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STRONG EXISTENCE AND UNIQUENESS FOR STOCHASTIC DIFFERENTIAL

EQUATION WITH HÖLDER DRIFT AND DEGENERATE NOISE

P.E. CHAUDRU DE RAYNAL

Abstract. In this paper, we prove pathwise uniqueness for stochastic degenerate systems with a
Hölder drift, for a Hölder exponent larger than the critical value 2/3. This work extends to the
degenerate setting the earlier results obtained by Zvonkin [Zvo74], Veretennikov [Ver80], Krylov and
Röckner [KR05] from non-degenerate to degenerate cases. The existence of a threshold for the Hölder
exponent in the degenerate case may be understood as the price to pay to balance the degeneracy of
the noise. Our proof relies on regularization properties of the associated PDE, which is degenerate in
the current framework and is based on a parametrix method.

1 Introduction

Let T belongs to R
+,∗ and d to N

∗, we consider the following R
d × R

d system for any t in [0, T ]:

{

dX1
t = F1(t,X

1
t ,X

2
t )dt+ σ(t,X1

t ,X
2
t )dWt, X1

0 = x1,
dX2

t = F2(t,X
1
t ,X

2
t )dt, X2

0 = x2,
(1.1)

where (Wt, t ≥ 0) is a standard d-dimensional Brownian motion defined on some filtered probability
space (Ω,F ,P, (Ft)t≥0) and F1, F2, σ : [0, T ] × R

d × R
d → R

d × R
d × Md(R) (the set of real d × d

matrices) are measurable functions. The diffusion matrix a := σσ∗ is supposed to be uniformly elliptic.
The notation “∗” stands for the transpose.

In this paper, we investigate the well posedness of (1.1) outside the Cauchy-Lipschitz framework.
Notably, we are interested in the strong posedness, i.e strong existence and uniqueness of a solution.
Strong existence means that there exists a process (X1

t ,X
2
t , 0 ≤ t ≤ T ) adapted to the filtration

generated by the Brownian motion (Wt, 0 ≤ t ≤ T ) which satisfies (1.1). Strong uniqueness means
that, if two processes satisfy this equation with the same initial conditions, their trajectories are al-
most surely indistinguishable. Here, we show that under a suitable Hölder assumption on the drift
coefficients and Lipschitz condition on the diffusion matrix, the strong well-posedness holds for (1.1).

It may be a real challenge to prove the existence of a unique solution for a differential system without
Lipschitz conditions on the coefficients. For example, in [DL89], DiPerna and Lions showed that under

integrability conditions on b, ∇b and div(b), the integral equation: Yt =
∫ t
0 b(s, Ys)ds, Y0 = y admits

a unique solution defined as a regular Lagrangian flow (see [DL89] for the definition of such a solution).

In a stochastic case, the first result in this direction is due to Zvonkin. In [Zvo74], the author
showed that the strong well-posedness holds for the one-dimensional system

Yt =

∫ t

0
b(s, Ys)ds +Wt, Y0 = y t ∈ [0, T ], (1.2)

for a measurable function b in L
∞. Then, Veretennikov [Ver80] generalized this result to the multi-

dimensional case and Krylov and Röckner showed in [KR05] the strong well-posedness for b in
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L
p
loc, p > d. There are some extensions of these works and we refer the reader to the paper of

Zhang [Zha05] and references therein for a summary of the results. Finally, when b is a measurable
and bounded function, Davie showed in [Dav07] that for almost every Brownian path, there exists a
unique solution for the system (1.2). We emphasize that this result implies the strong uniqueness, but
the converse is not true. Indeed, in such a case, there exists an a priori set Ω′ ⊂ Ω with P(Ω′) = 1
such that for all ω in Ω′ the solution of (1.2) is unique.

All these results rely on the regularization of differential systems by adding a non-degenerate noise,
and we refer to [Fla11] for a partial revue on this subject. In (1.1), the noise added is completely
degenerate w.r.t the degenerate component X2. This sort of system has also been studied by Vereten-
nikov. When the drift is measurable and bounded and the diffusion matrix is Lipschitz w.r.t the
non-degenerate component X1, besides if they are two times continuously differentiable functions
with bounded derivatives w.r.t the degenerate component, the author showed in [Ver83] that the
strong well-posedness holds. Therefore, he did not consider the regularization in the degenerate di-
rection.

Their proofs rely on the deep connection between SDEs and PDEs (see [Bas98] or [Fri06] for a
partial revue in the elliptic and parabolic cases). The generator associated to the Markov process Y is
a linear partial differential operator of second order (usually denoted by L) with the transition density
of Y as fundamental solution. As explained by Fedrizzi and Flandoli in [FF11]: “if we have a good
theory for the PDE:

∂

∂t
u+ Lu = Φ, on [0, T ] uT = 0, (1.3)

where the source term Φ has the same regularity as the drift, then, we have the main tools to prove
strong uniqueness”.

In this paper, we show that the noise regularizes, even in the degenerate direction, by means of the
random drift. Unfortunately, there is a price to pay to balance the degeneracy of the noise. First, the
drift must be at least 2/3-Hölder continuous w.r.t the degenerate component. We do not know how
sharp is this critical value, but it is consistent with our approach. Secondly, the drift F2 of the second
component must be Lipschitz continuous w.r.t the first component and its derivative in this direction
has to be uniformly non degenerate: this allows the drift to regularize.

Our proof also relies on regularization properties of the associated PDE, and the “good theory” is
here a “strong theory”: a Lipschitz bound on the solution of (1.3) and on its derivative w.r.t the first
component. In our case, the generator L is given by: for all ψ in C1,2,1([0, T ] ×R

d × R
d,Rd):

Lψ(t, x1, x2) =
1

2
Tr(a(t, x1, x2))D

2
x1
ψ(t, x1, x2)) + [F1(t, x1, x2)] · [Dx1

ψ(t, x1, x2)]

+ [F2(t, x1, x2)] · [Dx2
ψ(t, x1, x2)] . (1.4)

where Tr(a) stands for the trace of the matrix a and “·” denotes the standard Euclidean inner product
on R

d and where for any z in R
d, the notation Dz means the derivative w.r.t the variable z. Here, the

operator is non uniformly parabolic. When the coefficients are smooth and the Lie algebra generated
by the vector fields spans the whole space such an operator admits a smooth fundamental solution (see
[Hö67]): it is said to be hypoelliptic. The assumption on the uniform non-degeneracy of the derivative
of the drift F2 w.r.t x1 can be understood as a sort of weak Hörmander condition.

In our case, the form of the degeneracy is a non-linear generalization of Kolmogorov’s degeneracy,
in reference to the first work [Kol34] of Kolmogorov in this direction. Degenerate operators of this
form have been studied by many authors see e.g. the work of Di Francesco and Polidoro [DFP06],
and Delarue and Menozzi [DM10]. We also emphasize that, in [Men11], Menozzi deduced from the
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regularization property exhibited in ([DM10]) the well weak posedness of a generalization of (1.1).
Nevertheless, to the best of our knowledge, there does not exist a strong theory, in the sense defined
above, for the PDE (1.3) when L is defined by (1.4). We investigate it by using the so called parametrix
approach (see [Fri64] for partial revue in the elliptic setting).

In comparison with the works of Veretennikov [Ver80, Ver83], Krylov and Röckner [KR05], and
Flandoli and Fedrizzi [FF11], asking for F1 to be only in L

p, p > d might appear as the right frame-
work. Since the parametrix is a perturbation method and we are interested in L

∞ estimates, we
suppose the drift F1 to be Hölder continuous w.r.t x1.

1.1 Organization of this paper

Subsection 1.2 states useful notations, detailed assumptions and the main result of this paper:
strong existence and uniqueness for (1.1). In Subsection 1.3, we provide the strategy to prove this
result, which includes the regularization properties of the associated PDE. Finally, our main result is
proved in Subsection 1.4. The remainder of this paper is dedicated to the proof of the regularization
properties of the associated PDE.
The strategy is exposed in Subsection 1.5: it is based on a smooth approximation of the coefficients
and the parametrix. Existence and uniqueness of a smooth solution for the PDE with smooth coeffi-
cients is given in Subsection 1.6.
Section 2 explains the proof of the regularization properties in a simple case and allows to understand
our assumptions and how the proof in the general case can be achieved. Section 3 defines the mathe-
matical tools and the proof of the regularization properties of the PDE is provided in Section 4. This
is the technical part of this paper.

1.2 Main Result

Notations. In order to simplify the notations, we adopt the following convention: x, y, z, ξ, etc..
denote the 2d−dimensional real variables (x1, x2), (y1, y2), (z1, z2), (ξ1, ξ2), etc.. Consequently, each
component of the d-dimensional variables xk, k = 1, 2 is denoted by xkl, l = 1, · · · , d. We denote by
g(t,Xt) any function g(t,X1

t ,X
2
t ) from [0, T ]×R

d×R
d to R

N , N ∈ N. Here, Xt = (X1
t ,X

2
t ) and then

F (t,Xt) is the R
2d valued function (F1(t,X

1
t ,X

2
t ), F2(t,X

1
t ,X

2
t ))

∗. We rewrite the system (1.1) in a
shortened form:

dXt = F (t,Xt)dt+Bσ(t,Xt)dWt, (1.5)

where B is the 2d × d matrix: B = (Id, 0Rd×Rd)∗. “Id” stands for the identity matrix of Md(R), the

set of real d× d matrices. When it is necessary, we write (Xt,x
s )t≤s≤T the process in (1.1) which starts

from x at time t, i.e Xt,x
t = x.

We denote by GLd(R) the set of d× d invertible matrices with real coefficients and by φ a measurable
function from [0, T ]×R

d ×R
d to R

2. Each one-dimensional component of this function is denoted by
φi, i = 1, 2 and plays the role of one coordinate of Fi. Hence, φi satisfies the same regularity as Fi

given latter. We recall that a denotes the square of the diffusion matrix σ: a := σσ∗. Subsequently,
we denote by c, C, C ′, C ′′ or C ′′′ a positive constant, depending only on known parameters in (H),
given just below, and may change from line to line and from an equation to another.
We recall that the canonical Euclidean inner product on R

d is denoted by “·” and the notation Dz

means the derivative w.r.t the variable z. Hence, for all integer n, Dn
z is the nth derivative w.r.t z and

for all integer m the n ×m cross differentiations w.r.t z, y are denoted by Dn
zD

m
y . Furthermore, the

partial derivative ∂/∂t is denoted by ∂t.

Hypotheses. (H). We say that assumptions (H) hold if the coefficients satisfy:



4 P.E. CHAUDRU DE RAYNAL

(H1): Regularity of the coefficients. There exist 0 < βji < 1, 1 ≤ i, j ≤ 2 and three positive constants

C1, C2, Cσ such that for all (t, x1, x2) and (t, y1, y2) in [0, T ]× R
d × R

d,

|F1(t, x1, x2)− F1(t, y1, y2)| ≤ C1(|x1 − y1|β
1
1 + |x2 − y2|β

2
1 )

|F2(t, x1, x2)− F2(t, y1, y2)| ≤ C2(|x1 − y1|+ |x2 − y2|β
2
2 )

|σ(t, x1, x2)− σ(t, y1, y2)| ≤ Cσ(|x1 − y1|+ |x2 − y2|).

Moreover, the coefficients are supposed to be continuous w.r.t the time and β2i > 2/3, i = 1, 2. There-
after, we set β12 = 1 for notational convenience.

(H2): Uniform ellipticity of σσ∗. The function σσ∗ also satisfies the uniform ellipticity hypothesis:

∃Λ > 1 such that ∀ζ ∈ R
2d, Λ−1|ζ|2 ≤ [σσ∗(t, x1, x2)ζ] · ζ ≤ Λ|ζ|2,

for all (t, x1, x2) ∈ [0, T ]× R
d × R

d.

(H3-a): Differentiability and regularity of x1 7→ F2(., x1, .). For all (t, x2) ∈ [0, T ]×R
d, the function

F2(t, ., x2) : x1 7→ F2(t, x1, x2) is continuously differentiable and there exist 0 < α1 < 1 and a positive
constant C̄2 such that, for all (t, x2) in [0, T ]× R

d and x1, y1 in R
d,

|Dx1
F2(t, x1, x2)−Dx1

F2(t, y1, x2)| ≤ C̄2|x1 − y1|α
1

.

(H3-b): Non degeneracy of (Dx1
F2)(Dx1

F2)
∗. There exists a closed convex subset E ⊂ GLd(R) such

that for all t in [0, T ] and (x1, x2) in R
2d the matrix Dx1

F2(t, x1, x2) belongs to E. We emphasize that
this implies that

∃Λ̄ > 1 such that ∀ζ ∈ R
2d, Λ̄−1|ζ|2 ≤ [(Dx1

F2)(Dx1
F2)

∗(t, x1, x2)ζ] · ζ ≤ Λ̄|ζ|2,

for all (t, x1, x2) ∈ [0, T ]× R
d × R

d.

Remark. Consequently, the sentence “known parameters in (H)” refers to the parameters belonging
to these assumptions.
The reason for the existence of the critical value 2/3 for the Hölder regularity of the drift in (H1) and
the particular “convexity” assumption (H3-b) are discussed in Section 2.

The following Theorem is the main result of this paper and regards the strong well-posedness of the
system (1.1).

Theorem 1.1. Let T > 0 and suppose that assumptions (H) hold true. Then, strong existence and
uniqueness hold for (1.1).

1.3 Strategy of proof

Let us expose the basic arguments to prove Theorem 1.1. Existence of a weak solution is straightfor-
ward and follows from the regularity of the coefficients, see e.g. [SV79]. Then, if the strong uniqueness
holds, the strong existence follows. The main issue consists in proving the strong uniqueness. As we
already mentioned, the strategy relies on regularization properties of the linear system of PDEs:

{

∂tui(t, x) + Lui(t, x) = Fi(t, x), for (t, x) ∈ [0, T ]× R
2d,

ui(T, x) = 0Rd , i = 1, 2.
(1.6)
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This works as follows: suppose that there exists a unique C1,2,1
b ([0, T ] × R

d × R
d,Rd) solution u =

(u1, u2)∗ of this system such that u and Dxu are CT Lipschitz continuous, where CT is small as T is
small. Thanks to Itô’s formula, for all t in [0, T ]:

∫ t

0
F (s,Xs)ds = u(t,Xt) +

∫ t

0
Dxu(s,Xs)Bσ(s,Xs)dBs.

Then,
∫ t
0 F (s,Xs)ds is Lipschitz continuous w.r.t X, with Lipschitz constant CT . The uniqueness can

be proved for small T by a circular argument and the result can be deduced by iterating this strategy
on sufficiently small intervals.

The main issue here is that the PDE (1.6) does not admit a C1,2,1
b ([0, T ] × R

d × R
d,Rd) solution.

