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REGULARIZATION BY STOCHASTIC DRIFT

P.E. CHAUDRU de RAYNAL

May 30, 2012

Abstract

We here prove pathwise (strong) uniqueness for degenerate systems with Hölder drift,
for Hölder exponent larger than the critical value cc = 2/3. This work extends the one
by Veretennikov [Ver80], Krylov and Röckner [KR05] and Flandoli [Fla11] from non-
degenerate to degenerate cases. In comparison with, the non trivial value for cc is here
the price to pay to balance the degeneracy of the noise. The main tool for proving strong
solvability relies on regularization property of the associated PDE, which is degenerated
in the current framework.

Key words: Kolmogorov operator, Strong uniqueness, Hölder drift, Degeneracy, Stochastic
Differential Equation.

1 Introduction

Given a real T > 0 and a function b from R to R, we consider the following deterministic
system:

dXt = b(t, Xt)dt on (0, T ], and X0 = x0. (1.1)

When b is at least Lipschitz-continuous, the Cauchy-Lipschitz Theorem provides strong exis-
tence and uniqueness for the system. When b is less than Lipschitz-continuous, strong unique-
ness may be a real challenge. For example, under integrability condition on b, ∇b and div(b),
a famous work of DiPerna and Lions [DL89] shows that for almost every initial condition,
there exists a unique flow that satisfies (1.1). Nevertheless, uniqueness does not hold pathwise
(so called strong uniqueness). A possible way to regularize a deterministic system consists in
adding a “microscopic” noise i-e by considering the stochastic system:

dXt = b(t, Xt)dt+ dWt on (0, T ], and X0 = x0, (1.2)

defined on a filtered probability space (Ω,F ,P, (Ft)0≤t≤T ) endowed with a Brownian motion
(Wt, 0 ≤ t ≤ T ). The first work in that direction is due to A.N. Zvonkin. In [Zvo74], he showed
that strong solvability holds for b in L

∞ in the one dimensional case, by using a transformation
that allows to get ride of the drift part. Since, strong solvability of stochastic system (1.2) has
motivated many authors. Veretennikov [Ver80] generalized the result to the multidimensional
case and N.V. Krylov and M. Röckner showed in [KR05] that pathwise existence and uniqueness
hold for b in L

p
loc, p > d. Then, X. Zhang (see [Zha05]) extended the result for multiplicative

noise with Sobolev matrix diffusion and F. Flandoli and E. Fedrizzi gave in [FF11] another proof
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2 1 INTRODUCTION

of the result of N.V. Krylov and M. Röckner. All of these works rely on the deep connection
between SDEs and PDEs (see [Bas98] or [Fri06] for a partial revue): the generator associated
to the Markov process X is a linear partial differential operator of second order (usually de-
noted by L) with the transition density of X as fundamental solution. The proof of the strong
solvability of the SDE then relies on regularization properties of parabolic (or elliptic) operators.

The result that we present here is in the same spirit of these works: let F1, F2, σ : [0, T ]×
R

d × R
d → R

d × R
d × Md(R) be measurable functions, and for all t in [0, T ] and s in (t, T ],

define: {
dX1

s = F1(s,X
1
s , X

2
s )ds+ σ(s,X1

s , X
2
s )dWs, X1

t = x1,
dX2

s = F2(s,X
1
s , X

2
s )ds, X2

t = x2.
(1.3)

This is the generalization of (1.1) where we add a degenerate noise, or a “macroscopic” noise
if one focuses on the second component. We here show that strong solvability holds for (1.3)
outside the Cauchy-Lipschitz framework: only suitable Hölder assumption on the drift coeffi-
cients are needed. Our approach relies on [Fla11] and, then, on the connection between SDE
and PDE. The key is to obtain Lipschitz bounds on the solution of the associated PDE and on
its derivative with respect to (w.r.t.) the non degenerate component.

The main issue is that the PDE associated to such a system is non-uniformly parabolic. In
that case, the generator L of the process (X1

t , X
2
t )t≥0 is given by: for all ψ in C1,2,1([0, T ] ×

R
d × R

d)1:

Lψ(t, x1, x2) =
1

2
Tr(a(t, x1, x2))D

2
x2
1

ψ(t, x1, x2)) + [F1(t, x1, x2)] · [Dx1
ψ(t, x1, x2)]

+ [F2(t, x1, x2)] · [Dx2
ψ(t, x1, x2)] . (1.4)

where “·” denotes the inner product and a = σσ∗. A popular result, due to Hörmander [Hör67],
says that such an operator admits a fundamental solution when the coefficients are smooth (say
C∞) and when the Lie algebra generated by the vector field spans the whole space. This is
referred to as “Hypoellipticity”. In our case, the form of the degeneracy can be seen as a (par-
ticular) generalization of Kolmogorov degeneracy, in reference to the first work [Kol34] of Kol-
mogorov in that direction. Degenerate operators of the formA =

∑N0

i=1 aij(x)∂ij+
∑N

i=1 bi(x)∂xi
,

N > N0 have been studied by many authors. When the degenerate part is linear (bi linear for
i > N0), Di Francesco and Polidoro in [DFP06] obtain Schauder estimates and Harnack type
inequality. Also, they succeed to give a Gaussian lower bound for the fundamental solution by
using parametrix. Delarue and Menozzi consider in [DM10] a noise propagating in a n cascade
of d−dimensional oscillators (N0 = d, N = nd, n > 1). Under Lipschitz assumption on the
drift and Hölder condition on the diffusion matrix, they show that the solution of such a sys-
tem admits a density which is upper and lower bounded by a Gaussian like type bound. The
approach is based on a truncated parametrix expansion of the transition density and related
stochastic control problem. Thanks to their Aronson type control on their transition density,
Menozzi [Men11] shows that the system admits a unique weak solution.

We prove that adding degenerate noise restores strong solvability. We emphasize that our
assumptions ensure the existence of a (weak) solution of (1.3) (see [SV79]). Hence, strong solv-
ability follows from strong uniqueness. As we discussed, the proof relies on the regularization

1
i-e C1 in time, C2 for the diffusive component, and C1 for the degenerate component.



