1; this assembly con-
dition reads sin(α+ β)/sin(ᾱ+ β̄) = sinα/sin ᾱ, that leads to

δ′ = α+ β −
π

2
arccos

sin(α+ β) sin(α− δ)
sinα

(9)

N.B. (DD on 2012, 4 december) Is it a wrong formula? May be

δ′ = α+ β − arcsin
sin(α+ β) sin(α− δ)

sinα

(ii) the angle δ is directly obtained from the given unit folding
state and the global angle κx, with the second assembly condition
of the units: ā23 = a23 (same local folded state). If one reverses
the process, i.e. if considering a given folding state for the units,
and a given design parameter δ, the global angle κx can be com-
puted as well. Therefore, for a given value δ, making the folding
state of the units continuously changing renders the global angle κx

continuously changing as well (within an admissible range). As a
consequence, the assembly is also a mechanism with one degree of
mobility. An interesting state is the unfolded state Ω′′ for which
a23 = 0 = ā23. With the expression (8) for the modified unit,
cos ξ̄′′ = −cos(ᾱ+ β̄)/cos ᾱ, the corresponding sector angle κ′′x
can be obtained, together with the curvature radius R′′x, Figure 23:
κ′′x = ξ′′− ξ̄′′ and R′′x = sin(ξ′′/2)/ sin(κ′′x/2). For 0 < δ < α/2,
one gets a convex surface (with respect to the external face), and
for δ < 0, subjected to sin(α− δ) < sinα/ sin(α+β), the surface
is concave.

Similar arguments can be used for the y-curved surfaces, with
a permutation of assembling directions: The units are assem-
bled with a rotation of angle κy along CA. For the unfolded
state Ω′′ with a23 = 0, DB = 2 sinα, and (Figure 24):
R′′y = sinα/ sin(κ′′y/2). The relation between γ and κ′′y can
be obtained as previously: z is the normal to both faces F2 and
F3, Figure 13, for state Ω′′; therefore if z′ is obtained from
z with a rotation of angle κ′′y along the direction of CA, i.e.[
cos(ξ′′/2) 0 − sin(ξ′′/2)

]T
, then

tan γ = −z′ · x/z′ · y = − cos(ξ′′/2)(1− cosκ′′y)/ sinκ′′y (10)

For 0 < γ < α/2, one gets a convex surface, and for γ > 0, the
surface is concave.

Additionally, the angle γ′ and the fact that this mechanism has 1
degree of mobility can be established from the assembling condi-

Figure 22: Design process for modifying the generalized unit to
engender a curved global surface

Figure 23: Assembly of two modified units for the second type of
curved surface (x-cuved, within symmetry plane)

Figure 24: Assembly of two modified units for the first type of
curved surface (y-curved, within the plane orthogonal to CA)
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Figure 25: Convex y-curvature folding path

tion: CF = AE, that leads to

tan γ′ =
sin(α+ β)

sinα/ tan γ − cosα− cos(α+ β)
(11)

Reversing the previous analytical relations between angular pa-
rameters and curvature radius, we can find, from a given basic unit
with α and β design values and from the desired curvature radius
Ry or Rx, the remaining design parameters γ or δ. With admis-
sible values of curvature radius, we can tessellate four different
thick cylinders. They are non-developable and flat-foldable corru-
gated meshes, with one degree of freedom folding motion. Sev-
eral folding steps for three of the four different scenarios are pre-
sented in Figures 25 to 27. Nevertheless, the case of x-curvature
cylinders are only locally foldable, since some faces self-intersect
during the folding path. This illustrates that the local foldability
conditions are not sufficient to ensure the global foldability or the
non-penetration. Analytical developments are therefore useful for
design and optimization purposes, and simulation can be used to
check features such as global foldability with non-penetration re-
quirements. Several ways to express necessary global foldability
constraints may be found in [28] for instance, but up to now, only
numerical approaches are available to check in a general and prac-
tical way the global non-penetration of non-adjacent plates.

The y-curvature cylinders do not exhibit such an interference,
and Figure 28 illustrates a physical model of such a single curved
assembly of 9 units, that has been built at the model laboratory
of the École Nationale Supérieure d’Architecture de Montpellier,
thanks to Dr. Arch. V. Raducanu, F. Gioia and N. Céleste, with
piano hinges and 1.5 mm thick CNC-laser-cut plates (5800 alu-

Figure 26: Concave y-curvature folding path

Figure 27: Concave x-curvature folding path with a zoom when an
interpenetration occurs
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minum alloy). The configuration corresponds to an y-curved sur-
face with α = 67.15°, β = 19.28°, γ = 15.69°, l = 50.14 cm and
a span of approx. 278 cm.

The comparison of the model and physical realization features,
for kinematics and stiffness point of view, are not under the scope
of this article, but works are in progress [10].

Figure 28: Physical model of a single curvature design (unfolded
state, and the almost flat-folded state at the same scale)

If the design angles δ or γ are allowed to change at each raw of
units, one can design free-form single curved corrugated surfaces
still foldable and unfoldable, as in Figure 29. This is performed
with the additional complexity of non-repetitive units.

Figure 29: Free-form single curved foldable corrugated surface

6 Conclusions
It is possible to design, from any given bidimensional curve, a
single-curved foldable / unfoldable surface that posses kinematic
and structural features. In our classification those surfaces are
called non-developable and flat-foldable corrugated surfaces. For
these characteristics, they are suitable for application in civil engi-
neering and architecture, for instance for the construction of tem-

porary structures or convertible roofs, if we substitute the plates
with thick panels, linear hinges with waterproof mechanical artic-
ulations, and by using actuators to drive the one-degree-of-freedom
folding movement. From a geometrical point of view we observed
the phenomenon of interpenetration of plates in the folding motion
of two curved configurations, confirming that the local conditions
of foldability do not necessarily lead to the global foldability, that
requires both the existence of folding movement and no interpen-
etration of plates. Assessing the corrugated surface stiffness, from
a simulation point of view with finite elements, as well as experi-
mentally on a mockup of such a structure are currently under work.
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