Nevertheless, we do not need to obtain the existence of a regular solution but only the existence
of Lipschitz bounds for u and Dxu depending only on known parameters in (H). Therefore, we
investigate these bounds in a smooth setting. Indeed, thanks to assumptions (H), there exists a
sequence of mollified coefficients (an, Fn

1 , F
n
2 )n≥0 with bounded derivatives of any order such that:

(an, Fn
1 , F

n
2 ) −→

n→+∞
(a, F1, F2), (1.7)

uniformly on compact subsets of [0, T ] × R
d × R

d and such that (an, Fn
1 , F

n
2 ) satisfy (H) uniformly

(in n). Let us denote by Ln the regularized version of L (that is the version of L with mollified
coefficients), one has:

Lemma 1.2. Let n in N. The PDE,

∂tu
n
i (t, x) + Lnuni (t, x) = Fn

i (t, x), for (t, x) ∈ [0, T ]× R
2d uni (T, x) = 0Rd , i = 1, 2,

admits a unique solution un = (un1 , u
n
2 )

∗, which is infinitely differentiable with bounded derivatives of
any order.

Moreover the solutions un, n ≥ 0 satisfy:

Proposition 1.3. For T small enough, there exists a positive constant CT depending only on T and
known parameters in (H) and not on n such that:

||Dx1
un||∞ + ||Dx2

un||∞ + ||D2
x1
un||∞ + ||Dx1

Dx2
un||∞ ≤ CT

and CT → 0 when T → 0.

We emphasize that the estimates on the solutions un, n ≥ 0 are obtained uniformly in n (that is
independently of the procedure of regularization) and we do not have to solve the limit PDE problem.
Besides, the terminal condition un(T, .) = 0 is very important: it guarantees that the solution and its
derivatives vanish at time T . Hence, it allows to control the Lipschitz constant of un by a constant
small as T is small.

1.4 Proof of Theorem 1.1

As we discussed, we only have to prove the strong uniqueness, since the weak existence holds.
Thereafter, we denote by “1” the 2d× 2d matrix:

(

Id 0Rd×Rd

0Rd×Rd 0Rd×Rd

)

.

Let (Xt, t ≥ 0) and (Yt, t ≥ 0) be two solutions of (1.1) with the same initial condition x in R
2d.

Let un be the solution of the linear system of PDEs (1.6). By using Lemma 1.2 we can apply Itô’s
formula for un(t,Xt)−Xt and we obtain:
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un(t,Xt)−Xt =

∫ t

0
[∂tu

n + Lun] (s,Xs)ds−
∫ t

0
F (s,Xs)ds+ un(0, x) − x

+

∫ t

0
[Dxu

n − 1]Bσ(s,Xs)dWs.

In order to use the fact that ∂tu
n + Lnun = Fn, we rewrite:

un(t,Xt)−Xt =

∫ t

0
[∂tu

n + Lnun] (s,Xs)ds+

∫ t

0
(L − Ln)un(s,Xs)ds

−
∫ t

0
F (s,Xs)ds + un(0, x)− x

+

∫ t

0
[Dxu

n − 1]Bσ(s,Xs)dWs,

and then,

un(t,Xt)−Xt =

∫ t

0
(L −Ln) un(s,Xs)ds +

∫ t

0
(Fn(s,Xs)− F (s,Xs))ds + un(0, x)− x

+

∫ t

0
[Dxu

n − 1]Bσ(s,Xs)dWs,

By the same argument, we obtain:

un(t, Yt)− Yt =

∫ t

0
(L − Ln) un(s, Ys)ds+

∫ t

0
(Fn(s, Ys)− F (s, Ys))ds+ un(0, x) − x

+

∫ t

0
[Dxu

n − 1]Bσ(s, Ys)dWs.

By taking the expectation of the supremum over t of the square norm of the difference of the two
equalities above, we get:

E

[

sup
t∈[0,T ]

|Xt − Yt|2
]

≤ CE

[

sup
t∈[0,T ]

|un(t,Xt)− un(t, Yt)|2
]

+CE

[
∫ T

0
|[Dxu

nB] (s,Xs)− [Dxu
nB] (s, Ys)|2 |σ(s, Ys)|2 ds

]

+CE

[
∫ T

0
(‖Dxu

nB‖∞ + 1) |[σ(s, Ys)− σ(s,Xs)]|2 ds
]

+CR(n, T ),

where

R(n, T ) = CT

(

E

[

sup
t∈[0,T ]

|F (n)(t, Yt)− F (t, Yt)|2
]

+ E

[

sup
t∈[0,T ]

|(Ln − L)un(t, Yt)|2
])

+CT

(

E

[

sup
t∈[0,T ]

|F (n)(t,Xt)− F (t,Xt)|2
]

+ E

[

sup
t∈[0,T ]

|(Ln − L)un(t,Xt)|2
])

.
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First, note that from (1.7), for both Yt and Xt, we have:

E

[

sup
t∈[0,T ]

|Fn(t,Xt)− F (t,Xt)|2
]

+ E

[

sup
t∈[0,T ]

|(Ln − L)un(t,Xt)|2
]

→ 0, as n→ ∞,

so that R(n, T ) → 0 when n→ ∞. Secondly, we know from Proposition 1.3, that for T small enough
and for all t ∈ [0, T ], the functions un(t, ., .) andDx1

un(t, ., .) are Lipschitz continuous, with a Lipschitz
constant independent of n. Since Dxu

nB = (Dx1
un, 0Rd×Rd), by letting n → ∞ and using the two

arguments above, we deduce that for T small enough:

E

[

sup
t∈[0,T ]

|Xt − Yt|2
]

≤ C(T )

{

E

[

sup
t∈[0,T ]

|Xt − Yt|2
]

+ E

[
∫ T

0
|Xs − Ys|2ds

]

}

,

where C(T ) → 0 when T → 0. Then, the strong uniqueness holds for T small enough. By iterating
this computation, the same result holds on any finite intervals and so on [0,∞). �

1.5 Strategy of proof of Lemmas 1.2 and Proposition 1.3

First of all, each coordinate of the vectorial solution ui of the decoupled linear PDE (1.6) can be
described by the PDE

∂tui(t, x) + Lnui(t, x) = φi(t, x), for (t, x) ∈ [0, T ]× R
2d, ui(T, x) = 0, (1.8)

where φi : R
2d → R satisfies the same hypotheses as Fi given in (H). Therefore, we only have to prove

Lemma 1.2 and Proposition 1.3 for (1.8) instead of (1.6).

Secondly, we do not solve the limit PDE problem (1.6). The estimates in Proposition 1.3 are
obtained for mollified coefficients an, Fn

1 , F
n
2 , φ

n
1 , φ

n
2 , n ≥ 0 1 but depend only on known parameters

in (H). Consequently, we forget the superscript “n” which arises from the mollifying procedure, and
we further assume that:

Hypotheses. (HR): We say that assumptions (HR) hold if: Assumptions (H) hold true and
F1, F2, φ1, φ2 and a are infinitely differentiable bounded functions with bounded derivatives.

The existence of a smooth solution under (HR) is established in Subsection 1.6 below. Then, the
estimates on this solution are obtained by using the parametrix method (see [Fri64] for a revue in the
elliptic setting).

1.6 Proof of Lemma 1.2

Strategy. We show that under (HR), there exists a unique solution u of the linear system of PDEs
(1.8) which is infinitely differentiable with bounded derivatives of any order. Existence and regularity
are proved by adopting a viscosity solution approach, and uniqueness by using the Feynman-Kac
representation. This proof is decomposed as follows:
We propose a candidate ui as:

ui(t, x1, x2) = E

[
∫ T

t
φi(s,X

1,t,x
s ,X2,t,x

s )ds

]

, (1.9)

1here, (φn
1 , φ

n
2 )n≥0 denotes the sequence of mollified coefficients (φ1, φ2): they are infinitely differentiable with bounded

derivatives of any order and they satisfy the same hypotheses as the (φ1, φ2) uniformly in n.
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where the process (X1,X2) satisfies (1.1).
(i) We show that ui is a viscosity solution of the linear systems (1.8).
(ii) We show that for all t in [0, T ], the function ui(t, ., .) : (x1, x2) ∈ R

2d 7→ ui(t, x1, x2) is infinitely
differentiable with bounded derivatives, thanks to the property of differentiation of the mapping
(X1,.,X2,.) : x ∈ R

2d 7→ (X1,x,X2,x).
(iii) From the Markov property, we deduce that, for all (x1, x2) in R

2d, the function ui(., x1, x2) : t ∈
[0, T ] 7→ ui(t, x1, x2) is infinitely differentiable with bounded derivatives.
(iv) Since a smooth viscosity solution is a classical solution, we obtain the existence and regularity of
a classical solution of (1.8).
(v) We conclude the proof of uniqueness by using the Feynman-Kac representation of the solution.

Proof. Let i ∈ {1, 2} and consider the function ui defined in (1.9):

(i) Under (HR) we deduce from [Kun82] and Theorem 70 of [Pro04] that there exists a unique
strong solution X = (X1,X2) of the stochastic system and an a.s. continuous version of this process

(X1,t,x
s ,X2,t,x

s )t≤s≤T . From the regularity of φi, we deduce that ui is continuous. By using Theorem
5.1 p 69 of [FS06], we conclude that ui is a sub and super viscosity solution.

(ii) Thanks to [Kun82], we know that for all t in [0, T ], for all s in [t, T ], the mapping Xt,.
s : x 7→ Xt,x

s

is a.s. infinitely differentiable and, for all k in N
∗, for all (i1, · · · , ik) ∈ {1, 2}k the tangent process

(Dk
xi1

,···xik
Xt,x

s )t≤s≤T satisfies:

E

[

sup
s∈[t,T ]

∣

∣

∣
Dk

xi1
,···xik

Xt,x
s

∣

∣

∣

]

≤ K.

Since φi is Lipschitz continuous, it satisfies the domination property:

|φi(Xt,x
T )− φi(X

t,z
T )| ≤ K ′|x− z|,

where K ′ is a random constant with finite moments of all order according to the Kolmogorov’s Theo-
rem. Then, one can apply the Lebesgue differentiation Theorem on the right hand side of (1.9) and,
for all t in [0, T ], we deduce that Dxj

ui(t, x1, x2), j = 1, 2 exist and satisfy

Dxj
ui(t, x1, x2) = E

[

2
∑

l=1

Dxj
φi(X

t,x
T )Dxj

X l,t,x
T

]

. (1.10)

By iterating this argument, we obtain that ui is infinitely differentiable w.r.t the space variables
(x1, x2) and its derivatives are bounded.

(iii) On a first hand, we know that (X1,t,x
s ,X2,t,x

s ) is continuous w.r.t t (see Lemma 4.6.1 of [Kun82]).
So that for all x in R

2d, the function ui(., x1, x2) : t ∈ [0, T ] 7→ ui(t, x1, x2) is continuous. By using
the Markov property we deduce that, for all 0 < h < t:

ui(t− h, x1, x2) = E

[

ui(t,X
1,t−h,x
t ,X2,t−h,x

t )
]

− E

[
∫ t

t−h
φi(s,X

1,t−h,x
s ,X2,t−h,x

s )ds

]

. (1.11)
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On the other hand, by applying Itô’s formula on R
d×R

d for ui(t,X
1,t−h,x
t ,X2,t−h,x

t ) and taking the
expectation we have:

E

[

ui(t,X
1,t−h,x
t ,X2,t−h,x

t )
]

(1.12)

= ui(t, x1, x2) + E

[
∫ t

t−h
Lui(t,X1,t−h,x

r ,X2,t−h,x
r )dr

]

+E

[
∫ t

t−h
Dxui(t,X

1,t−h,x
r ,X2,t−h,x

r )Bσ(r,X1,t−h,x
r ,X2,t−h,x

r )dWr

]

,

where the last term in the right hand side is equal to 0.

By summing (1.11) and (1.12), we obtain:

ui(t− h, x1, x2)− ui(t, x1, x2)

h

=
1

h
E

[
∫ t

t−h
Lui(t,X1,t−h,x

r ,X2,t−h,x
r )− φi(r,X

1,t−h,x
r ,X2,t−h,x

r )dr

]

.

The continuity of ui w.r.t t and letting h tends to 0 give:

−∂ui
∂t

(t, x1, x2) = Lui(t, x1, x2)− φi(t, x1, x2).

(iv) Then, by iterating this argument and using the boundedness of the tangent process at every or-
der we deduce that the function ui defined in (1.9) is infinitely differentiable with bounded derivatives
of any order. Since a smooth viscosity solution is a classical solution, this concludes the existence part.

(v) Let vi be such a solution, by applying Itô’s formula for vi(T,X
1,t,x
T ,X2,t,x

T ), where (X1,t,x,X2,t,x)

is a solution of the SDE (1.1) such that (X1,t,x
t ,X2,t,x

t ) = (x1, x2) a.s. and taking the expectation we
have:

vi(t, x1, x2) = E

[
∫ T

t
φi(s,X

1,t,x
s ,X2,t,x

s )ds

]

,

then, vi = ui and the uniqueness follows. This concludes the proof of Lemma 1.2. �

2 The linear and Brownian heuristic

This section introduces the main issue when proving Proposition 1.3 in a simple case. Furthermore,
it allows to understand the role of some of the assumptions in (H) and to present in a simple form
the effects of the degeneracy. By “simple”, we mean that the following assumptions hold:

Hypotheses. (HL) We say that hypotheses (HL) hold if (H) and (HR) hold with : F1 ≡ 0Rd ,
σ ≡ Id, F2(s, x1, x2) = F̄2(x2) + Γsx1 where Γs belongs to the convex subset E in GLd(R).

The SDE (1.1) becomes:
{

dX1
s = dWs, X1

t = x1,
dX2

s = (F̄2(X
2
s ) + ΓsX

1
s )ds, X2

t = x2,
(2.1)

for all t < s in [0, T ], x in R
d, and under (HL) this system admits a unique strong solution X. We

recall that the associated PDE is:
{

∂tui(t, x) + Lui(t, x) = φi(t, x), for (t, x) ∈ [0, T ]× R
2d

ui(T, x) = 0, i = 1, 2
(2.2)
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In this section, we explain the parametrix method for (2.2) and show how it permits to prove Propo-
sition 1.3 when the assumption β22 > 2/3 is satisfied.