1.1 Overview 3

properties of L. We investigate the PDE: ∂tu + Lu = Φ, uT = 0, when the source term Φ
has the same regularity as the drift. We show that under our assumptions, this PDE enjoys
suitable regularization properties. Namely, the solution and its derivative w.r.t. the diffusive
component are Lipschitz continuous. By using Itô’s Formula with u, we get ride of the irregular
drift coefficients that appear in (1.3). The resulting SDE involves the solution and its deriva-
tive. Thus, we recover the Lipschitz property and, then, strong uniqueness. Unfortunately,
there is a price to pay to balance the degeneracy: Firstly, the function x2 7→ F (., ., x2) must
be at least cc-Hölder continuous, cc > 2/3. Secondly, the function x1 7→ F2(., x1, .) must be
Lipschitz and its derivative Dx1

F2 uniformly non degenerate. Finally, the drift coefficient F1

is supposed to be Hölder continuous w.r.t. x1. We refer the reader to Section 3 for further
discussion on the existence of a critical value cc. The second assumption is quite natural. This
allows the noise to propagate in the second component. That is, a sort of weak Hörmander
condition. Further details can be found in Section 3. The third assumption is a direct con-
sequence of our approach. In comparison with the works of Veretennikov [Ver80], Krylov and
Röckner [KR05], and Flandoli and Fedrizzi [FF11], asking for F1 to be in L

p only might appear
as the right framework. Unfortunately, we are not able to establish an L

∞ estimate on the
second order derivative of the solution w.r.t. the non degenerate component in this case. Also,
the PDE admits only generalized solution, so that, Itô’s Formula does not apply and one has
to derive an Itô-Krylov type Formula. Consequently, we have to deal with Calderón Zygmund
estimate on the solution and to handle the second order derivative by using Krylov inequality
(see [Kry09]). Recently in [BZ11] M. Bramanti and M. Zhu exhibit L

p estimates for general
class of Hörmander vector field with drift. But, to the best of our knowledge, there is no Krylov
inequality for such a degenerate process.

1.1 Overview

The natural generalization of such a result is its extension to the case of a random noise
propagating through a chain of n differential equations:

dX1
s = F1(s,X

1
s , · · · , X

n
s )ds+ σ(s,X1

s , · · · , X
n
s )dWs

dX2
s = F2(s,X

1
s , · · · , X

n
s )ds

dX3
s = F3(s,X

2
s , · · · , X

n
s )ds

...

dXn
s = Fn(s,X

n−1
s , Xn

s )ds

where (Fj)1≤j≤n are some measurable functions from [0, T ]× R
(n−j+2)d to R

d. By using Gaus-
sian estimates from [DM10], Menozzi shows in [Men11] that weak existence and uniqueness hold.

Nevertheless, we failed to generalize the result to this n-case. This again comes from the
regularization properties of the associated generator: the classical way for studying these opera-
tors is the parametrix. This approach relies on the associated frozen system (that is the system
with constant coefficients). The solution of the PDE can be seen as a time-space convolution
of a perturbed kernel with the frozen density. In this case, the frozen system is Gaussian and
its nd× nd covariance matrix is homogeneous to:
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






t1/2Id 0 · · · 0
0 t3/2Id · · · 0
... 0

. . . 0
0 · · · 0 td−1/2Id







.

Then, the differentiation of the frozen transition density over the j-th component generates a
time-singularity of order j − 1/2, which is not integrable. Unfortunately, the regularity of the
perturbed kernel does not prevent such a singularity.

1.1.1 Application

For example, Eq. (1.3) describes the dynamics of some Halmitonian systems (see e.g. Soize
[Soi94] for a general overview or the more specific works by Talay [Tal02] and Hérau and Nier
[HN04] for questions of convergence to equilibrium). Also, it corresponds to the dynamics
used in mathematical finance to price an Asian option (see for example [BPV01] for a specific
discussion of the regularity of the price in such a degenerate case).

1.2 Organization of the paper

In Section 2, we state the detailed assumptions and the main Theorem of this paper: strong
existence and uniqueness hold for the system (1.3). Then, we explain how the proof works and
introduce the mathematical tools. Also, we give the regularisation properties of L. Thanks to
these properties, we prove our main result. In Section 3, we illustrate the effect of the degen-
eracy by investigating the case when X is a Brownian motion. We also make some comments
about our result and our assumptions. This study allows to understand how the degenerate
system behaves, and how the analysis must be achieved. The remainder of the paper is dedi-
cated to the investigation of the smoothing properties of L. This is done under regularization
procedure, but the estimates are obtained uniformly. In Section 4 the main tools for studying
these properties are presented: the parametrix and the linearization of the system play a central
role. The proof is derived in Section 5. This is the technical part of this paper.

2 General setting and main result

2.1 Framework

Let T belongs to R
+,∗, t to [0, T ], and d to N

∗. Consider the following R
d × R

d system for any
s in (t, T ]:

{
dX1

s = F1(s,X
1
s , X

2
s )ds+ σ(s,X1

s , X
2
s )dWs, X1

t = x1,
dX2

s = F2(s,X
1
s , X

2
s )ds, X2

t = x2,
(2.1)

where (Wt, t ≥ 0) is a standard d-dimensional Brownian motion defined on some filtered prob-
ability space (Ω,F ,P, (Ft)t≥0). F1, F2 and σ are some measurable functions satisfying:

Hypotheses. (H1). For all (t, x1) ∈ [0, T ]× R
d, the function F2(t, ., x2) : x1 7→ F2(t, x1, x2)

is continuously differentiable and there exist 0 < βj
i < 1, 1 ≤ i, j ≤ 2, 0 < αi < 1, i = 1, 2 and
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three positive constants C1, C2, Ca such that for all (t, x1, x2) and (t, y1, y2) in [0, T ]×R
d ×R

d,

|F1(t, x1, x2)− F1(t, y1, y2)| ≤ C1(|x1 − y1|
β1
1 + |x2 − y2|

β2
1)

|F2(t, x1, x2)− F2(t, y1, y2)| ≤ C2(|x1 − y1|
β1
2 + |x2 − y2|

β2
2)

|Dx1
F2(t, x1, x2)−Dx1

F2(t, y1, y2)| ≤ C2(|x1 − y1|
α1

+ |x2 − y2|
α2

)

|a(t, x1, x2)− a(t, y1, y2)| ≤ Ca(|x1 − y1|+ |x2 − y2|)

and there are continuous time functions. Moreover, β1
2 = 1, β2

i > cc, i = 1, 2, where cc = 2/3.
The function σ also satisfies the uniform parabolic hypothesis:

∃Λ > 1 such that ∀ζ ∈ R
2d, Λ−1|ζ |2 ≤ [σσ∗(t, x1, x2)ζ ] · ζ ≤ Λ|ζ |2,

for all (t, x1, x2) ∈ [0, T ]× R
d × R

d, where “∗” stands for the transpose.

Finally, we also suppose the following assumption: there exists a closed convex subset
E ⊂ GLd(R) such that for all t in [0, T ] and (x1, x2) in R

2d the matrix Dx1
F2(t, x1, x2) be-

longs to E .

In the sequel, the sentence “known parameters in H1” refers to the parameters in this hy-
pothesis.

Notations. Since the notation can become a bit heavy, we rewrite the system (1.3) in a
shortened form:

dXt = F (t, Xt)dt+Bσ(t, Xt)dWt, (2.2)

where Xt = (X1
t , X

2
t ), F (t, Xt) is the R

2d valued function (F1(t, X
1
t , X

2
t ), F2(t, X

1
t , X

2
t ))

∗ and B
is the 2d× d matrix: B = (Id, 0Rd×Rd)∗. Here, Id stands for the identity matrix of Md(R), the
set of real d× d matrix.
We sometimes denote by g(t, Xt) the function g(t, X1

t , X
2
t ) from [0, T ] × R

d × R
d to R

2d. In
the same way, we often denote by x, y or ξ the 2d−dimensional variable (x1, x2), (y1, y2) and
(ξ1, ξ2). Consequently, each component of the d-dimensional variables xk, k = 1, 2 are denoted
by xkl, l = 1, · · · , d. We denote by Φ (resp. φ) a measurable function from [0, T ] × R

d × R
d

to R
2d (resp. R2). Each d-dimensional component of this function is denoted by Φi (resp. φi),

i = 1, 2. We emphasize that we often switch from one notation to another in the following.
The inner product is denoted by “·”. In the sequel, we denote by C a positive constant, de-
pending only on known parameters in H1, which may change from line to line and from one
equation to another.

2.2 Main Result.

We have the following:

Theorem 2.1. Let T > 0. Suppose that assumption H1 is in force. Then, strong existence
and uniqueness hold for the 2-system of d-dimensional SDEs:

dX1
s = F1(s,X

1
s , X

2
s )ds+ σ(s,X1

s , X
2
s )dWs,

dX2
s = F2(s,X

1
s , X

2
s )ds, (2.3)

for all s in (t, T ], any t in [0, T ], and for any initial condition (x1, x2) in R
2d at time t.
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2.3 Strategy of proof.

Existence of a weak solution is straightforward: it follows from the regularity of the coefficients
(see [SV79]). Then, if strong uniqueness holds, strong existence follows. The main issue consists
in proving strong uniqueness. As mentioned before, the strategy for proving strong uniqueness
consists in investigating the regularization properties of L. This is done by assuming that the co-
efficients of (2.3) are smooth. Indeed, under H1, one can find a sequence of mollified coefficients
(an, F n

1 , F
n
2 ,Φ

n
1 ,Φ

n
2 )n≥0 such that (an, F n

1 , F
n
2 ,Φ

n
1 ,Φ

n
2 ) tends to (a, F1, F2,Φ1,Φ2) uniformly on

compact subsets of [0, T ] × R
d × R

d. This is referred to as “regularization procedure” in the
following. For all n ≥ 0, we connect the degenerate system (2.1) with the systems of PDEs:

{

∂tu
(n)
i (t, x) + L(n)u

(n)
i (t, x) = Φ

(n)
i (t, x), for (t, x) ∈ [0, T ]× R

2d

u
(n)
i (T, x) = 0Rd, i = 1, 2,

(2.4)

where L(n) denotes the regularized version of L, and where the (Φ
(n)
i )i=1,2 are the regularized

versions of (Φi)i=1,2. In the whole paper, the functions (Φi)i=1,2 are supposed to be at least
regular as F1 in H1. We emphasize that the derivative w.r.t x2 is only of order one. We have:

Theorem 2.2. Let T > 0 be “small enough”. Suppose that assumption H1 is in force.

Then, for all n ≥ 0, the linear systems (2.4) admit a unique solution u(n) =
(

u
(n)
1 , u

(n)
2

)∗

∈

C1,2,1([0, T ]× R
2d,R2d).

Moreover, there exist two constants CT and C ′
T , only depending on T and on known param-

eters in H1 such that, for all n ≥ 0, the following inequalities hold: for all (x1, y1) and (x2, y2)
in R

2d,

sup
t∈[0,T ]

|u
(n)
i (t, x1, x2)− u

(n)
i (t, y1, y2)| ≤ CT (|x1 − y1|+ |x2 − y2|), (2.5)

sup
t∈[0,T ]

|Dx1
u
(n)
i (t, x1, x2)−Dx1

u
(n)
i (t, y1, y2)| ≤ C ′

T (|x1 − y1|+ |x2 − y2|), (2.6)

for i = 1, 2 and where CT and C ′
T → 0 when T → 0.

The key point is that the estimates of the solution in Theorem 2.2 are obtained uniformly
in n. The terminal condition in (2.4) is very important: it guarantees that the solution and its
derivatives vanish at time T .
We now expose the basics arguments for proving our main result. Let the source term Φ
be the drift term F . Thanks to Itô’s Formula, one can replace the drift of the stochastic
process which solves (2.3) by the solution of (2.4). By splitting the interval [0, T ] on sufficiently
small intervals, one can recover the Lipschitz property of the coefficients of the SDE on each
small time-interval (see Theorem 2.2). By splitting the whole interval in a sufficiently small
subdivision, one deduces strong uniqueness for (2.3).
Finally, the most technical part of the proof consists in showing smoothing properties of the
generator L defined by (1.4). This is done in Section 4 by using the so-called parametrix
approach (see [Fri06] for a partial revue).
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2.4 Proof of the main result: application of Theorem 2.2 to the system (2.3)

In the following, “1” denotes the 2d× 2d matrix:
(

Id 0Rd×Rd

0Rd×Rd 0Rd×Rd

)

.

Let (Xt, t ≥ 0) and (Yt, t ≥ 0) be two solutions of (2.3) for the same initial condition x0
in R

2d. Let u(n) be the solution of the linear systems of PDEs (2.4) with Φ(n) = F (n). Then,
for T small enough, we know from Theorem 2.2 that one can apply Itô’s Formula to both
u(n)(t, Xt)−Xt and u

(n)(t, Yt)− Yt. One gets:

u(n)(t, Xt)−Xt =

∫ t

0

[
∂

∂t
u(n) + L(n)u(n)

]

(s,Xs)ds−

∫ t

0

F (s,Xs)ds+ u(n)(0, x0)− x0

+

∫ t

0

[
Dxu

(n) − 1
]
Bσ(s,Xs)dWs, (2.7)

and

u(n)(t, Yt)− Yt =

∫ t

0

[
∂

∂t
u(n) + Lu(n)

]

(s, Ys)ds−

∫ t

0

F (s, Ys)ds+ u(n)(0, x0)− x0

+

∫ t

0

[
Dxu

(n) − 1
]
Bσ(s, Ys)dWs. (2.8)

Since u(n) is a solution of (2.4), the first term in the right hand side in the two equalities
is equal to F (n). By taking the expectation of the supremum over t of the square norm of the
difference between (2.7) and (2.8) we get:

E sup
t∈[0,T ]

|Xt − Yt|
2 ≤ C sup

t∈[0,T ]

E|u(n)(t, Xt)− u(n)(t, Yt)|
2 + CTE sup

t∈[0,T ]

|F (n)(t, Xt)− F (t, Xt)|
2

+CTE sup
t∈[0,T ]

|F (n)(t, Yt)− F (t, Yt)|
2

+CE

∫ T

0

∣
∣
[
Dxu

(n)B − B
]
(s,Xs)−

[
Dxu

(n)B − B
]
(s, Ys)

∣
∣
2
|σ(s, Ys)|

2 ds

+CE

∫ T

0

∥
∥Dxu

(n)B
∥
∥
∞
|[σ(s, Ys)− σ(s,Xs)]|

2 ds.