2.1 The frozen system and parametrix

Kolmogorov’s example. Let d = 1, in [Kol34] Kolmogorov showed that the solution of: dYt =
αWtdt, (α 6= 0), admits a density. Notably, this density is Gaussian and given by:

p(0, x1, x2; t, y1, y2) =

√
3

απt2
exp

(

−1

2

∣

∣

∣
K

−1/2
t (y1 − x1, y2 − x2 − tαx1)

∗
∣

∣

∣

2
)

, (2.3)

with the following covariance matrix Kt:

Kt :=

(

t (1/2)αt2

(1/2)αt2 (1/3)α2t3

)

. (2.4)

This example illustrates the behaviour of the system in small time: it is not diffusive. The first co-
ordinate oscillates with fluctuations of order 1/2, while the second one oscillates with fluctuations of
order 3/2. As a direct consequence, the transport of the initial condition of the first coordinate has a
key role in the second one.

The frozen system. The parametrix method consists in freezing the coefficients. As the Kol-
mogorov’s example suggested, we have to freeze the system along the curve θt,s =

(

θ1t,s, θ
2
t,s

)∗
, s in

(t, T ] that solves the ODE:

d

ds
θt,s =

(

0Rd , F̄2(θ
2
t,s(ξ)) + Γsθ

1
t,s(ξ)

)∗
, θt,t(ξ) = ξ,

for all ξ in R
2d. This permits to keep track of the transport of the initial condition. This curve can

be written as:

θ1t,s(ξ) = ξ1, θ2t,s(ξ) = ξ2 +

∫ s

t

[

Γrξ
1 + F̄2(θ

2
t,r(ξ))

]

dr. (2.5)

The frozen system is:
{

dX̄1
s = dWs, X̄1

t = x1,
dX̄2

s =
(

F̄2(θ
2
t,s(ξ)) + ΓsX̄

1
s

)

ds, X̄2
t = x2,

(2.6)

for all s in (t, T ]. This is our candidate to approximate (2.1).

2.2 Existence of a density for the frozen system

In this case, the crucial point is the specific form of the covariance matrix Σ̄t,s of X̄s, standard
computations show that:

Σ̄t,s =

(

(s − t)
∫ s
t

∫ r
t Γududr

∫ s
t

∫ r
t Γududr

∫ s
t

(∫ r
t Γudu

) (∫ r
t Γudu

)∗
dr

)

, (2.7)

for all s in (t, T ]. We emphasize that the existence of a transition density of X̄ results from the
non-degeneracy of this matrix. In [DM10], the authors proved:

Lemma 2.1. Suppose that assumptions (HL) hold true, then, the solution of (2.6) admits a transition
density q̄ given by, for all s in [t, T ]:

q̄(t, x1, x2; s, y1, y2) =
1

(2π)d/2
det(Σ̄t,s)

−1/2 exp
(

−|Σ̄−1/2
t,s (y1 − x1, y2 −m2,ξ

t,s (x))
∗|2
)

, (2.8)

where

m2,ξ
t,s (x) = x2 +

∫ s

t
Γrx1dr +

∫ s

t
F̄2(θ

2
t,r(ξ))dr,
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and where Σ̄t,s is the uniformly non-degenerate matrix given by (2.7).

As shown in [DM10], the spectrum is controlled uniformly in Γ ∈ E which explains the assumption
(H3-b). We can show that the transition density q̄ satisfies:

Lemma 2.2. Suppose that assumptions (HL) hold true, then, for T small enough, the transition
kernel q̄ and its derivatives admit a Gaussian-type bound: there exists a positive constant c depending
only on known parameters in (H) such that for all ξ in R

2d:
∣

∣

∣
DNt

t DNx1

x1
DNx2

x2
DNy1

y1 q̄(t, x1, x2; s, y1, y2)
∣

∣

∣
(2.9)

≤ (s− t)−[3(Nx2+Nt)+Nx1+Ny1 ]/2 c

(s− t)2d
exp

(

−c
(

∣

∣y1 − x1
∣

∣

2

s− t
+

∣

∣y2 −m2,ξ
t,s (x)

∣

∣

2

(s− t)3

))

,

for all s in (t, T ], any N t, Nx1 , Nx2 , Ny1 less than 2.

Proof. The proof is given in Section 3 for a more general framework, see Proposition 3.1. �

This Lemma says that each differentiation of the transition kernel w.r.t. the diffusive component
gives a singularity of order 1/2 while the differentiation w.r.t. the degenerate component gives a

singularity of order 3/2. Note that the mean m2,ξ
t,T (x) of X̄T satisfies the ODE:

d

ds
ϕs = F̄2(θ

2
t,s(ξ)) + Γs(ϕs − θ2t,s(ξ)), ϕ0 = x2. (2.10)

Under (HL), when ξ = x, the forward transport function (θ2t,s(x))t≤s≤T is also a solution of (2.10), so

that: θt,s(x) = mx
t,s(x) for all s in [t, T ] and all x in R

2d.

2.3 Representation of the solution

By standard computations, it can be checked that the transition density (2.8) of the frozen process
X̄ is the fundamental solution of the heat equation:

∂tq̄(t, x;T, y) + L̄q̄(t, x;T, y) = 0, q̄(T, x;T, y) = δy(x),

where L̄ = (1/2)∆x1
+
[

F̄2(θ
2
t,T (ξ)) + ΓTx1

]

·Dx2
. Note that the PDE (2.2) reads:

∂tui(t, x) + L̄ui(t, x) = φi(t, x) + (L̄ − L)ui(t, x), for (t, x) ∈ [0, T ) ×R
2d

ui(T, x) = 0, i = 1, 2.

So that, the unique solution of this PDE can be written as:

ui(t, x1, x2)

=

∫ T

t

∫

R2d

φi(s, y1, y2)q̄(t, x1, x2; s, y1, y2)dy1dy2ds

−
∫ T

t

∫

R2d

[F̄2(y2)− F̄2(θ
2
t,T (ξ))] ·Dx2

ui(s, y1, y2)q̄(t, x1, x2; s, y1, y2)dy1dy2ds.

2.4 A priori estimates

For sake of simplicity, we suppose throughout this subsection that F̄2 ≡ 0, so that

ui(t, x1, x2) =

∫ T

t

∫

R2d

φi(s, y1, y2)q̄(t, x1, x2; s, y1, y2)dy1dy2ds. (2.11)
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In order to prove Proposition 1.3, we need to obtain estimates of the supremum norm of the first and
second order derivatives of the ui, i = 1, 2. As shown in Lemma 2.2, the differentiation of the transi-
tion density gives a time-singularity, so that it is not obvious that Lebesgue differentiation Theorem
can be applied in (2.11).
Set i in {1, 2} and let us focus on the worst case in Proposition 1.3, that is, the cross derivative
Dx1

Dx2
ui. Having in mind to use the Lebesgue differentiation Theorem, we focus on the cross dif-

ferentiation of q̄, which gives a time singularity of order 2. In order to invert the integral and the
differentiation operator, we split the integral: for any ǫ > 0, we can write:

ui(t, x1, x2) =

∫ T

t+ǫ

∫

R2d

φi(s, y1, y2)q̄(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ t+ǫ

t

∫

R2d

φi(s, y1, y2)q̄(t, x1, x2; s, y1, y2)dy1dy2ds,

and thanks to Lebesgue differentiation Theorem we have:

Dx1
Dx2

ui(t, x1, x2) =

∫ T

t+ǫ

∫

R2d

φi(s, y1, y2)Dx1
Dx2

q̄(t, x1, x2; s, y1, y2)dy1dy2ds (2.12)

+Dx1
Dx2

[
∫ t+ǫ

t

∫

R2d

φi(s, y1, y2)q̄(t, x1, x2; s, y1, y2)dy1dy2ds

]

.

On a first hand, the last term in the right hand side reads2:

Dx1
Dx2

[
∫ t+ǫ

t

∫

R2d

φi(s, y1, y2)q̄(t, x1, x2; s, y1, y2)dy1dy2ds

]

= Dx1
Dx2

E

[
∫ t+ǫ

t
φi(s, X̄

1,t,x
s , X̄2,t,x

s )ds

]

.

It follows from the proof of Lemma 1.2 in Section 1.6 that Lebesgue differentiation Theorem applies
and there exists a positive constant K such that

sup
(t,x)∈[0,T ]×R2d

∣

∣

∣

∣

E

[
∫ t+ǫ

t
Dx1

Dx2
φi(s, X̄

1,t,x
s , X̄2,t,x

s )ds

]
∣

∣

∣

∣

≤ Kǫ. (2.13)

On the other hand, for all s in [t, T ] we have:
∫

R2d

φi(s, y1, y2)Dx1
Dx2

q̄(t, x1, x2; s, y1, y2)dy1dy2

=

∫

R2d

(

φi(s, y1, y2)− φi(s, y1, θ
2
t,s(ξ))

)

Dx1
Dx2

q̄(t, x1, x2; s, y1, y2)dy1dy2

+

∫

R2d

φi(s, y1, θ
2
t,s(ξ))Dx1

Dx2
q̄(t, x1, x2; s, y1, y2)dy1dy2,

and the last term in the right hand side is equal to 0. In the sequel, we refer this argument as the
centering argument. Combining this argument and the estimate for Dx1

Dx2
q̄ in Lemma 2.2, we have,

for T small enough and all s in [t, T ]:
∫

R2d

(

φi(s, y1, y2)− φi(s, y1, θ
2
t,s(ξ))

)

Dx1
Dx2

q̄(t, x1, x2; s, y1, y2)dy1dy2

≤
∫

R2d

{

(s− t)−2
∣

∣φi(s, y1, y2)− φi(s, y1, θ
2
t,s(ξ))

∣

∣

× c

(s− t)2d
exp

(

−c
(

∣

∣y1 − x1
∣

∣

2

s− t
+

∣

∣y2 −m2,ξ
t,s (x)

∣

∣

2

(s− t)3

))}

dy1dy2,

2The superscript “t, x” stands for the starting time and point of the process X̄.
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where c depends only on known parameters in (H). Using Hölder regularity of φi supposed in (H1),
we have:

∣

∣

∣

∣

∫

R2d

(s− t)−2
∣

∣φi(s, y1, y2)− φi(s, y1, θ
2
t,s(ξ))

∣

∣ q̄(t, x1, x2; s, y1, y2)dy1dy2

∣

∣

∣

∣

≤ C

∫

R2d

{

(s− t)−2+3β2
i /2

|y2 − θ2t,s(ξ)|β
2

i

(s− t)3β
2

i
/2

c

(s− t)2d

× exp

(

−c
(

∣

∣y1 − x1
∣

∣

2

s− t
+

∣

∣y2 −m2,ξ
t,s (x)

∣

∣

2

(s− t)3

}))

dy1dy2.

Now, we use the off-diagonal decay of the Gaussian exponential: by letting ξ = x (and then θ2t,s(x) =

m2,x
t,s (x)), for all η > 0, there exists a constant C̄ > 0 such that3

(

|y2 −m2,x
t,s (x)|

(s− t)3/2

)β2

i

× exp

(

−η
(

∣

∣y1 − x1
∣

∣

2

s− t
+

∣

∣y2 −m2,x
t,s (x)

∣

∣

2

(s− t)3

))

≤ C̄,

where C̄ depends on η and β2i only. Thus, by increasing the constant c in the exponential, we obtain
the following estimate:

∣

∣

∣

∣

∫

R2d

(s− t)−2
∣

∣φi(s, y1, y2)− φi(s, y1, θ
2
t,s(x))

∣

∣ q̄(t, x1, x2; s, y1, y2)dy1dy2

∣

∣

∣

∣

(2.14)

≤ C ′

∫

R2d

(s− t)−2+3β2

i /2
c

(s− t)2d
exp

(

−c
(

∣

∣y1 − x1
∣

∣

2

s− t
+

∣

∣y2 −m2,ξ
t,s (x)

∣

∣

2

(s− t)3

))

dy1dy2.

Therefore, by choosing the value of β2i > 2/3, the singularity (s− t)−2+3β2

i /2 becomes integrable. From
(2.14), letting ǫ tends to 0 in (2.12) and using (2.13), we deduce that:

‖Dx1
Dx2

ui‖∞ ≤ C ′′T−1+3β2

i /2.

From this discussion, one can also see the specific choice of the freezing curve as the one that matches
the off-diagonal decay of the exponential in q̄ when ξ = x.

3 Mathematical tools

In this section, we introduce the ingredients for the proof of Proposition 1.3.

3.1 The frozen system

Consider the system:

dX̃1,t,x
s = F1(s, θt,s(ξ))ds + σ(s, θt,s(ξ))dWs

dX̃2,t,x
s = F2(s, θt,s(ξ))ds +Dx1

F2(s, θt,s(ξ))(X̃
1,t,x
s − θ1t,s(ξ))ds

(3.1)

for all s in (t, T ], any t in [0, T ], and for any initial condition x in R
2d at time t and any ξ ∈ R

2d and
where (θt,s(ξ))t≤s≤T is defined by:

d

ds
θt,s(ξ) = F (s, θt,s(ξ)), θt,t(ξ) = ξ. (3.2)

The following Proposition holds:

3By using the inequality: ∀η > 0, ∀q > 0, ∃C̄ > 0 s.t. ∀σ > 0, σqe−ησ ≤ C̄.
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Proposition 3.1. Suppose that assumptions (HR) hold, then:

(i) There exists a unique (strong) solution of (3.1) with mean

(mξ
t,s)t≤s≤T = (m1,ξ

t,s ,m
2,ξ
t,s )t≤s≤T ,

where

m1,ξ
t,s (x) = x1 +

∫ s

t
F1(r, θt,r(ξ))dr (3.3)

m2,ξ
t,s (x) = x2 +

∫ s

t

[

F2(r, θt,r(ξ)) +Dx1
F2(r, θt,r(ξ))(x1 − θ1t,r(ξ))

+Dx1
F2(r, θt,r(ξ))

∫ r

t
F1(v, θt,v(ξ))dv

]

dr,

and an uniformly non-degenerate covariance matrix (Σ̃t,s)t≤s≤T :

Σ̃t,s =

( ∫ s
t σσ

∗(r, θt,r(ξ))dr
∫ s
t Rr,s(ξ)σσ

∗(r, θt,r(ξ))dr
∫ s
t σσ

∗(r, θt,r(ξ))R
∗
r,s(ξ)dr

∫ s
t Rt,r(ξ)σσ

∗(r, θt,r(ξ))R
∗
t,r(ξ)dr

)

, (3.4)

where:

Rt,r(ξ) =

[
∫ r

t
Dx1

F2(v, θt,v(ξ))dv

]

, t ≤ r ≤ s ≤ T.

(ii) This solution is a Gaussian process with transition density:

q̃(t, x1, x2; s, y1, y2) (3.5)

=
3d/2

(2π)d/2
(det[Σ̃t,s])

−1/2 exp

(

−1

2
|Σ̃−1/2

t,s (y1 −m1,ξ
t,s (x), y2 −m2,ξ

t,s (x))
∗|2
)

,

for all s in [t, T ].