Note that Dxu
(n)B = (Dx1

u(n), 0Rd×Rd) and that, for both Yt and Xt,

E sup
t∈[0,T ]

|F (n)(t, Xt)− F (t, Xt)|
2 → 0, as n→ ∞.

So that, from estimates (2.5) and (2.6) of Theorem 2.2, and by letting n tends to the infinity,
we deduce that:

E sup
t∈[0,T ]

|Xt − Yt|
2 ≤ C(T )

{

E sup
t∈[0,T ]

|Xt − Yt|
2 + E

∫ T

0

|Xs − Ys|
2ds

}

,
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where C(T ) → 0 when T → 0. Then, strong uniqueness holds for T small enough. By iterating
this computation over a sufficiently small subdivision of the interval, the result follows.

Remark 1. From now, we omit the superscript “(n)” that follows from the regularization
procedure. We only work with smooth coefficients and show how to obtain the regularization
properties of L depending only on known parameters in H1.

3 The linear and Brownian heuristic.

This Section introduces the main issue when solving (2.3) in a simple case. Furthermore, it
allows to understand some assumptions in H1 and to present in a simple form the effect of the
degeneracy.

Let us introduce the Kolmogorov example: in [Kol34] Kolmogorov showed that the solution
of: dYt = αWtdt, (α 6= 0), admits a density, which is Gaussian and whose covariance matrix is
given by: (

t (1/2)αt2

(1/2)αt2 (1/3)α2t3

)

.

This simple example illustrates the behaviour of the system in small time. The diffusive coordi-
nate oscillates with fluctuation of order 1/2, while the degenerate one oscillates with fluctuation
of order 3/2. As a direct consequence, the transport of the initial condition of the first coordi-
nate has a key role in the second one. This observation is crucial in the following.

Suppose now that F1 ≡ 0, σ ≡ Id and F2 is homogeneous and linear w.r.t x1 i-e F2(s, x1, x2) =
F̄2(x2)+Γsx1 for all s in [t, T ] and where Γs belongs to the set Md(R) in (2.3). The SDE (2.3)
becomes: {

dX1
s = dWs, X1

t = x1,
dX2

s = (F̄2(X
2
s ) + ΓsX

1
s )ds, X2

t = x2,
(3.1)

for all s in (t, T ].
As we said, we investigate the regularization properties of the generator L of (3.1) by using the
parametrix approach. It is a perturbation method. It consists of a Gaussian approximation of
the fundamental solution of L by a McKean-Singer expansion (see [MS67]). Here, our approach
is a first order expansion or, similarly, a variation of parameter approach. We approximate the
original operator L by a Gaussian operator L̃ for which the fundamental solution enjoys well
known properties. This is done by considering a Gaussian stochastic system of generator L̃
that approximates the system (3.1). In a uniform elliptic case, a classical way for deriving such
a system consists in freezing the coefficients of the original SDE at the starting point. Here, as
required by the degeneracy, the choice of the “freezing” point for the parametrix strategy must
be done carefully. Indeed, the degeneracy of the second variable breaks down the diffusive time
scale, so that the transport of the initial condition of the first component into the second one
can not be neglected. Then, the freezing curve θt,s =

(
θ1t,s, θ

2
t,s

)∗
, s in (t, T ] solves the ODE:

d

ds
θt,s =

(
0Rd, F̄2(θ

2
t,s(ξ)) + ξ1

)∗
, θt,t(ξ) = ξ,

for all ξ in R
2d. It is of the implicit form:
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θt,s(ξ) =

∫ s

t

[
Urξ + F̄ (θt,r(ξ))

]
dr + ξ, (3.2)

where,

Us =

(
0Rd×Rd 0Rd×Rd

Γs 0Rd×Rd

)

. (3.3)

The Gaussian frozen system is:
{
dX̄1

s = dWs, X̄1
t = x1,

dX̄2
s =

(
F̄2(θ

2
t,s(ξ)) + X̄1

s

)
ds, X̄2

t = x2.
(3.4)

This is our candidate to approximate (3.1). In the reminder of this Section, we first illustrate
the existence of the critical value cc in H1. Then, we explain why the derivative of F2 w.r.t x1
is supposed to be in a convex set of GLd(R).

(i) Suppose that, for all s in (t, T ], Γs ≡ Id. We have:

Lemma 3.1. The system (3.4) has a unique solution that admits a Gaussian transition density
q̄ given by:

q̄(t, x1, x2; s, y1, y2) =
1

(2π)d/2
det (Ks−t)

−1/2 exp
(

−|K
−1/2
s−t (y1 − x1, y2 −m2,ξ

t,s (x))
∗|2
)

, (3.5)

where m2,ξ
t,s (x) = x2+(s−t)x1+

∫ s

t
F̄2(θ

2
t,r(ξ))dr and where Ks−t is the uniformly non-degenerate

matrix:

Ks−t :=

(
(s− t)Id (1/2)(s− t)2Id

(1/2)(s− t)2Id (1/3)(s− t)3Id

)

. (3.6)

Moreover, the transition kernel q̄ and its derivatives admit a Gaussian-type bound:
∣
∣
∣DNt

t DNx1

x1
DNx2

x2
DNy1

y1
q̄(t, x1, x2; s, y1, y2)

∣
∣
∣ (3.7)

≤ (s− t)−[3(Nx2+Nt)+Nx1+Ny1 ]/2 c

(s− t)2d
exp

(

−c−1|T−1
t,s (y1 − x1, y2 −m2,ξ

t,s (x))
∗|2
)

,

for any t in [0, T ], all s in (t, T ], any N t, Nx1 , Nx2 , Ny1 in N and where c denotes a positive
constant depending only on known parameters in H1. Here,

T
−1
T−t =

(
(T − t)−1/2Id 0Rd×Rd

0Rd×Rd (T − t)−3/2Id

)

, (3.8)

is called the time-scale matrix of the system (3.1) and gives the order of the fluctuation of each
component.

The deterministic ODE associated with X̄ t,x has the form:

d

dt
ψ̄t =

(
0Rd, F̄2(θ

2
t,s(ξ))

)∗
+ Utψ̄t, (3.9)

where Ut is now the sub-diagonal identity matrix2. The system (3.9) is the deterministic coun-
terparts of (3.1), for which the mean of the Gaussian process is a solution. Note that, when

2Ut is given by: Ut =

(
0Rd

×Rd 0Rd
×Rd

Id 0Rd
×Rd

)

.
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the freezing point and the initial condition are the same (i-e when ξ = x), the frozen curve
(θt,s(x))s≥t defines the flow of the ODE (3.9). So that, the freezing curve (θt,s(x))s≥t matches
the mean of the Gaussian process X̄ , i-e: ∀s ∈ [t, T ], ∀x ∈ R

2d : θt,s(x) = mx
t,s(x).