(iii) This transition density q̃ is the fundamental solution of the PDE driven by L̃t,ξ and given by:

L̃t,ξ :=
1

2
Tr
[

a(t, θt,s(ξ))D
2
x1

]

+ [F1(t, θt,s(ξ))] ·Dx1

+
[

F2(t, θt,s(ξ)) +Dx1
F2(t, θt,s(ξ))

(

x1 − θ1t,s(ξ)
)]

·Dx2
. (3.6)

(iv) For T small enough, there exist two positive constants c and C, depending only on known
parameters in (H), such that

q̃(t, x1, x2; s, y1, y2) ≤ Cq̂c(t, x1, x2; s, y1, y2),

where

q̂c(t, x1, x2; s, y1, y2) =
c

(s− t)2d
exp

(

−c
(
∣

∣y1 −m1,ξ
t,s (x)

∣

∣

2

s− t
+

∣

∣y2 −m2,ξ
t,s (x)

∣

∣

2

(s− t)3

))

,

and:
∣

∣

∣
DNt

t DNx1

x1
DNx2

x2
DNy1

y1 q̃(t, x1, x2; s, y1, y2)
∣

∣

∣

≤ C(s− t)−[3(Nx2+Nt)+Nx1+Ny1 ]/2q̂c(t, x1, x2; s, y1, y2), (3.7)

for all s in [t, T ] and any integers N t, Nx1 , Nx2 , Ny1 less than 2.
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Proof. (i) First of all, note that, under (HR), the ODE: [d/ds]θt,s(ξ) = F (s, θt,s(ξ)), θt,t(ξ) = ξ admits

a unique solution and (3.1) admits a unique strong solution X̃. One can write (3.1) as:

X̃1,t,x
s = x1 +

∫ s

t
F1(r, θt,r(ξ))dr +

∫ s

t
σ(r, θt,r(ξ))dWr,

X̃2,t,x
s = x2 +

∫ s

t

[

F2(r, θt,r(ξ)) +Dx1
F2(r, θt,r(ξ))(x1 − θ1t,r(ξ))

+Dx1
F2(r, θt,r(ξ))

∫ r

t
F1(v, θt,v(ξ))dv

]

dr

+

∫ s

t
Dx1

F2(r, θt,r(ξ))

∫ r

t
σ(v, θt,v(ξ))dWvdr

Then, the expressions of the mean (3.3) and the variance (3.4) follow from the stochastic Fubini Theo-

rem and standard computations. The uniform non-degeneracy of (Σ̃t,s)t<s≤T arises from assumptions
(H) and Proposition 3.1 in [DM10].

(ii)-(iii) These assertions result from standard computations.

(iv) For all s in (t, T ], we know from Proposition 3.1 in [DM10] that the matrix Σ̃t,s is symmetric
and uniformly non degenerate. Besides, from Subsection 2.3 and Proposition 3.4 in [DM10] there
exists a constant C depending only on known parameters in (H) such that: for all s ∈ [t, T ], for all
(x, y, ξ) ∈ R

2d × R
2d × R

2d,

−
[

Σ̃−1
t,s (y1 −m1,ξ

t,s (x), y2 −m2,ξ
t,s (x))

∗
]

·
[

(y1 −m1,ξ
t,s (x), y2 −m2,ξ

t,s (x))
∗
]

≤ −C
[(

y1 −m1,ξ
t,s (x)

(s− t)1/2
,
y2 −m2,ξ

t,s (x)

(s− t)3/2

)∗]

·
[(

y1 −m1,ξ
t,s (x)

(s− t)1/2
,
y2 −m2,ξ

t,s (x)

(s − t)3/2

)∗]

.

For i, j = 1, 2, let [Σ̃−1
t,s ]i,j denotes the block of size d×d of the matrix Σ̃−1

t,s at the (i−1)d+1, (j−1)d+1

rank. We can deduce from (3.4) that there exists a positive constant C depending only on known
parameters in (H) such that (we also refer the reader to Lemma 3.6 and to the proof of Lemma 5.5
in [DM10] for more details), for all s in (t, T ], for all ζ in R

d:
∣

∣

∣
[Σ̃−1

t,s ]1,1ζ
∣

∣

∣
≤ C(s− t)−1 |ζ| ,

∣

∣

∣
[Σ̃−1

t,s ]1,2ζ
∣

∣

∣
+
∣

∣

∣
[Σ̃−1

t,s ]2,1ζ
∣

∣

∣
≤ C(s− t)−2 |ζ| ,

∣

∣

∣
[Σ̃−1

t,s ]2,2ζ
∣

∣

∣
≤ C(s− t)−3 |ζ| ,

(3.8)

hence, Σ̃−1
t,. has the same structure as K−1

.−t in (2.4).

Now, we compute the derivatives w.r.t. each component:

|Dx2
q̃(t, x1, x2; s, y1, y2)|

=
∣

∣

∣

(

−2[Σ̃−1
t,s ]2,1(y1 −m1,ξ

t,s (x))− 2[Σ̃−1
t,s ]2,2(y2 −m2,ξ

t,s (x))
)

q̃(t, x1, x2; s, y1, y2)
∣

∣

∣

≤ C(s− t)−3/2

(
∣

∣

∣

∣

∣

(y1 −m2,ξ
t,s (x))

(s− t)1/2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(y2 −m2,ξ
t,s (x))

(s− t)3/2

∣

∣

∣

∣

∣

)

q̃(t, x1, x2; s, y1, y2)

≤ C ′(s− t)−3/2q̂c(t, x1, x2; s, y1, y2).

Note that the symmetry Dx2
q̃(t, x1, x2; s, y1, y2) = −Dy2 q̃(t, x1, x2; s, y1, y2) holds. Now, we have
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|Dy1 q̃(t, x1, x2; s, y1, y2)|
=
∣

∣

∣

(

2[Σ̃−1
t,s ]1,1(y1 −m1,ξ

t,s (x)) + 2[Σ̃−1
t,s ]1,2(y2 −m2,ξ

t,s (x))
)

q̃(t, x1, x2; s, y1, y2)
∣

∣

∣

≤ C(s− t)−1/2q̂c(t, x1, x2; s, y1, y2).

Unfortunately, the transport of the initial condition of the diffusive component in the degenerate
component breaks the symmetry and Dx1

q̃(t, x1, x2; s, y1, y2) 6= −Dy1 q̃(t, x1, x2; s, y1, y2). Indeed

Dx1
q̃(t, x1, x2; s, y1, y2)

=

(

− 2[Σ̃−1
t,s ]1,1(y1 −m1,ξ

t,s (x))− 2[Σ̃−1
t,s ]1,2(y2 −m2,ξ

t,s (x))

−2[Σ̃−1
t,s ]1,2

[

(Rt,s(ξ)) (y1 −m1,ξ
t,s (x))

]

−2[Σ̃−1
t,s ]2,2

[

(Rt,s(ξ)) (y2 −m2,ξ
t,s (x))

]

)

q̃(t, x1, x2; s, y1, y2).

Since the term Rt,s(ξ) is of order (s − t) (this is the transport of the initial condition from time t to
s), we deduce that

|Dx1
q̃(t, x1, x2; s, y1, y2)|

≤ C(s− t)−1/2

{
∣

∣

∣

∣

∣

(y1 −m2,ξ
t,s (x))

(s− t)1/2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(y2 −m2,ξ
t,s (x))

(s− t)3/2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(y1 −m2,ξ
t,s (x))

(s− t)1/2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(y2 −m2,ξ
t,s (x))

(s− t)3/2

∣

∣

∣

∣

∣

}

q̃(t, x1, x2; s, y1, y2)

≤ C ′(s− t)−1/2q̂c(t, x1, x2; s, y1, y2).

Finally,

D2
x1
q̃(t, x1, x2; s, y1, y2)

=
(

−2[Σ̃−1
t,s ]1,1Dx1

m1,ξ
t,s (x))− 2[Σ̃−1

t,s ]1,2Dx1
m2,ξ

t,s (x)− 2[Σ̃−1
t,s ]1,2

[

(Rt,s(ξ))Dx1
m1,ξ

t,s (x)
]

−2[Σ̃−1
t,s ]2,2

[

(Rt,s(ξ))Dx1
m2,ξ

t,s (x)
])

q̃(t, x1, x2; s, y1, y2)

+
(

−2[Σ̃−1
t,s ]1,1(y1 −m1,ξ

t,s (x)) − 2[Σ̃−1
t,s ]1,2(y2 −m2,ξ

t,s (x))

−2[Σ̃−1
t,s ]1,2

[

(Rt,s(ξ)) (y1 −m1,ξ
t,s (x))

]

−2[Σ̃−1
t,s ]2,2

[

(Rt,s(ξ)) (y2 −m2,ξ
t,s (x))

])2
q̃(t, x1, x2; s, y1, y2).

Note that, from (3.3) we have Dx1
mξ

t,s(x) = (Id, Rt,s(ξ))
∗, so that,

|D2
x1
q̃(t, x1, x2; s, y1, y2)| ≤ C(s− t)−1q̂c(t, x1, x2; s, y1, y2).

Since q̃ satisfies the Fokker-Planck equation

∂tq̃(t, x, T, y) + L̃t,ξq̃(t, x, T, y) = 0, q̃(T, x, T, y) = δy(x), x, y ∈ R
2d,

we deduce from previous estimates:
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|∂tq̃(t, x1, x2; s, y1, y2)| ≤ C(s− t)−3/2q̂c(t, x1, x2; s, y1, y2).

The other derivatives can be deduced from these computations and the estimate (3.7) follows. �

Remark. From this proof, one can deduce that the symmetry Dx2
q̃ = −Dy2 q̃ holds. Therefore, for all

t in [0, T ], all s in [t, T ] and y1, x1, x2 in R
d,

∫

Rd

Dx2
q̃(t, x1, x2; s, y1, y2)dy2 = 0. (3.9)

This argument is very useful in the sequel.

3.2 Representation and differentiation of the solution

Lemma 3.2. Suppose that assumptions (HR) hold, then, for all t in [0, T ], the solution u = (u1, u2)
∗

of the PDE (1.8) can be written as:

ui(t, x1, x2) =

∫ T

t

∫

R2d

φi(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

(L̃t,ξ − L)ui(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds, (3.10)

for i = 1, 2. Moreover, this solution is infinitely differentiable and for all ǫ > 0 all integer n and all
multi-index (j1, · · · , jn) ∈ {1, 2}n, we have:

Dxj1
· · ·Dxjn

ui(t, x1, x2) (3.11)

=

∫ T

t+ǫ

∫

R2d

φi(s, y1, y2)Dxj1
· · ·Dxjn

q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t+ǫ

∫

R2d

(L̃t,ξ − L)ui(s, y1, y2)Dxj1
· · ·Dxjn

q̃(t, x1, x2; s, y1, y2)dy1dy2ds+O(ǫ),

for i = 1, 2 and where L̃t,ξ is given in (3.6).

Proof. We recall that the PDE (1.8) is given by:

∂tui(t, x1, x2) + Lui(t, x1, x2) = φi(t, x1, x2), ui(T, x1, x2) = 0, i = 1, 2, (3.12)

and it can be rewritten as:

∂tui(t, x1, x2) + L̃t,ξui(t, x1, x2) = (L̃t,ξui(t, x1, x2)− Lui(t, x1, x2)) + φi(t, x1, x2),

ui(T, x1, x2) = 0, i = 1, 2. (3.13)

From Proposition 3.1, we know that the fundamental solution of L̃t,ξ is q̃. Then, any solution of (3.13)
reads:

ui(t, x1, x2) =

∫ T

t

∫

R2d

φi(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

(L̃t,ξ − L)ui(t, x1, x2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

Given ǫ > 0, we have
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ui(t, x1, x2) =

∫ T

t+ǫ

∫

R2d

φi(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t+ǫ

∫

R2d

(L̃t,ξ − L)ui(t, x1, x2))q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ t+ǫ

t

∫

R2d

φi(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds (3.14)

+

∫ t+ǫ

t

∫

R2d

(L̃t,ξ − L)ui(t, x1, x2))q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

The two last terms in the right hand side read:
∫ t+ǫ

t
E

[

φi(s, X̃
1,t,x
s , X̃2,t,x

s ) + (L̃t,ξ − L)ui(t, X̃1,t,x
s , X̃2,t,x

s )
]

ds.

Let n be a positive integer, for all multi-index (j1, · · · , jn) ∈ {1, 2}n, by following the proof of Lemma
1.2, it follows from the regularity of each φi and ui under (HR) that there exists a positive constant
K(n) such that

∣

∣

∣
Dxj1

· · ·Dxjn
E

[

φi(s, X̃
1,t,x
s , X̃2,t,x

s ) + (L̃t,ξ − L)ui(t, X̃1,t,x
s , X̃2,t,x

s )
]
∣

∣

∣
≤ K(n).

The claim follows from Lebesgue differentiation Theorem. �

4 Proof of Proposition 1.3

4.1 From parametrix to uniform Lipschitz estimates

We give preliminary results in order to prove the Lipschitz bounds. These bounds are obtained under
(HR) but depend only on known parameters in (H).

Some notations. For all t < s ∈ [0, T ], for all ξ ∈ R
2d, we denote by ∆t,s(ξ) the perturbation

operator defined by:

∀(s, y) ∈ [0, T ]× R
2d, ∆t,s(ξ)g(s, y) = g(s, y) − g(s, θt,s(ξ)),

for all measurable function g of [0, T ] × R
d × R

d. By analogy with our standard notations, we also
define for all y ∈ R

2d: ∆1
t,s(ξ)g(s, y1, y2) = g(s, y1, y2) − g(s, θ1t,s(ξ), y2) and ∆2

t,s(ξ)g(s, y1, y2) =

g(s, y1, y2)− g(s, y1, θ
2
t,s(ξ)) with the convention y ∈ R

2d = (y1, y2) ∈ R
d × R

d.

Considering these notations, (3.10) becomes: for all x ∈ R
2d and t ∈ [0, T ],

ui(t, x) =

∫ T

t

∫

R2d

φi(s, y)q̃(t, x; s, y)dyds

−
∫ T

t

∫

R2d

1

2
Tr
[

∆t,s(ξ)a(s, y)D
2
x1
ui(s, y)

]

q̃(t, x; s, y)dyds

−
∫ T

t

∫

R2d

[∆t,s(ξ)F1(s, y)] ·Dx1
ui(s, y)q̃(t, x; s, y)dyds

+

∫ T

t

∫

R2d

[

Dx1
F2(s, θt,s(ξ))∆

1
t,s(ξ)y1 −∆t,s(ξ)F2(s, y)

]

·Dx2
ui(s, y)q̃(t, x; s, y)dyds

:= H1
i (t; t, x) +H2

i (t; t, x) +H3
i (t; t, x) +H4

i (t; t, x), (4.1)
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for i = 1, 2, with the notation q̃(t, x; s, y) for q̃(t, x1, x2; s, y1, y2). When splitting the time integral as
in (3.14), we write for all ǫ > 0:

ui(t, x) = H1
i (t+ ǫ; t, x) +H2

i (t+ ǫ; t, x) +H3
i (t+ ǫ; t, x) +H4

i (t+ ǫ; t, x) +O(ǫ), (4.2)

where the terms Hj
i (t+ ǫ; t, x), j = 1, · · · , 4 are properly defined by identifying (3.11) with (4.1).

Proof of Proposition 1.3. We prove Proposition 1.3 by using a circular argument since the
representation (4.1) of each ui, i = 1, 2 involves the derivatives themselves. In the following, ui
denotes the ith component of the solution u = (u1, u2)

∗ of the linear system of PDE (1.8). The
following Lemmas hold for i = 1, 2.

Lemma 4.1. Suppose assumptions (HR) hold. Then, for T small enough there exist two positive
reals δ4.1 and δ̄4.1 and a positive constant C depending only on known parameters in (H) such that:

∥

∥D2
x1
ui
∥

∥

∞
≤ T

δ4.1C (1 + ‖Dx2
ui‖∞) ,

and

‖Dx1
ui‖∞ ≤ T

δ̄4.1C (1 + ‖Dx2
ui‖∞) .

Lemma 4.2. Suppose assumptions (HR) hold. Then, for T small enough, there exist a real δ4.2 > 0
and a positive constant C depending only on known parameters in (H), such that:

‖Dx2
ui‖∞ ≤ CT

δ4.2 (1 + ‖Dx1
Dx2

ui‖∞) .

Lemma 4.3. Suppose assumptions (HR) hold. Then, for T small enough, there exist a positive real
δ4.3 and a positive constant C, depending only on known parameters in (H) such that:

‖Dx1
Dx2

ui‖∞ ≤ CT δ̄4.3 .

Proposition 1.3 follows from Lemmas 4.1, 4.2 and 4.3. �

4.2 Proof of Lemma 4.1

Here we prove that for T small enough, there exists a positive constant C depending only on known
parameters in (H) such that:

(i)
∥

∥D2
x1
ui
∥

∥

∞
≤ C

{

(

T 3β2
2
/2 + T (1+α1)/2

)

‖Dx2
ui‖∞

+
(

T β1
1
/2 + T 3β2

1
/2
)

‖Dx1
ui‖∞ + T β1

i /2 + T 3β2

i /2

}

(ii) ‖Dx1
ui‖∞ ≤ C

{

(

T 1/2+3β2
2
/2 + T (3+α1)/2

)

‖Dx2
ui‖∞

+
(

T + T 2
)
∥

∥D2
x1
ui
∥

∥

∞
+ T (1+β1

i )/2 + T (1+3β2

i )/2

}

.

Proof of (i). Let ǫ > 0, from the representation (4.1) and Lemma 3.2 we have:

D2
x1
ui(t, x1, x2) =

4
∑

j=1

D2
x1
Hj

i (t+ ǫ; t, x1, x2) +O(ǫ). (4.3)
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First, note that D2
x1
H1

i (t+ ǫ; t, x1, x2) reads:

D2
x1
H1

i (t+ ǫ; t, x1, x2) = D2
x1

∫ T

t+ǫ

∫

R2d

∆t,s(ξ)φi(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds (4.4)

+D2
x1

∫ T

t+ǫ

∫

R2d

φi(s, θ
1
t,s(ξ), θ

2
t,s(ξ))q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

After integrating w.r.t y1 and y2, the last term in the right hand side does not depend on x1 and so
is equal to 0.

Secondly, from (4.1) and Lemma 3.2, D2
x1
H4

i (t+ ǫ; t, x1, x2) reads:

D2
x1
H4

i (t+ ǫ; t, x1, x2) =

∫ T

t+ǫ

∫

R2d

[

Dx1
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1 −∆t,s(ξ)F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)

[

D2
x1
q̃(t, x1, x2; s, y1, y2)

]

dy1dy2ds.

Note that for all s ∈ [t, T ] and y, ξ in R
2d, the following estimate holds:

∣

∣

[

∆t,s(ξ)F2(s, y1, y2)−Dx1
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]∣

∣

≤ C
(

|∆2
t,s(ξ)y2|β

2
2 + |∆1

t,s(ξ)y1|1+α1
)

. (4.5)

Indeed, by applying a Taylor expansion with integrable remainder, for all s in [t, T ] we have:

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ)) = F2(s, y1, θ

2
t,s(ξ)) +

∫ θ1t,s(ξ)

y1

Dx1
F2(s, λ, θ

2
t,s(ξ))dλ,

and plugging into:

[

F2(t, y1, y2)− F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))−Dx1

F2(t, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))

]

,

we obtain:
∣

∣

∣

∣

∣

[

F2(s, y1, y2)− F2(s, y1, θ
2
t,s(ξ))

−
∫ θ1t,s(ξ)

y1

Dx1
F2(s, λ, θ

2
t,s(ξ))dλ−Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))

]

∣

∣

∣

∣

∣

≤
∣

∣F2(s, y1, y2)− F2(s, x1, θ
2
t,s(ξ))

∣

∣

+

∫ θ1t,s(ξ)

y1

∣

∣Dx1
F2(s, λ, θ

2
t,s(ξ))−Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))

∣

∣ dλ

≤ C2|y2 − θ2t,s(ξ)|β
2
2 + C̄2

∫ θ1t,s(ξ)

y1

|λ− θ1t,s(ξ)|α
1

dλ

≤ C ′
(

|y2 − θ2t,s(ξ)|β
2
2 + |(y1 − θ1t,s(ξ))|1+α1

)

,

this proves (4.5).
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Plugging (4.4) into (4.3), we have:

D2
x1
ui(t, x1, x2)

=

∫ T

t+ǫ

∫

R2d

∆t,s(ξ)φi(s, y1, y2)
[

D2
x1
q̃(t, x1, x2; s, y1, y2)

]

dy1dy2ds

−1

2

∫ T

t+ǫ

∫

R2d

Tr
[

∆t,s(ξ)a(s, y1, y2)D
2
x1
ui(s, y1, y2)

] [

D2
x1
q̃(t, x1, x2; s, y1, y2)

]

dy1dy2ds

−
∫ T

t+ǫ

∫

R2d

[∆t,s(ξ)F1(s, y1, y2)] ·D2
x1
ui(s, y1, y2)

[

D2
x1
q̃(t, x1, x2; s, y1, y2)

]

dy1dy2ds

+

∫ T

t+ǫ

∫

R2d

[

Dx1
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1 −∆t,s(ξ)F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)

[

D2
x1
q̃(t, x1, x2; s, y1, y2)

]

dy1dy2ds+O(ǫ).

From Proposition 3.1, we know that for all s in [t, T ], D2
x1
q̃(t, x1, x2; s, y1, y2) ≤ C(s−t)−1q̂c(t, x1, x2; s, y1, y2).

Combining this argument with the regularity of the coefficients given in (H), and thanks to (4.5), we
obtain:

∣

∣D2
x1
ui(t, x1, x2)

∣

∣

≤ C ′

{

∫ T

t+ǫ

{

(s− t)−1

∫

R2d

2
∑

j=1

(s− t)(j−1/2)βj
i

∣

∣

∣

∣

∣

∆j
t,s(ξ)y1

(s− t)(j−1/2)

∣

∣

∣

∣

∣

βj
i

×q̂c(t, x1, x2; s, y1, y2)
}

dy1dy2ds.

+

∫ T

t+ǫ

{

(s − t)−1
∥

∥D2
x1
ui
∥

∥

∞

∫

R2d

2
∑

j=1

(s− t)(j−1/2)

∣

∣

∣

∣

∣

∆j
t,s(ξ)y1

(s − t)(j−1/2)

∣

∣

∣

∣

∣

×q̂c(t, x1, x2; s, y1, y2)
}

dy1dy2ds

+

∫ T

t+ǫ

{

(s − t)−1 ‖Dx1
ui‖∞

∫

R2d

2
∑

j=1

(s− t)(j−1/2)βj
1

∣

∣

∣

∣

∣

∆j
t,s(ξ)y1

(s− t)(j−1/2)

∣

∣

∣

∣

∣

βj
1

×q̂c(t, x1, x2; s, y1, y2)
}

dy1dy2ds

+

∫ T

t+ǫ

{

(s − t)−1 ‖Dx2
ui‖∞

∫

R2d

[

(s− t)3β
2
2
/2

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

β2
2

+(s− t)(1+α1)/2

∣

∣

∣

∣

∣

∆1
t,s(ξ)y1

(s − t)1/2

∣

∣

∣

∣

∣

1+α1 ]

q̂c(t, x1, x2; s, y1, y2)

}

dy1dy2ds

}

+O(ǫ).

Set ξ = x, by using the off-diagonal decay of the Gaussian exponential in q̂c (see Subsection 2.4) and
by integrating w.r.t the space variables we have:
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∣

∣D2
x1
ui(t, x1, x2)

∣

∣

≤ C ′′

{
∫ T

t+ǫ

2
∑

j=1

(s− t)−1+(j−1/2)βj
i ds

+

∫ T

t+ǫ

(

(s − t)−1/2 + (s− t)1/2
)

∥

∥D2
x1
ui
∥

∥

∞
ds

+

∫ T

t+ǫ

2
∑

j=1

(s − t)(j−1/2)βj
2
−1 ‖Dx1

ui‖∞ ds

+

∫ T

t+ǫ

(

(s − t)−1+3β2
1
/2 + (s − t)(α

1−1)/2
)

‖Dx2
ui‖∞ ds

}

+O(ǫ).

By letting ǫ→ 0, we finally obtain:

∥

∥D2
x1
ui
∥

∥

∞
≤ C ′′′

{

(

T 3β2
2
/2 + T (1+α1)/2

)

‖Dx2
ui‖∞ +

(

T β1
1
/2 + T 3β2

1
/2
)

‖Dx1
ui‖∞

+
(

T 1/2 + T 3/2
)

∥

∥D2
x1
ui
∥

∥

∞
+ T β1

i /2 + T 3β2

i /2

}

.

Taking T small enough such that C ′′′(T 1/2 + T 3/2) = 1/2, the assertion (i) follows from a circular
argument. The proof of the second statement (ii) can be done by the same arguments and concludes
the proof of Lemma 4.1. �

4.3 Proof of Lemma 4.2

We first derive a representation formula for H2
i and H3

i to handle the singularity of the derivative
of the kernel q̃. These formulas are given in the following claim and serve for the proof of Lemma 4.2.

Claim 4.4. For all (t, x1, x2) ∈ [0, T ]× R
2d, for all ǫ > 0, we have:

Dx2
H2

i (t+ ǫ; t, x1, x2) (4.6)

= −1

2

∫ T

t+ǫ

∫

R2d

Tr
[

[∆2
t,s(ξ)a(s, y1, y2)]D

2
x1
ui(s, y1, y2)

]

[Dx2
q̃(t, x1, x2; s, y1, y2)] dy1dy2ds

−1

2

∫ T

t+ǫ

{[ d
∑

l=1

∫

R2d

[

∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

.
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

]

× [Dx2
q̃(t, x1, x2; s, y1, y2)]

}

dy1dy2ds

−1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

[

∆1
t,s(ξ)al.(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

×
[

Dx2

(

∂

∂y1l
q̃(t, x1, x2; s, y1, y2)

)]

dy1dy2ds,

where “al.” denotes the lth line of the matrix a, and
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Dx2
H3

i (t+ ǫ; t, x1, x2) (4.7)

= −
∫ T

t+ǫ

∫

R2d

{(

[

∆2
t,s(ξ)F1(s, y1, y2)

]

·Dx1
ui(s, y1, y2)

)

×Dx2
q̃(t, x1, x2; s, y1, y2)

}

dy1dy2ds

−
∫ T

t+ǫ

{
∫

R2d

(

[

∆1
t,s(ξ)F1(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

)

×Dx2
q̃(t, x1, x2; s, y1, y2)

}

dy1dy2ds.

Proof of Claim 4.4: Start with (4.6):

H2
i (t+ ǫ; t, x1, x2)

= −
∫ T

t+ǫ

∫

R2d

{(

1

2
Tr
[

[∆t,s(ξ)a(s, y1, y2)]D
2
x1
ui(s, y1, y2)

]

)

×q̃(t, x1, x2; s, y1, y2)
}

dy1dy2ds

= −
∫ T

t+ǫ

∫

R2d

{(

1

2
Tr
[

[∆2
t,s(ξ)a(s, y1, y2)]D

2
x1
ui(s, y1, y2)

]

)

×q̃(t, x1, x2; s, y1, y2)
}

dy1dy2ds

−
∫ T

t+ǫ

∫

R2d

{(

1

2
Tr
[

[∆1
t,s(ξ)a(s, y1, θ

2
t,s(ξ))]D

2
x1
ui(s, y1, y2)

]

)

×q̃(t, x1, x2; s, y1, y2)
}

dy1dy2ds. (4.8)

Now, we focus on the term (4.8): we know from (H) that the coefficient a is Lipschitz continuous, so
that, it is a.e differentiable. By an integration by parts argument we have:

−
∫ T

t+ǫ

∫

R2d

1

2
Tr
[

[∆1
t,s(ξ)a(s, y1, θ

2
t,s(ξ))]D

2
x1
ui(s, y1, y2)

]

q̃(t, x1, x2; s, y1, y2)dy1dy2ds (4.9)

= −1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

[

∂

∂y1l
∆1

t,s(ξ)al.(s, y1, θ
2
t,s(ξ))

]

·Dx1
ui(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

−1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

[

∆1
t,s(ξ)al.(s, y1, θ

2
t,s(ξ))

]

·Dx1
ui(s, y1, y2)

∂

∂y1l
q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

Note that, for all l ∈ {1, · · · , d}, [∂/∂y1l]∆1
t,s(ξ)al.(s, y1, θ

2
t,s(ξ)) = [∂/∂y1l]al.(s, y1, θ

2
t,s(ξ)). One can

center the two terms in the right hand side w.r.t the derivative Dx1
ui as follows:
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−
∫ T

t+ǫ

∫

R2d

{

1

2
Tr
[

[∆1
t,s(ξ)a(s, y1, θ

2
t,s(ξ))]D

2
x1
ui(s, y1, y2)

]

}

×q̃(t, x1, x2; s, y1, y2)
}

dy1dy2ds

= −1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

{[

∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

×q̃(t, x1, x2; s, y1, y2)
}

dy1dy2ds

−1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

{

[

∆1
t,s(ξ)al.(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
] ∂

∂y1l

×q̃(t, x1, x2; s, y1, y2)
}

dy1dy2ds

−1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

{[

∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

·Dx1
ui(s, y1, θ

2
t,s(ξ))

q̃(t, x1, x2; s, y1, y2)

}

dy1dy2ds

−1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

{

[

∆1
t,s(ξ)al.(s, y1, θ

2
t,s(ξ))

]

·Dx1
ui(s, y1, θ

2
t,s(ξ))

× ∂

∂y1l
q̃(t, x1, x2; s, y1, y2)

}

dy1dy2ds.