The transition density (3.5) is the fundamental solution of the Kolmogorov degenerate PDE:
∂tq̄(t, x;T, y)+LK q̄(t, x;T, y) = 0, q̄(T, x;T, y) = δy(x), where L

K = (1/2)∆x1
+
[
F̄2(θ

2
t,T (ξ)) + x1

]
·

Dx2
. Then, any solution of:

∂

∂t
u(t, x) + LKu(t, x) = φ(t, x), (3.10)

writes:

u(t, x1, x2) =

∫ T

t

∫

R2d

φ(s, y1, y2)q̄(t, x1, x2; s, y1, y2)dy1dy2ds. (3.11)

As the proof of the Theorem 2.1 shows (see Subsection 2.4), one can replace the drift coefficients
of (X1,t,x

s , X2,t,x
s , s ≥ t) by the solution of the PDE (3.10) with source term φ = (0Rd, F̄2)

∗.
In order to obtain estimates of Theorem 2.2, one needs to bound the supremum norms of
Dx1

u, Dx2
u, D2

x2
1

u and D2
x1x2

u independently of the regularization procedure. As representation

(3.11) shows, the differentiability of u can be seen as the time-space convolution of the source
term φ with the derivative of the fundamental solution of LK . Lemma 3.1 shows that such a
differentiation gives a time-singularity, which is not always integrable. Moreover, it shows that
the cross derivative D2

x1x2
generates the time-singularity of higher order, that is of order 2. It

must be compensated by the regularity of F̄2 under H1:

(s− t)−2
∣
∣F̄2(y2)− F̄2(θ

2
t,s(ξ))

∣
∣ q̄(t, x; s, y)

≤ C(s− t)−2+3β2
2
/2
|y2 − θ2t,s(ξ)|

β2
2

(s− t)3β
2
2
/2

c

(s− t)2d
exp

(

−c−1|T−1
t,s (y1 − x1, y2 −m2,ξ

t,s (x))
∗|2
)

,

from Lemma 3.1. By letting ξ = x, there exists a C̄ > 0 such that3

|y2 − θ2t,s(x)|
β2
2

(s− t)3β
2
2
/2

× exp
(
−c−1|T−1

t,s (y1 − x1, y2 −m2,x
t,s (x))

∗|2
)
≤ C̄.

Thus, by damaging the constant c in the exponential, one obtains:

(s− t)−2
∣
∣F̄2(y2)− F̄2(θ

2
t,s(x))

∣
∣ q̄(t, x; s, y)

≤ C(s− t)−2+3β2
2
/2 c

(s− t)2d
exp

(
−c−1|T−1

t,s (y1 − x1, y2 −m2,x
t,s (x))

∗|2
)
.

Then, the value of β2
2 must be such that (s−t)−2+3β2

2
/2 is integrable, and one gets: β2

2 > 2/3 = cc.
This is the reason of the existence of the critical value. From this discussion, one can also see
the specific choice of the freezing curve as the one that matches the “off-diagonal” decay of the
exponential in q̄ when ξ = x.

Proof of Lemma 3.1 One can write the second component as:

X̄2
s = x2 + (s− t)x1 +

∫ s

t

F̄2(θ
2
t,r(ξ))dr

︸ ︷︷ ︸

:=m2,ξ
t,s (x)

+

∫ T

t

(T − s)dWs. (3.12)

3By using the inequality: ∀q > 0, ∃C̄ > 0 s.t. ∀σ > 0, σqe−σ ≤ C̄.
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We deduce that the 2d× 2d covariance matrix of the process (X̄1, X̄2) is given by:

Ks−t :=

(
(s− t)Id (1/2)(s− t)2Id

(1/2)(s− t)2Id (1/3)(s− t)3Id

)

.

Basic computation shows that K−1
s−t = T

−1
s−tK̂

−1
T
−1
s−t, for all s in (t, T ], where:

K̂−1 =

(
4 −6
−6 12

)

.

As a generalization of the Kolmogorov example the Gaussian transition density is of the form,
for all s in (t, T ]:

q̄(t, x1, x2; s, y1, y2) =
1

(2π)d/2
det (Ks−t)

−1/2 exp
(

−|K
−1/2
s−t (y1 − x1, y2 −m2,ξ

t,s (x))
∗|2
)

. (3.13)

The reminder of the proof follows from easy computations. For details, we refer to the proof
of Proposition 4.8 below in a more general case.

(ii) Let us now suppose that Γs 6= Id. The frozen system writes, in a shortened form:

dX̄s =
[
F̄ (θ2t,s(ξ)) + UsX̄s

]
ds+BdWs, (3.14)

for all s in (t, T ], with the initial condition X̄t = x, where F̄ = (0Rd, F̄2)
∗, where Us is given

by (3.3) and where (θt,s)t≤s≤T is the forward curve (3.2). In this case, the crucial point is the
specific form of the covariance matrix Σ̄t,s of X̄

t,x
s . As the proof of Lemma 3.1 above shows, it

is given by:

Σ̄t,s =

(
(s− t)

∫ s

t
Γ̄t,rdr∫ s

t
Γ̄t,rdr

∫ s

t
Γ̄t,rΓ̄

∗
t,rdr

)

,

for all s in (t, T ] and where: Γ̄t,r :=
∫ r

t
Γudu. Existence of a transition density of X̄ follows

from the non-degeneracy of this matrix, this is what we investigate in the following.
Let ϕ be a function in the space L2

(
[0, T ],Rd

)
, the deterministic counterpart of (3.14) is:

d

dt
ψ̄t = (0Rd, F̄2(θ

2
t,T (ξ)))

∗ + Utψ̄t +Bϕt, (3.15)

that is, the controlled version of (3.9). In [DM10] (see Proposition 3.1), the authors show
that controllability of the system above is equivalent to det (Σ̄t,T ) > 0. Also, they prove that
det (Γs) > 0 for a.e s in [t, T ] is a sufficient condition for having controllability of (3.15) and
then, det (Σ̄t,T ) > 0. Then, the right choice of Γ seems to be Γ in the set of real d×d invertible
matrix: GLd(R). Unfortunately, this condition is not sufficient: whereas it preserves the non-
degeneracy of Σ̄t,T for a given Γ, it does not ensure a uniform control in GLd(R). Let t = 0
and T = 1: in [DM10], the authors show that (see example 3.5 p.22) one can find a sequence of
(Γm

s )m≥0, s ∈ [0, 1], such that det(Γm
s ) = 1 for allm ≥ 1 and for which the variance of the second

component converges towards 0 as O(m−2). So that, det(Σ̄0.1) vanishes although det(Γm
s ) = 1 is

constant. This could be resume as follows: the mapping U ∈ L2 ([0, 1],M2d(R)) 7→ Σ̄0,1 is con-
tinuous for the weak topology. This ensures the controllability of (3.15), so that, det(Σ̄0,1) > 0.
Nevertheless, as the example above shows, the set of invertible matrix is not closed for the weak
topology, but the convex set E in H1 is.
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4 Smoothing of the linear systems of PDEs

The regularization properties of (2.4) are the key of the proof. We also recall that, outside
the regularization procedure, the Φi, i = 1, 2 in Theorem 2.2 are supposed to satisfy the same
regularity as F1 in H1. For the reader convenience, we study the scalar version of systems
(2.4):

{
∂tui(t, x) + Lui(t, x) = φi(t, x), for (t, x) ∈ [0, T ]× R

2d

ui(T, x) = 0, i = 1, 2,
(4.1)

where (φi)i=1,2 are functions from [0, T ]× R
2d to R, that is, φi is the scalar version of Φi. We

give a preliminary version of Theorem 2.2:

Proposition 4.1. There exists a unique solution u = (u1, u2)
∗ ∈ C1,2,1([0, T ]× R

2d,R2) of the
systems (4.1). Moreover, for T small enough, there exist two reals δ4.1, δ̄4.1 > 0 and two
constants C4.1, C̄4.1 depending only on known parameters in H1 such that:

sup
t∈[0,T ]

|ui(t, x1, x2)− ui(t, y1, y2)| ≤ C4.1T
δ4.1 (|x1 − y1|+ |x2 − y2|) , (4.2)

sup
t∈[0,T ]

|Dx1
ui(t, x1, x2)−Dx1

ui(t, y1, y2)| ≤ C4.1T
δ̄4.1 (|x1 − y1|+ |x2 − y2|) , (4.3)

for i = 1, 2.

We emphasize that Theorem 2.2 easily follows from this Proposition. Indeed, each coordi-
nate of the vectorial solution of the decoupled linear systems of PDEs (2.4) has the properties
described above.

Strategy of proof: The proof of Proposition 4.1 is done in four steps:

Step 1 : We first show that there exists a unique solution u of the linear systems (4.1),
which is a C∞

b function. Existence and regularity are proved by adopting a viscosity solution
approach. We propose a candidate u as:

u(t, x1, x2) = E

∫ T

t

φ(r,X1,t,x
r , X2,t,x

r )dr,

where the process (X1, X2) satisfies (2.3). Then, we show that u is a viscosity solution of the
linear systems (4.1) and that it is a smooth function. Since a smooth viscosity solution is a
classical solution, we get existence and regularity of a classical solution of (4.1). One concludes
by proving uniqueness of the Feynman-Kac representation of u, thanks to Itô’s Formula.

Step 2 : As we explained in Section 3, we approximate the original operator L by a Gaussian
operator L̃ for which the fundamental solution enjoys well known properties. Then, we rewrite
the systems of PDEs (4.1) as:

{
∂tui(t, x) + L̃ui(t, x) = (L̃− L)ui(t, x) + φi(t, x), for (t, x) ∈ [0, T ]× R

2d

ui(T, x) = 0, i = 1, 2.
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The solution u = (u1, u2)
∗ of these systems writes:

ui(t, x) =

∫ T

t

∫

R2d

(

L̃− L
)

ui(s, y)q̃(t, x;T, y)dyds+

∫ T

t

∫

R2d

φi(s, y)q̃(t, x;T, y)dyds, (4.4)

for i = 1, 2. The parametrix consists in investigating the regularizations properties of the per-
turbed operator (L̃−L). The aim of this step is to get the “good” operator L̃ that approximates
L. This is done by considering the frozen stochastic system of generator L̃.
We recover the Gaussian framework by a zero-order Taylor expansion of F2. The Brownian
heuristic shows (see Section 3) that the linearization has to be done around the frozen forward
curve that solves:

d

dt
θt,s(ξ) = F (s, θt,s(ξ)), θt,t(ξ) = ξ.

We obtain the Gaussian SDE,

dX̃ t,x
s = F (s, θt,s(ξ))ds+ B̄DxF (s, θt,s(ξ))(X̃

t,x
s − θt,s(ξ))ds+Bσ(s, θt,s(ξ))dWs, (4.5)

where B̄ is the real 2d × d matrix (0Rd×Rd, Id)∗. Then, we check the existence of a transition
density of X̃ . We denote by L̃t,ξ the generator4 of (4.5) and q̃t,ξ its fundamental solution. This
is our candidate to approximate L.

Step 3 : We focus on the properties of the frozen system generated by L̃t,ξ. In Section 4.3,
we give the explicit form of the frozen transition density q̃t,ξ. From this form and discussion
of Section 3, we deduce a Gaussian type bound with the “right-scales” for q̃t,ξ and its derivatives.

Step 4 : This last step consists in investigating the smoothing properties of the perturbed
operator (L̃ − L). We derive the Lipschitz estimates on the ui, i = 1, 2, depending only on
known parameters in H1. These estimates follow from the boundedness of the derivatives of
the representation (4.4). This representation can be seen as an expectation of C∞ functions
(thanks to step 1 ), so that, it is differentiable uniformly in the freezing point ξ. Thanks to the
smoothing properties of the perturbed kernel, by differentiating and by letting ξ = x (the freez-
ing point to be the started point), we deduce the Lipschitz bounds. The strategy is presented
in Section 4.4 and we give the detailed proof in Section 5.

4.1 Regularity of the solution in smooth case

Here, we prove the following result:

Proposition 4.2. There exists a unique C∞
b solution of (4.1) which is given by the function

u : [0, T ]× R
2d → R

2:

u(t, x1, x2) = E

∫ T

t

φ(r,X1,t,x
r , X2,t,x

r )dr.

4Here, the superscript “t, ξ” stands for the dependence on the freezing point.
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Proof of Proposition 4.2

Lemma 4.3. let:

u(t, x1, x2) = E

[∫ T

t

φ(s,X1,t,x
s , X2,t,x

s )ds

]

. (4.6)

Then, u is a viscosity solution of (4.1).

Proof. First we have to prove the continuity of u. From regularity of the coefficients, there
exists an a.s. continuous version of the process (X1,t,x

s , X2,t,x
s )s≥t (see [Kun86]). Since (φi)i=1,2

are smooth, continuity follows. We show now that u is both a sub and super viscosity solution:
this follows from Theorem 5.1 p 69 of [FS06].

Lemma 4.4. There exists a unique strong solution X = (X1, X2) of the stochastic system:

{
dX1

s = F1(s,X
1
s , X

2
s )ds+ σ(s,X1

s , X
2
s )dWs, X1

t = x1,
dX2

s = F2(s,X
1
s , X

2
s )ds, X2

t = x2,

s ∈ [t, T ]. It is infinitely differentiable w.r.t xi, i = 1, 2, and, for all k in N
∗, for all (i1, · · · , ik) ∈

{1, 2}k the process Dk
xi1

,···xik
X t,x

s satisfies:

E

[

sup
s∈[t,T ]

∣
∣
∣Dk

xi1
,···xik

X t,x
s

∣
∣
∣

]

≤ K.

Proof. The result follows from the regularity of the coefficients, from [Kun86] and from Theorem
70 of [Pro04].