Thanks to (3.9), after integrating w.r.t y2 and differentiating w.r.t x2 the two last terms in the right
hand side are equal to 0. Thus, (4.6) follows.

Proof of (4.7). Note that H3
i can be written as:

H3
i (t+ ǫ; t, x1, x2)

= −
∫ T

t+ǫ

∫

R2d

[

∆2
t,s(ξ)F1(s, y1, y2)

]

·Dx1
ui(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

−
∫ T

t+ǫ

∫

R2d

{

[

∆1
t,s(ξ)F1(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

×q̃(t, x1, x2; s, y1, y2)
}

dy1dy2ds

−
∫ T

t+ǫ

∫

R2d

[

∆1
t,s(ξ)F1(s, y1, θ

2
t,s(ξ))

]

·Dx1
ui(s, y1, θ

2
t,s(ξ))q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

From (3.9), by integrating w.r.t y2 and differentiating w.r.t x2, we deduce that the last term in the
right hand side is equal to 0 and (4.7) follows. This concludes the proof of Claim 4.4. �

Proof of Lemma 4.2. It follows from the representation (4.1) and Lemma 3.2 that, for all ǫ > 0:

Dx2
ui(t, x1, x2) =

4
∑

j=1

Dx2
Hj

i (t+ ǫ; t, x1, x2) +O(ǫ) (4.10)
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We bound each Dx2
Hj

i . We recall from Proposition 3.1 that there exists a positive constant C
depending only on known parameters in (H) such that, for all s in [t, T ]:

Dx2
q̃(t, x1, x2; s, y1, y2) ≤ C(s− t)−3/2q̂c(t, x1, x2; s, y1, y2). (4.11)

Bound of Dx2
H1

i . We have:

Dx2
H1

i (t+ ǫ; t, x1, x2) =

∫ T

t+ǫ

∫

R2d

∆2
t,s(ξ)φi(s, y1, y2) [Dx2

q̃(t, x1, x2; s, y1, y2)] dy1dy2ds

+

∫ T

t+ǫ
Dx2

[
∫

R2d

φi(s, y1, θ
2
t,s(ξ))q̃(t, x1, x2; s, y1, y2)dy

]

ds,

and by using (3.9) the last term is equal to 0. We deduce that:

Dx2
H1

i (t+ ǫ; t, x1, x2)

=

∫ T

t+ǫ

∫

R2d

∆2
t,s(ξ)φi(s, y1, y2) [Dx2

q̃(t, x1, x2; s, y1, y2)] dy1dy2ds. (4.12)

So,

∣

∣Dx2
H1

i (t+ ǫ, x1, x2)
∣

∣

≤ C ′

∫ T

t+ǫ

∫

R2d

(s− t)−3/2(1−β2

i )

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

β2
i

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

By setting ξ = x, we have

∣

∣Dx2
H1

i (t+ ǫ; t, x1, x2)
∣

∣ ≤ C ′′

∫ T

t+ǫ
(s − t)−3/2(1−β2

i )ds. (4.13)

By letting ǫ→ 0, we obtain

∥

∥Dx2
H1

i

∥

∥

∞
≤ C ′′′T 1/2(3β2

i −1). (4.14)

Bound of Dx2
H2

i . Thanks to (4.6),

Dx2
H2

i (t+ ǫ; t, x1, x2) (4.15)

= −1

2

∫ T

t+ǫ

∫

R2d

Tr
[

∆2
t,s(ξ)a(s, y1, y2)D

2
x1
ui(s, y1, y2)

]

[Dx2
q̃(t, x1, x2; s, y1, y2)] dy1dy2ds

−1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

{[

∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

(4.16)

× [Dx2
q̃(t, x1, x2; s, y1, y2)]

}

dy1dy2ds

+
1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

[

∆1
t,s(ξ)al.(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

×
[

Dx2

(

∂

∂y1l
q̃(t, x1, x2; s, y1, y2)

)]

dy1dy2ds,

and using Mean Value Theorem, we have:

∣

∣∆2
t,s(ξ)Dx1

ui(s, y1, y2)
∣

∣ ≤ ‖Dx1
Dx2

ui‖∞ |∆2
t,s(ξ)y2|. (4.17)
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Since from Proposition 3.1 we have: for all s in [t, T ], for all l in {1, · · · , d}
|Dx2

([∂/∂y1l]q̃(t, x1, x2; s, y1, y2))| ≤ C ′(s− t)−2q̂c(t, x1, x2; s, y1, y2).

It follows from the Lipschitz regularity of a and (4.17) that:

∣

∣Dx2
H2

i (t+ ǫ; t, x1, x2)
∣

∣

≤ C ′′

{

∥

∥D2
x1
ui
∥

∥

∞

∫ T

t+ǫ

∫

R2d

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds (4.18)

+ ‖Dx1
Dx2

ui‖∞
∫ T

t+ǫ

∫

R2d

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s − t)3/2

∣

∣

∣

∣

∣

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

+ ‖Dx1
Dx2

ui‖∞
∫ T

t+ǫ

∫

R2d

∣

∣

∣

∣

∣

∆1
t,s(ξ)y1

(s − t)1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s − t)3/2

∣

∣

∣

∣

∣

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

}

.

By setting ξ = x and letting ǫ → 0 we deduce that:

∥

∥Dx2
H2

i

∥

∥

∞
≤ C ′′′T

(

‖Dx1
Dx2

ui‖∞ +
∥

∥D2
x1
ui
∥

∥

∞

)

. (4.19)

Bound of Dx2
H3

i . From (4.7):

Dx2
H3

i (t+ ǫ; t, x1, x2) (4.20)

= −
∫ T

t+ǫ

∫

R2d

[

∆2
t,s(ξ)F1(s, y1, y2)

]

·Dx1
ui(s, y1, y2)Dx2

q̃(t, x1, x2; s, y1, y2)dy1dy2ds

−
∫ T

t+ǫ

∫

R2d

{

[

∆1
t,s(ξ)F1(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

(4.21)

×Dx2
q̃(t, x1, x2; s, y1, y2)

}

dy1dy2ds.

Then, by using the regularity of F1, (4.11) and (4.17), we have:

∣

∣Dx2
H3

i (t+ ǫ; t, x1, x2)
∣

∣ (4.22)

≤ C ′‖Dx1
ui‖∞

∫ T

t+ǫ

{

(s− t)−3/2(1−β2
1
)

×
∫

R2d

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

β2
1

q̂c(t, x1, x2; s, y1, y2)

}

dy1dy2ds

+C ′ ‖Dx1
Dx2

ui‖∞
∫ T

t+ǫ

{

(s − t)β
1
1
/2

×
∫

R2d

∣

∣

∣

∣

∣

∆1
t,s(ξ)y1

(s− t)1/2

∣

∣

∣

∣

∣

β1
1

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

q̂c(t, x1, x2; s, y1, y2)

}

dy1dy2ds.

By setting ξ = x, we obtain
∣

∣Dx2
H3

i (t+ ǫ; t, x1, x2)
∣

∣

≤ C ′

∫ T

t+ǫ
‖Dx1

ui‖∞(s− t)−3/2(1−β2
1
) + ‖Dx1

Dx2
ui‖∞ (s− t)β

1
1
/2ds, (4.23)

so that, by letting ǫ→ 0 the following bound holds:
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∥

∥Dx2
H3

i

∥

∥

∞
≤ C ′′′

(

T (3β2
1
−1)/2 + T 1+β1

1
/2
)

‖Dx1
Dx2

ui‖∞ . (4.24)

Bound of Dx2
H4

i . From (4.1),

Dx2
H4

i (t+ ǫ; t, x1, x2)

= −
∫ T

t+ǫ

∫

R2d

[

∆1
t,s(ξ)F2(s, y1, θ

2
t,s(ξ))−Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]

·[Dx2
ui(s, y1, y2)]Dx2

q̃(t, x1, x2; s, y1, y2)dy1dy2ds

−
∫ T

t+ǫ

∫

R2d

[

∆2
t,s(ξ)F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)Dx2

q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

So that, by using the regularity of F2, (4.5) and (4.11), we have:

∣

∣Dx2
H4

i (t+ ǫ; t, x1, x2)
∣

∣

≤ C ′ ‖Dx2
ui‖∞

∫ T

t+ǫ
(s− t)−1+α1/2

∫

R2d

∣

∣

∣

∣

∣

∆1
t,s(ξ)y1

(s− t)1/2

∣

∣

∣

∣

∣

1+α1

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

+C ′ ‖Dx2
ui‖∞

∫ T

t+ǫ
(s− t)−3(1−β2

2
)/2

∫

R2d

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

β2
2

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds.

By setting ξ = x and letting ǫ → 0, we obtain

∣

∣Dx2
H4

i (t, x1, x2)
∣

∣

≤ C ′′

∫ T

t
‖Dx2

ui‖∞
(

(s− t)−1+α1/2 + (s− t)−3(1−β2
2
)/2
)

ds, (4.25)

so that

∥

∥Dx2
H4

i

∥

∥

∞
≤ C ′′′

(

T (3β2
2
−1)/2 + Tα1/2

)

‖Dx2
ui‖∞ . (4.26)

Combining (4.14), (4.19), (4.24), (4.26) and using estimates of ‖Dx1
ui‖∞ and ‖D2

x1
ui‖∞ from

Lemma 4.1, we can find a non negative real δ4.2 such that, for T small enough:

‖Dx2
ui‖∞ ≤ CT

δ4.2 (1 + ‖Dx1
Dx2

ui‖∞) ,

where C and δ4.2 only depend on known parameters in (H). This concludes the proof of Lemma
4.2. �

4.4 Proof of Lemma 4.3

We first derive a representation formula for H4
i to handle the singularity of the derivative of the

kernel q̃. This formula is given in the following claims and serves for the proof of Lemma 4.2.
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Claim 4.5. For all ǫ > 0, we have:

Dx2
H4

i (t+ ǫ; t, x1, x2) = (4.27)

−
∫ T

t+ǫ

∫

R2d

(

[

∆1
t,s(ξ)F2(s, y1, θ

2
t,s(ξ))−Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]

(4.28)

·∆2
t,s(ξ)Dx2

ui(s, y1, y2)

)

Dx2
q̃(t, x1, x2; s, y1, y2)dy1dy2ds

−
∫ T

t+ǫ

∫

R2d

[

∆2
t,s(ξ)F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)Dx2

q̃(t, x1, x2; s, y1, y2)dy1dy2ds,

Proof of Claim 4.5: From (4.1) and Lemma 3.2, we can center the term Dx2
H4

i w.r.t the derivative
Dx2

ui as follows:

Dx2
H4

i (t+ ǫ; t, x1, x2)

= −
∫ T

t+ǫ

∫

R2d

[

∆1
t,s(ξ)F2(s, y1, θ

2
t,s(ξ))−Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]

·
[

∆2
t,s(ξ)Dx2

ui(s, y1, y2)
]

Dx2
q̃(t, x1, x2; s, y1, y2)dy1dy2ds

−Dx2

[

∫ T

t+ǫ

∫

R2d

[

∆1
t,s(ξ)F2(s, y1, θ

2
t,s(ξ))−Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]

·Dx2
ui(s, y1, θ

2
t,s(ξ))q̃(t, x1, x2; s, y1, y2)dy1dy2ds

]

−
∫ T

t+ǫ

∫

R2d

[

∆2
t,s(ξ)F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)Dx2

q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

By (3.9), the second term in the right hand side is equal to 0. This proves Claim 4.5. �

In order to prove Lemma 4.3, we need to obtain an estimate on the regularity of Dx2
ui w.r.t. x2.

This estimate is given in the following claim.

Claim 4.6. Under the assumptions of Lemma 4.2 for all γ < 3 inf{β21 , β22}− 1, the semi-Hölder norm
of exponent γ/3 of Dx2

ui w.r.t x2 is bounded uniformly in t and x1:

||Dx2
ui||∞,∞,γ/3 := sup

w1,w2,w′
2
∈Rd, t∈[0,T ]

|Dx2
ui(t, w1, w2)−Dx2

ui(t, w1, w
′
2)|

|w2 − w′
2|γ/3

≤ CT

where CT , depending only known parameters in (H) and T , is small as T is small.

Proof of Claim 4.6: Let us first introduce the quantity:

M(Dx2
ui, T ) := sup

w1,w2,w′
2
∈Rd, t∈[0,T ]

|Dx2
ui(t, w1, w2)−Dx2

ui(t, w1, w
′
2)|

|w2 − w′
2|γ/3 + |w2 − w′

2|β
2
2 + |w2 −w′

2|β
2
1 + |w2 − w′

2|
.

From (4.1) and Lemma 3.2, for all (t, x1) in [0, T ] × R
d and (x2, z2) in R

d × R
d we have:

|Dx2
ui(t, x1, x2)−Dx2

ui(t, x1, z2)| (4.29)

≤

∣

∣

∣

∣

∣

∣

4
∑

j=1

(

Dx2
Hj

i

)

(t+ ǫ; t, x1, x2)−
(

Dx2
Hj

i

)

(t+ ǫ; t, x1, z2)

∣

∣

∣

∣

∣

∣

+O(ǫ).

We recall that (Hj
i , j = 1, · · · , 4) depend on the freezing point ξ = (ξ1, ξ2) of the process which started

from x1, x2 and x1, z2 at time t. Here, we choose the same freezing point “ξ” for the two processes
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(with different initial conditions). Let us note that, from (4.1) each Dx2
Hj

i can be written as:

Dx2
Hj

i (t+ ǫ; t, x1, x2) =

∫ T

t+ǫ

∫

R2d

F j
i (s, y1, y2, θ

1
t,s(ξ), θ

2
t,s(ξ))Dx2

q̃(t, x1, x2; s, y1, y2)dy1dy2ds,

where F j
i is some function properly defined by (4.1). We set S = {s ∈ [t, T ] s.t. |x2 − z2| < (s− t)3/2}

and Sc = {s ∈ [t, T ] s.t. |x2 − z2| ≥ (s− t)3/2}. We have:

4
∑

j=1

(

Dx2
Hj

i

)

(t+ ǫ; t, x1, x2)−
(

Dx2
Hj

i

)

(t+ ǫ; t, x1, z2)

=

4
∑

j=1

∫ T

t+ǫ
1S

∫

R2d

{

F j
i (s, y1, y2, θ

1
t,s(ξ), θ

2
t,s(ξ))

(

Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)

)}

dy1dy2ds

+

4
∑

j=1

∫ T

t+ǫ
1Sc

∫

R2d

{

F j
i (s, y1, y2, θ

1
t,s(ξ), θ

2
t,s(ξ))

(

Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)

)}

dy1dy2ds

:=
4
∑

j=1

P j
i (t+ ǫ; t, x; z,S) +

4
∑

j=1

P j
i (t+ ǫ; t, x; z,Sc). (4.30)

As a first step, we bound the sum
∑4

j=1 P
j
i (t+ ǫ; t, x; z,S) in (4.30). We first prove that for all s in

S the following inequality holds:

|Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)|
≤ C(s− t)−(3+γ)/2q̂c(t, x1, x2; s, y1, y2)|x2 − z2|γ/3, (4.31)

where c and C depend only on known parameters in (H).