Lemma 4.5. Let f be a C∞
b function from R

2d to R. Let v(t, x) = Ef(X t,x
T ), where X t,x

T is a
solution of (2.1). Then, for any i = 1, 2, Dxi

v(t, x) exists, is continuous, and:

Dxi
v(t, x) = E

[
2∑

j=1

Dxj
f(X t,x

T )Dxi
Xj,t,x

T

]

. (4.7)

Proof. Thanks to Kolmogorov criterion, there exists a a.s. continuous version of the process
which solves (2.1). Moreover, it follows from Lemma 4.4 that, for all t in [0, T ], for all s in
[t, T ], the mapping X t,.

s : x 7→ X t,x
s is a.s. continuously differentiable. Since f is Lipschitz, f

always satisfies the domination property:

|f(X t,x
T )− f(X t,z

T )| ≤ K|x− z|,

where K is a random constant with finite moment of all order by Kolmogorov Theorem. One
can apply the Lebesgue differentiation Theorem so that Dxi

v(t, x), i = 1, 2 exists and satisfies
(4.7).

Lemma 4.6. Let u be the function defined in Lemma 4.3. Then u is C1,2,1 and:

∂u

∂t
(t, x1, x2) = −Lu(t, x1, x2) + φ(t, x1, x2).



4.2 Linearized frozen system and “Parametrix” 15

Proof. We know that (X1,t,x
s , X2,t,x

s ) is continuous w.r.t t (see Lemma 4.6.1 of [Kun86]). So
that for all x in R

2d, the function u(., x1, x2) : t ∈ [0, T ] 7→ u(t, x1, x2) is continuous. Using the
Markov property we deduce that, for all 0 < h < t:

u(t− h, x1, x2) = Eu(t, X1,t−h,x
t , X2,t−h,x

t )− E

∫ t

t−h

φ(s,X1,t−h,x
s , X2,t−h,x

s )ds.

By iterating Lemma 4.5, one deduces that u is two times differentiable w.r.t the space variables.
Combing with Lemma 4.4, one deduces that the space derivatives of u are bounded. Then,
applying Itô’s Formula on R

d×R
d to u(t, X1,t−h,x

t , X2,t−h,x
t ) and taking the expectation lead to:

Eu(t, X1,t−h,x
t , X2,t−h,x

t ) = u(t, x1, x2) + E

∫ t

t−h

Lu(t, X1,t−h,x
r , X2,t−h,x

r )dr

+E

∫ t

t−h

Dxu(t, X
1,t−h,x
r , X2,t−h,x

r )Bσ(r,X1,t−h,x
r , X2,t−h,x

r )dWr,

where the last term in the right hand side is equal to 0. Then:

u(t− h, x1, x2)− u(t, x1, x2)

h
=

1

h
E

∫ t

t−h

[
Lu(t, X1,t−h,x

r , X2,t−h,x
r ) + φ(r,X1,t−h,x

r , X2,t−h,x
r )

]
dr.

By the continuity of u w.r.t t and by letting h tends to 0 we deduce that:

∂u

∂t
(t, x1, x2) = −Lu(t, x1, x2) + φ(t, x1, x2).

Then, by iterating Lemma 4.5 and by using the boundedness of the tangent process at every
order from Lemma 4.4, we deduce that the function u defined in (4.6) is C∞

b for all t in [0, T ].
Combining Lemmas 4.3 and 4.6 and existence of a smooth classical solution of (4.1) follows. Let
u be such a solution, by applying Itô’s Formula on u(T,X1,t,x1

T , X2,t,x2

T ), where (X1,t,x1

T , X2,t,x2

T ) is
a solution of the SDE (2.1) such that (X1,t,x1

t , X2,t,x2

t ) = (x1, x2) a.s., and taking the expectation
we have:

u(t, x1, x2) = E

[∫ T

t

φ(s,X1,t,x
s , X2,t,x

s )ds

]

,

and then, uniqueness follows. This conclude the proof of Proposition 4.2.

4.2 Linearized frozen system and “Parametrix”

4.2.1 Linearized frozen system

Here, we give the Gaussian frozen system that approximates (2.3). We refer the reader to the
discussion in Section 3 or to the beginning of Section 4 for further details.

Let x1, x2 belong to R
d and t to [0, T ]. Recall that we are interested in the following

non-linear and degenerate system of SDEs:

{
dX1,t,x

s = F1(s,X
1,t,x
s , X2,t,x

s )ds+ σ(s,X1,t,x
s , X2,t,x

s )dWs, X1,t,x
t = x1,

dX2,t,x
s = F2(s,X

1,t,x
s , X2,t,x

s )ds, X2,t,x
t = x2,

(4.8)
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for all s in (t, T ].

We must linearize the system around some well chosen “freezing curve”. This forward
transport function solves:

d

ds
θt,s(ξ) = F (s, θt,s(ξ)), θt,t(ξ) = ξ. (4.9)

The linearized system is:

{
dX̃1,t,x

s = F1(s, θt,s(ξ))ds+ σ(s, θt,s(ξ))dWs,

dX̃2,t,x
s = F2(s, θt,s(ξ))ds+Dx1

F2(s, θt,s(ξ))(X̃
1,t,x
s − θ1t,s(ξ))ds.

(4.10)

The deterministic counterparts of (4.10) writes

d

ds
ϕs = F (s, θt,s(ξ)) + B̄DxF (s, θt,s(ξ))(ϕs − θt,s(ξ)), ϕ0 = x, (4.11)

where B̄ is given by (4.5). In Section 3, we showed that the controllability of (4.11) is a sufficient
condition for the non-degeneracy of the covariance matrix of X̃ and, then, for the existence of
transition density. Also, we showed that the controllability of (4.11) follows from the specific
non-degeneracy of (Dx1

F2)(Dx1
F2)

∗. Thanks to H1, Proposition 3.1 and 3.4 in [DM10], we
know that this system is controllable. So that, the covariance matrix of the solution of (4.10)
is invertible. The transition density q̃ of X̃ t,x is given5 by:

q̃(t, x1, x2;T, y1, y2) =
3d/2

(2π)d/2
(det[Σ̃t,T ])

−1/2 exp
(

−|Σ̃
−1/2
t,T (y1 −m1,ξ

t,T , y2 −m2,ξ
t,T )

∗|2
)

,

where:

m1,ξ
t,T (x) = x1 +

∫ T

t

F1(s, θt,s(ξ))ds (4.12)

m2,ξ
t,T (x) = x2 +

∫ T

t

[

Dx1
F2(s, θt,s(ξ))(x1 − θ1t,s(ξ))

+F2(s, θt,s(ξ)) +Dx1
F2(s, θt,s(ξ))

∫ s

t

F1(u, θt,u(ξ))du

]

ds,

and where the covariance matrix Σ̃t,T is given by:

Σ̃t,T =

( ∫ T

t
σσ∗(s, θt,s(ξ))ds

∫ T

t
Rs,T (ξ)σσ

∗(s, θt,s(ξ))ds
∫ T

t
σσ∗(s, θt,s(ξ))R

∗
s,T (ξ)ds

∫ T

t
Rs,T (ξ)σσ

∗(s, θt,s(ξ))R0,s(ξ)
∗ds

)

, (4.13)

with:

Rs,T (ξ) =

[∫ T

s

Dx1
F2(r, θt,r(ξ))dr

]

.