By using Mean Value Theorem and the Gaussian estimate of D2
x2
q̃ from Proposition 3.1 we have:

|Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)|
≤ sup

ρ∈(0,1)

∣

∣D2
x2
q̃(t, x1, x2 + ρ(x2 − z2); s, y1, y2)

∣

∣ |x2 − z2|

≤ C ′(s− t)−3 sup
ρ∈(0,1)

q̂c̄(t, x1, x2 + ρ(x2 − z2); s, y1, y2) |x2 − z2| , (4.32)

where c̄ is a positive constant depending only on known parameters in (H). Note that on S, the
following inequality holds:

sup
ρ∈(0,1)

q̂c̄(t, x1, x2 + ρ(x2 − z2); s, y1, y2) ≤ C ′′q̂c(t, x1, x2; s, y1, y2), (4.33)

Combining (4.32) and (4.33), we obtain:

|Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)|
≤ C ′′′(s− t)−3q̂c(t, x1, x2; s, y1, y2) |x2 − z2| ,

Let 0 < γ < 1 and rewrite |x2 − z2| = |x2 − z2|1−γ/3|x2 − z2|γ/3. Since |x2 − z2| < (s − t)3/2 we have

|x2 − z2| < (s− t)3/2−γ/2|x2 − z2|γ/3 and (4.31) follows.
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Bound of
∑3

j=1

∣

∣

∣
P j
i (t+ ǫ; t, x; z,S)

∣

∣

∣
. Following the proof of Lemma 4.2 and using (4.31) instead of

(4.11) when bounding the terms (4.12), (4.15) and (4.20) and setting ξ = x we deduce that

3
∑

j=1

∣

∣

∣
P j
i (t+ ǫ; t, x; z,S)

∣

∣

∣
(4.34)

≤ C

∫ T

t+ǫ

{

(s− t)−(3+γ−3β2

i )/2 +
∥

∥D2
x1
ui
∥

∥

∞
(s − t)−γ/2 + ‖Dx1

Dx2
ui‖∞ (s− t)−γ/2

+‖Dx1
ui‖∞(s− t)−(3+γ−3β2

1
)/2 + ‖Dx1

Dx2
ui‖∞(s− t)−(γ−β1

1
)/2

}

ds|x2 − z2|γ/3,

for all γ < 3 inf(β21 , β
2
2)− 1.

Bound of P 4
i (t+ ǫ; t, x; z,S). Thanks to (4.27), we have:

P 4
i (t+ ǫ; t, x; z,S)

=

∫ T

t+ǫ
1S

∫

R2d

(

[

∆1
t,s(ξ)F2(s, y1, θ

2
t,s(ξ)) −Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]

·∆2
t,s(ξ)Dx2

ui(s, y1, y2)

)

[Dx2
q̃(t, x1, x2; t, y1, y2)−Dx2

q̃(t, x1, z2; t, y1, y2)] dy1dy2ds

+

∫ T

t+ǫ
1S

∫

R2d

[

∆2
t,s(ξ)F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2) (4.35)

× [Dx2
q̃(t, x1, x2; t, y1, y2)−Dx2

q̃(t, x1, z2; t, y1, y2)] dy1dy2ds.

From (4.5) and (4.31), we deduce that:

∣

∣P 4
i (t+ ǫ; t, x; z,S)

∣

∣ (4.36)

≤ C ′

∫ T

t+ǫ
1S

∫

R2d

{

‖Dx2
ui‖∞ (s − t)3(β

2
2
−1−γ/3)/2

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s − t)3/2

∣

∣

∣

∣

∣

β2

2

+M(Dx2
ui, T )(s − t)−1−γ/2+α1/2

∣

∣

∣

∣

∣

∆1
t,s(ξ)y1

(s− t)1/2

∣

∣

∣

∣

∣

1+α1 (

(s− t)γ/2

∣

∣

∣

∣

∣

y2 − θ2t,s(ξ)

(s− t)3/2

∣

∣

∣

∣

∣

γ/3

+(s− t)3β
2
1
/2

∣

∣

∣

∣

∣

y2 − θ2t,s(ξ)

(s− t)3/2

∣

∣

∣

∣

∣

β2
1

+ (s − t)3β
2
2
/2

∣

∣

∣

∣

∣

y2 − θ2t,s(ξ)

(s− t)3/2

∣

∣

∣

∣

∣

β2
2

+(s− t)3/2

∣

∣

∣

∣

∣

y2 − θ2t,s(ξ)

(s− t)3/2

∣

∣

∣

∣

∣

)

q̂c(t, x1, x2; s, y1, y2)dy1dy2

}

ds|x2 − z2|γ/3,

for all γ < 3β22 − 1.

By setting ξ = x in (4.36) and letting ǫ → 0 in (4.34) and (4.36), we deduce that there exist two
positive constants CT and C ′

T depending only on known parameters in (H) and T , such that:

∣

∣

∣

∣

∣

∣

4
∑

j=1

P j
i (t, x; z,S)

∣

∣

∣

∣

∣

∣

≤
(

C ′
TM(Dx2

ui, T ) +CT ||Dx1x2
ui||∞

)

|x2 − z2|γ/3, (4.37)
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for all γ < 3 inf(β21 , β
2
2)− 1 and where CT and C ′

T are small as T is small.

As a second step, we bound the sum
∑4

j=1 P
j
i (t+ ǫ; t, x; z,Sc) in (4.30). Note that this sum reads:

4
∑

j=1

P j
i (t+ ǫ; t, x; z,Sc)

=
4
∑

j=1

{

∫ T

t+ǫ
1Sc

∫

R2d

F j
i (s, y1, y2, θ

1
t,s(ξ), θ

2
t,s(ξ))Dx2

q̃(t, x1, x2; s, y1, y2)dy1dy2ds

−
∫ T

t+ǫ
1Sc

∫

R2d

F j
i (s, y1, y2, θ

1
t,s(ξ), θ

2
t,s(ξ))Dx2

q̃(t, x1, z2; s, y1, y2)dy1dy2ds

}

:=
4
∑

j=1

{H̃j
i (t+ ǫ; t, x1, x2,Sc)− H̃j

i (t+ ǫ; t, x1, z2,Sc)}, (4.38)

and that for all s in Sc we have:

1 ≤ (s− t)−γ/2 |x2 − z2|γ/3 . (4.39)

On a first hand, by plugging (4.39) in (4.13), (4.18) and (4.22) in the proof of Lemma 4.2 and setting
ξ = x we obtain that:

3
∑

j=1

∣

∣

∣
H̃j

i (t+ ǫ; t, x1, x2,Sc)
∣

∣

∣
(4.40)

≤ C

∫ T

t+ǫ

{

(s− t)−3(1+γ/3−β2
1
)/2 +

∥

∥D2
x1
ui
∥

∥

∞
(s− t)−γ/2 + ‖Dx1

Dx2
ui‖∞ (s − t)−γ/2

+‖Dx1
ui‖∞(s− t)−3(1+γ/3−β2

1
)/2 + ‖Dx1

Dx2
ui‖∞(s− t)−(γ−β1

1
)/2

}

ds|x2 − z2|γ/3

and plugging (4.39) in (4.27) and setting ξ = x, we deduce that

∣

∣

∣
H̃4

i (t+ ǫ; t, x1, x2,Sc)
∣

∣

∣
(4.41)

≤ C

{

∫ T

t+ǫ
‖Dx2

ui‖∞ (s− t)3(β
2
2
−1−γ/3)/2ds|x2 − z2|γ/3 + CM(Dx2

ui, T )

×
∫ T

t+ǫ
(s− t)−1+α1/2

(

(s− t)γ/2 + (s− t)3β
2
1
/2 + (s− t)3β

2
2
/2 + (s− t)3/2

)

ds

}

×|x2 − z2|γ/3.

On a second hand, we have to deal with the terms H̃j
i (t + ǫ; t, x1, z2,Sc), for j ∈ {1, · · · , 4}. Since

we take the same freezing point for the two solutions with different initial conditions, we have to

re-center each integrand of H̃j
i (t+ ǫ; t, x1, z2,Sc) in order to use the off-diagonal decay of the Gaussian

exponential w.r.t the degenerate component. In this case, this off-diagonal decay is given by: |y2 −
m2,ξ

t,s (x1, z2)| for all s in [t, T ].
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Bound of H̃1
i (t+ ǫ; t, x1, z2,Sc). We have:

H̃1
i (t+ ǫ; t, x1, z2,Sc)

=

∫ T

t+ǫ

∫

R2d

1Scφi(s, y1, y2)Dx2
q̃(t, x1, z2; s, y1, y2)dy1dy2ds

=

∫ T

t+ǫ

∫

R2d

1Sc

(

φi(s, y1, y2)− φi(s, y1,m
2,ξ
t,s (x1, z2))

)

Dx2
q̃(t, x1, z2; s, y1, y2)dy1dy2ds

+

∫ T

t+ǫ

∫

R2d

1Scφi(s, y1,m
2,ξ
t,s (x1, z2))Dx2

q̃(t, x1, z2; s, y1, y2)dy1dy2ds.

By using (3.9), we know that the last term in the right hand side is equal to 0, so that:

∣

∣

∣

∣

H̃1
i (t+ ǫ; t, x1, z2,Sc)

∣

∣

∣

∣

≤ C

∫ T

t+ǫ

{

1Sc(s− t)−3(1−β2

i +γ/3)/2

∫

R2d

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

β2

i

(4.42)

×q̂c(t, x1, z2; s, y1, y2)
}

dy1dy2ds|x2 − z2|γ/3,

for all γ < 3β2i − 1.

Bound of H̃2
i (t+ ǫ; t, x1, z2,Sc). We can split this term as:

H̃2
i (t+ ǫ; t, x1, z2,Sc)

=
1

2

∫ T

t+ǫ
1Sc

∫

R2d

Tr

{

[[

a(s, y1, y2)− a(s, y1,m
2,ξ
t,s (x1, z2))

]

D2
x1
ui(s, y1, y2)

]

× [Dx2
q̃(t, x1, z2; s, y1, y2)]

}

dy1dy2ds

+
1

2

∫ T

t+ǫ
1Sc

∫

R2d

{

Tr
[[

a(s, y1,m
2,ξ
t,s (x1, z2))− a(s, θ1t,s(ξ), θ

2
t,s(ξ))

]

D2
x1
ui(s, y1, y2)

]

× [Dx2
q̃(t, x1, z2; s, y1, y2)]

}

dy1dy2ds.
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By using the integration by parts argument (4.9) and a centering argument w.r.t. Dx1
ui on the last

term in the right hand side above, we obtain:

H̃2
i (t+ ǫ; t, x1, z2,Sc)

=
1

2

∫ T

t+ǫ
1Sc

∫

R2d

{

Tr
[[

a(s, y1, y2)− a(s, y1,m
2,ξ
t,s (x1, z2))

]

D2
x1
ui(s, y1, y2)

]

× [Dx2
q̃(t, x1, z2; s, y1, y2)]

}

dy1dy2ds

+
1

2

d
∑

l=1

∫ T

t+ǫ
1Sc

∫

R2d

{([

∂

∂y1l
al.(s, y1,m

2,ξ
t,s (x1, z2))

]

[

Dx1
ui(s, y1, y2)−Dx1

ui(s, y1,m
2,ξ
t,s (x1, z2))

]

)

[Dx2
q̃(t, x1, z2; s, y1, y2)]

}

dy1dy2ds

+
1

2

d
∑

l=1

∫ T

t+ǫ
1Sc

∫

R2d

{

[

al.(s, y1,m
2,ξ
t,s (x1, z2))− al.(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

]

·
[

Dx1
ui(s, y1, y2)−Dx1

ui(s, y1,m
2,ξ
t,s (x1, z2))

]

×
[

Dx2

(

∂

∂y1l
q̃(t, x1, z2; s, y1, y2)

)]}

dy1dy2ds,

+
1

2

d
∑

l=1

∫ T

t+ǫ
1Sc

∫

R2d

{[

al.(s, y1,m
2,ξ
t,s (x1, z2))− al.(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

+
∂

∂y1l
al.(s, y1,m

2,ξ
t,s (x1, z2))

]

·
[

Dx1
ui(s, y1,m

2,ξ
t,s (x1, z2))

]

×
[

Dx2

(

∂

∂y1l
q̃(t, x1, z2; s, y1, y2)

)]}

dy1dy2ds,

where the last term is equal to 0 from (3.9). From (4.39), (4.4) and Proposition 3.1 we have:

∣

∣

∣
H̃2

i (t+ ǫ; t, x1, z2,Sc)
∣

∣

∣
(4.43)

≤ C

∫ T

t+ǫ
1Sc

∫

R2d

{

||Dx2
1

ui||∞(s− t)−γ/2

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s − t)3/2

∣

∣

∣

∣

∣

+||Dx1
Dx2

ui||∞(s− t)−γ/2

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

+(s− t)−γ/2||Dx1
Dx2

ui||∞

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 − θ1t,s(ξ)

(s− t)1/2

∣

∣

∣

∣

∣

(4.44)

× q̂c(t, x1, z2; s, y1, y2)dy1dy2

}

ds|x2 − z2|γ/3

+C||Dx1
Dx2

ui||∞
∫ T

t+ǫ
1Sc(s− t)−1/2

∫

R2d

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s − t)3/2

∣

∣

∣

∣

∣

q̂c(t, x1, z2; s, y1, y2)dy1dy2ds

×|m2,ξ
t,s (x1, z2)− θ2t,s(ξ)|,

for all γ < 2.
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Bound of H̃3
i (t+ǫ; t, x1, z2,Sc). From (4.7), this term can be centered w.r.t. the coefficients as follows:

H̃3
i (t+ ǫ; t, x1, z2,Sc)

=

∫ T

t+ǫ
1Sc

∫

R2d

{

[

F1(s, y1, y2)− F1(s, y1,m
2,ξ
t,s (x1, z2))

]

· [Dx1
ui(s, y1, y2)]

/quad×Dx2
q̃(t, x1, z2; s, y1, y2)

}

dy1dy2ds

+

∫ T

t+ǫ
1Sc

∫

R2d

[

F1(s, y1,m
2,ξ
t,s (x1, z2))− F1(s, θ

1
t,s(ξ)1, θ

2
t,s(ξ))

]

· [Dx1
ui(s, y1, y2)]Dx2

q̃(t, x1, z2; s, y1, y2)dy1dy2ds,

and then, it can be centered w.r.t. Dx1
ui as follows:

H̃3
i (t+ ǫ; t, x1, z2,Sc)

=

∫ T

t+ǫ
1Sc

∫

R2d

[

F1(s, y1, y2)− F1(s, y1,m
2,ξ
t,s (x1, z2))

]

· [Dx1
ui(s, y1, y2)]Dx2

q̃(t, x1, z2; s, y1, y2)dy1dy2ds

+

∫ T

t+ǫ
1Sc

∫

R2d

[

F1(s, y1,m
2,ξ
t,s (x1, z2))− F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

]

·
[

Dx1
ui(s, y1, y2)−Dx1

u(s, y1,m
2,ξ
t,s (x1, z2))

]

Dx2
q̃(t, x1, z2; s, y1, y2)dy1dy2ds

+

∫ T

t+ǫ
1Sc

∫

R2d

[

F1(s, y1,m
2,ξ
t,s (x1, z2))− F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

]

·
[

Dx1
ui(s, y1,m

2,ξ
t,s (x1, z2))

]

Dx2
q̃(t, x1, z2; s, y1, y2)dy1dy2ds,

where the last term is equal to 0 from (3.9). From (4.39), (4.4) and Proposition 3.1, we can deduce
the following:

∣

∣

∣
H̃3

i (t+ ǫ; t, x1, z2,Sc)
∣

∣

∣
(4.45)

≤ C

∫ T

t+ǫ
1Sc

∫

R2d

{

||Dx1
ui||∞(s− t)−3(1−β2

1
+γ/3)/2

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

β2
1

+||Dx1
Dx2

ui||∞(s− t)(β
1
1
−γ)/2

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 − θ1t,s(ξ)

(s− t)1/2

∣

∣

∣

∣

∣

β1
1

(4.46)

× q̂c(t, x1, z2; s, y1, y2)

}

dy1dy2ds|x2 − z2|γ/3

+C||Dx1
Dx2

ui||∞
∫ T

t+ǫ
1Sc

∫

R2d

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

q̂c(t, x1, z2; s, y1, y2)dy1dy2ds

×|m2,ξ
t,s (x1, z2)− θ2t,s(ξ)|β

2
1

for all γ < 3β21 − 1.
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Bound of H̃4
i (t+ ǫ; t, x1, z2,Sc). From (4.27), this term can be written as:

H̃4
i (t+ ǫ; t, x1, z2,Sc)

=

∫ T

t+ǫ

∫

R2d

{

1Sc

[

F2(s, y1, y2)− F2(s, y1,m
2,ξ
t,s (x1, z2))

]

· [Dx2
ui(s, y1, y2)]

×Dx2
q̃(t, x1, z2; s, y1, y2)

}

dy1dy2ds

+

∫ T

t+ǫ

∫

R2d

1Sc

[

F2(s, y1,m
2,ξ
t,s (x1, z2))− F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

−Dx1
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]

· [Dx2
ui(s, y1, y2)]Dx2

q̃(t, x1, z2; s, y1, y2)dy1dy2ds,

It can be centered w.r.t. Dx2
ui as

H̃4
i (t+ ǫ; t, x1, z2,Sc)

=

∫ T

t+ǫ

∫

R2d

{

1Sc

[

F2(s, y1, y2)− F2(s, y1,m
2,ξ
t,s (x1, z2))

]

· [Dx2
ui(s, y1, y2)]

×Dx2
q̃(t, x1, z2; s, y1, y2)

}

dy1dy2ds

+

∫ T

t+ǫ

∫

R2d

{

1Sc

[

F2(s, y1,m
2,ξ
t,s (x1, z2))− F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

−Dx1
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]

·
[

Dx2
ui(s, y1, y2)−Dx2

ui(s, y1,m
2,ξ
t,s (x1, z2))

]

×Dx2
q̃(t, x1, z2; s, y1, y2)

}

dy1dy2ds

+

∫ T

t+ǫ

∫

R2d

{

1Sc

[

F2(s, y1,m
2,ξ
t,s (x1, z2))− F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

−Dx1
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]

·
[

Dx2
ui(s, y1,m

2,ξ
t,s (x1, z2))

]

×Dx2
q̃(t, x1, z2; s, y1, y2)

}

dy1dy2ds,

where the last term is equal to 0 from (3.9). By using (4.4), (4.39) and Proposition 3.1 we have:
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∣

∣

∣

∣

∣

H̃4
i (t+ ǫ; t, x1, z2,Sc)

∣

∣

∣

∣

∣

(4.47)

≤ C||Dx2
ui||∞

∫ T

t+ǫ

{

1Sc(s− t)−3(1−β2
2
+γ/3)/2

×
∫

R2d

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

β2

2

q̂c(t, x1, z2; s, y1, y2)dy1dy2

}

ds|x2 − z2|γ/3

+CM(Dx2
ui, T )

∫ T

t+ǫ
1Sc(s− t)−1+α1/2

∫

R2d

{∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

γ/3

|x2 − z2|γ/3

+

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

β2
1

|x2 − z2|β
2
1 +

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

β2
2

|x2 − z2|β
2
2

+

∣

∣

∣

∣

∣

y2 −m2,ξ
t,s (x1, z2)

(s− t)3/2

∣

∣

∣

∣

∣

|x2 − z2|
}

× q̂c(t, x1, z2; s, y1, y2)dy1dy2ds,

for all γ < 3β21/2− 1.

Now, note that from (3.3),

m2,x
t,s (x1, z2)− θ2t,s(x) = z2 − x2.

Hence, by setting ξ = x and letting ǫ → 0 in (4.42), (4.43) and (4.47) and combining the resulting esti-
mates with (4.40) and (4.41), we deduce that there exist two positive constants CT and C ′

T depending
only on known parameters in (H) and T , such that:

∣

∣

∣

∣

∣

∣

4
∑

j=1

P j
i (t, x; z,Sc)

∣

∣

∣

∣

∣

∣

≤
(

C ′
TM(Dx2

ui, T ) + CT ||Dx1
Dx2

ui||∞
)

(4.48)

×
(

|x2 − z2|γ/3 + |x2 − z2|β
2
2 + |x2 − z2|β

2
1 + |x2 − z2|

)

,

for all γ < 3 inf(β21 , β
2
2)− 1 and where CT and C ′

T are small as T is small.

Finally, by plugging estimates (4.37) and (4.48) in (4.29), we deduce that there exists a positive
constant CT which is small as T is small such that:

|Dx2
ui(t, x1, x2)−Dx2

ui(t, x1, z2)|
≤ CT

(

1 + C ′
TM(Dx2

ui, T )
)

(

|x2 − z2|γ/3 + |x2 − z2|β
2
2 + |x2 − z2|β

2
1 + |x2 − z2|

)

.

Together with the boundedness of Dx2
ui from Lemma 4.2, this concludes the proof of Claim 4.6. �

Proof of Lemma 4.3. It follows from the representation (4.1) and Lemma 3.2 that, for all ǫ > 0:

Dx1
Dx2

ui(t, x1, x2) =

4
∑

j=1

Dx1
Dx2

Hj
i (t+ ǫ; t, x1, x2) +O(ǫ) (4.49)

We bound each Dx1
Dx2

Hj
i . We recall that from Proposition 3.1, there exists a positive constant C

depending only on known parameters in (H) such that:

Dx1
Dx2

q̃(t, x1, x2; s, y1, y2) ≤ C(s− t)−2Dx1
Dx2

q̂c(t, x1, x2; s, y1, y2). (4.50)
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Bound of Dx1
Dx2

H1
i . From (4.12) we have:

Dx1
Dx2

H1
i (t+ ǫ; t, x1, x2)

=

∫ T

t+ǫ

∫

R2d

∆2
t,s(ξ)φi(s, y1, y2) [Dx1

Dx2
q̃(t, x1, x2; s, y1, y2)] dy1dy2ds.

So that,

∣

∣Dx1
Dx2

H1
i (t+ ǫ; t, x1, x2)

∣

∣

≤ C ′

∫ T

t+ǫ

∫

R2d

(s− t)−2+3/2β2

i

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

β2

i

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

Since β2i > 2/3, i = 1, 2 from (H1), by setting ξ = x and letting ǫ → 0 we deduce that:
∥

∥Dx1
Dx2

H1
i

∥

∥

∞
≤ C ′′T (3β2

i /2−1). (4.51)

Bound of Dx1
Dx2

H2
i . Thanks to (4.6), we have

Dx1
Dx2

H2
i (t+ ǫ; t, x1, x2)

= −1

2

∫ T

t+ǫ

∫

R2d

{

Tr
[

[∆2
t,s(ξ)a(s, y1, y2)]D

2
x1
ui(s, y1, y2)

]

× [Dx1
Dx2

q̃(t, x1, x2; s, y, y1, y2)]

}

dy1dy2ds

−1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

{[

∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

× [Dx1
Dx2

q̃(t, x1, x2; s, y1, y2)]

}

dy1dy2ds

+
1

2

d
∑

l=1

∫ T

t+ǫ

∫

R2d

{

[

∆1
t,s(ξ)al.(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

×
[

Dx1
Dx2

(

∂

∂y1l
q̃(t, x1, x2; s, y1, y2)

)]}

dy1dy2ds.

By using (4.18), we deduce that:

∣

∣Dx1
Dx2

H2
i (t+ ǫ; t, x1, x2)

∣

∣

≤ C ′

{

∥

∥D2
x1
ui
∥

∥

∞

∫ T

t+ǫ
(s− t)−1/2

∫

R2d

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s − t)3/2

∣

∣

∣

∣

∣

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

+ ‖Dx1
Dx2

ui‖∞
∫ T

t+ǫ
(s− t)−1/2

∫

R2d

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

+ ‖Dx1
Dx2

ui‖∞
∫ T

t+ǫ
(s− t)−1/2

∫

R2d

{

∣

∣

∣

∣

∣

∆1
t,s(ξ)y1

(s− t)1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

×q̂c(t, x1, x2; s, y1, y2)
}

dy1dy2ds

}

.
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By setting ξ = x and letting ǫ → 0 we obtain:

∥

∥Dx1
Dx2

H2
i

∥

∥

∞
≤ C ′′T 1/2

(

‖Dx1
Dx2

ui‖∞ +
∥

∥D2
x1
ui
∥

∥

∞

)

. (4.52)

Bound of Dx1
Dx2

H3
i . From (4.7):

Dx1
Dx2

H3
i (t+ ǫ; t, x1, x2)

= −
∫ T

t+ǫ

∫

R2d

{

[

∆2
t,s(ξ)F1(s, y1, y2)

]

·Dx1
ui(s, y1, y2)

× [Dx1
Dx2

q̃(t, x1, x2; s, y1, y2)]

}

dy1dy2ds

−
∫ T

t+ǫ

∫

R2d

{

[

∆1
t,s(ξ)F1(s, y1, θ

2
t,s(ξ))

]

·
[

∆2
t,s(ξ)Dx1

ui(s, y1, y2)
]

× [Dx2
q̃(t, x1, x2; s, y1, y2)]

}

dy1dy2ds.

By using (4.22) we deduce that:

∣

∣Dx1
Dx2

H3
i (t+ ǫ; t, x1, x2)

∣

∣

≤ C ′

{

‖Dx1
ui‖∞

∫ T

t+ǫ
(s− t)−2+3β2

1
/2

∫

R2d

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s − t)3/2

∣

∣

∣

∣

∣

β2

1

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

+ ‖Dx1
Dx2

ui‖∞
∫ T

t+ǫ
(s− t)(β

1
1
−1)/2

∫

R2d

{

∣

∣

∣

∣

∣

∆1
t,s(ξ)y1

(s− t)1/2

∣

∣

∣

∣

∣

β1
1

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

×q̂c(t, x1, x2; s, y1, y2)
}

dy1dy2ds

}

.

By setting ξ = x and letting ǫ → 0 we obtain the following bound:

∥

∥Dx1
Dx2

H3
i

∥

∥

∞
≤ C ′′

(

T 3β2
1
/2−1 + T (1+β1

1
)/2
)

‖Dx1
Dx2

ui‖∞ . (4.53)

Bound of Dx1
Dx2

H4
i . Thanks to (4.27), we have

Dx1
Dx2

H4
i (t+ ǫ; t, x1, x2)

= −
∫ T

t+ǫ

∫

R2d

[

∆1
t,s(ξ)F2(s, y1, θ

2
t,s(ξ))−Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))∆

1
t,s(ξ)y1

]

·[∆2
t,s(ξ)Dx2

ui(s, y1, y2)]Dx1
Dx2

q̃(t, x1, x2; s, y1, y2)dy1dy2ds

−
∫ T

t+ǫ

∫

R2d

[

∆2
t,s(ξ)F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)Dx1

Dx2
q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

By using Claim 4.6, the regularity of F2, (4.5) and (4.50), we obtain:
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∣

∣Dx1
Dx2

H4
i (t+ ǫ; t, x1, x2)

∣

∣

≤ C ′ ‖Dx2
ui‖∞,∞,γ/3

∫ T

t+ǫ
(s− t)(−3+γ+α1)/2

∫

R2d

{

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

γ/3

×q̂c(t, x1, x2; s, y1, y2)
}

dy1dy2ds

+C ′ ‖Dx2
ui‖∞

∫ T

t+ǫ
(s− t)−2+3β2

2
/2

∫

R2d

∣

∣

∣

∣

∣

∆2
t,s(ξ)y2

(s− t)3/2

∣

∣

∣

∣

∣

β2
2

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds.

Since this inequality holds for all γ < 3 inf(β22 , β
2
1)− 1, γ can be chosen such that the first term in the

right hand side is integrable4. Then, by letting ξ = x and letting ǫ→ 0 we deduce that:

∥

∥Dx1
Dx2

H4
i

∥

∥

∞
≤ C ′′

(

T (3β2
2
/2−1 + T (α1+γ−1)/2

)

‖Dx2
ui‖∞ . (4.54)

Combining (4.51), (4.52), (4.53), (4.54) and using estimates on ‖Dx1
ui‖∞,

∥

∥D2
x1
ui
∥

∥

∞
and ‖Dx2

ui‖∞
given in Lemma 4.1 and Lemma 4.2, we deduce that there exists a non negative real δ̄4.3 depending
only on known parameters in (H) such that, for T small enough:

‖Dx1
Dx2

ui‖∞ ≤ CT
δ̄4.3 .

This concludes the proof of Lemma 4.3. �
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