Note that the mean mξ
t,T (x) = (m1,ξ

t,T (x), m
2,ξ
t,T (x))

∗, of X̃ t,x
T satisfies the ODE (4.11). As

discussed in Section 3, when ξ = x the forward transport function θt,T (x) is also a solution of
(4.11), so that: θt,T (x) = mx

t,T (x), for all x in R
2d.

To analyse the smoothing effect, we have:

5For the sake of simplicity, we forget the superscript “t, ξ” on the frozen transition density. When a specific
choice of ξ is done, we mention it.
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Lemma 4.7.
For all x, ξ in R

2d,

∣
∣
[
F2(t, x1, x2)− F2(t, θt,T (ξ))−Dx1

F2(t, θt,T (ξ))(x1 − θ1t,T (ξ))
]∣
∣

≤ C|x2 − θ2t,T (ξ)|
β2
2 + C|(x1 − θ1t,T (ξ))|

1+α1

.

Proof. We first apply a Taylor expansion with integrable remainder:

F2(t, θ
1
t,T (ξ), θ

2
t,T (ξ)) = F2(t, x1, θ

2
t,T (ξ)) +

∫ θ1t,T (ξ)

x1

Dx1
F2(t, y1, θ

2
t,T (ξ))dy1. (4.14)

And plugging into:

[
F2(t, x1, x2)− F2(t, θ

1
t,T (ξ), θ

2
t,T (ξ))−Dx1

F2(t, θ
1
t,T (ξ), θ

2
t,T (ξ))(x1 − θ1t,T (ξ))

]
,

we get:

∣
∣
[
F2(t, x1, x2)− F2(t, θt,T (ξ))−Dx1

F2(t, θt,T (ξ))(x1 − θ1t,T (ξ))
]∣
∣

≤
∣
∣F2(t, x1, x2)− F2(t, x1, θ

2
t,T (ξ))

∣
∣

+

∫ θ1t,T (ξ)

x1

∣
∣Dx1

F2(t, y1, θ
2
t,T (ξ))−Dx1

F2(t, θ
1
t,T (ξ), θ

2
t,T (ξ))

∣
∣ dy1,

≤ C|x2 − θ2t,T (ξ)|
β2
2 + C

∫ θ1t,T (ξ)

x1

|y1 − θ1t,T (ξ)|
α1

dy1,

≤ C|x2 − θ2t,T (ξ)|
β2
2 + C|(x1 − θ1t,T (ξ))|

1+α1

.

We will often use this property.

4.2.2 The Parametrix

Remember we are interested in:

∂ui
∂t

(t, x1, x2) + Lui(t, x1, x2) = φi(t, x1, x2), i = 1, 2. (4.15)

The operator (L̃t,ξ1,ξ2
s )t≤s≤T associated to the Gaussian process (X̃1

s , X̃
2
s , t ≤ s ≤ T ) in (4.10)

writes:

L̃t,ξ1,ξ2
s :=

1

2
Tr
[

a(t, θt,s(ξ))D
2
x2
1

]

+ [F1(t, θt,s(ξ))] ·Dx1

+
[
F2(t, θt,s(ξ)) +Dx1

F2(t, θt,s(ξ))
(
x1 − θ1t,s(ξ)

)]
·Dx2

. (4.16)

The fundamental solution is q̃. We rewrite the systems of PDEs (4.15) as:

∂ui
∂t

(t, x1, x2) + L̃t,ξui(t, x1, x2) = (L̃t,ξui(t, x1, x2)− Lui(t, x1, x2)) + φi(t, x1, x2), i = 1, 2,

The solution is given by, for i = 1, 2:
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ui(t, x1, x2) =
∫ T

t

∫

R2d

φi(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

1

2
Tr
[

a(s, θ1t,s(ξ), θ
2
t,s(ξ)))− a(s, y1, y2)D

2
x2
1

ui(s, y1, y2)
]

q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ)))− F1(s, y1, y2)

]
·Dx1

ui(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

:= H1
i (t, x1, x2) +H2

i (t, x1, x2) +H3
i (t, x1, x2) +H4

i (t, x1, x2). (4.17)

4.3 The frozen system

Proposition 4.8. There exists a Gaussian type function q̂c defined by:

q̂c(t, x1, x2;T, y1, y2) =
c

(T − t)2d

× exp

(

−c−1
∣
∣
∣T

−1
t,T (y1 −m1,ξ

t,T (x), y2 −m2,ξ
t,T (x))

∗

∣
∣
∣

2
)

,

where c is a positive constant depending only on known parameters in H1, and where T
−1
t,T is

the 2d× 2d scaling matrix given by (3.8), such that:

q̃(t, x1, x2;T, y1, y2) ≤ q̂c(t, x1, x2;T, y1, y2),

and:

∣
∣
∣DNt

t DNx1

x1
DNx2

x2
DNy1

y1 q̃(t, x1, x2; s, y1, y2)
∣
∣
∣ ≤ C(s− t)−[3(Nx2+Nt)+Nx1+Ny1 ]/2q̂c(t, x1, x2; s, y1, y2),

(4.18)
for any N t, Nx1, Nx2 , Ny1 in N.

Proof. We know from H1, arguments of Section 3 (controllability of (4.11)) and previous dis-
cussion, that the matrix Σ̃t,T is symmetric and uniformly non degenerate. By definition (4.13),
on deduces that there exists a constant C depending only on known parameters in H1 such
that:

∀ζ ∈ R
2d, −

[

Σ̃−1
t,T ζ
]

· ζ ≤ −C
[
K−1

T−tζ
]
· ζ,

where K−1
T−t is defined by (3.6). Then, from Lemma 3.1 in Section 3:

∀ζ ∈ R
2d, −

[

Σ̃−1
t,T ζ
]

· ζ ≤ −C
[
T
−1
t,T ζ
]
·
[
T
−1
t,T ζ
]
.

So: ∀(t, x, y, ξ) ∈ [0, T ]× R
2d × R

2d × R
2d,
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−
[

Σ̃−1
t,T (y1 −m1,ξ

t,T (x)), y2 −m2,ξ
t,T (x))

∗
]

·
[

(y1 −m1,ξ
t,T (x), y2 −m2,ξ

t,T (x))
∗
]

≤ −C
[

T
−1
T−t(y1 −m1,ξ

t,T (x), y2 −m2,ξ
t,T (x))

∗

]

·
[

T
−1
T−t(y1 −m1,ξ

t,T (x), y2 −m2,ξ
t,T (x))

∗

]

.

For i, j = 1, 2, let [Σ̃−1
t,s ]i,j denote the block of size d× d of the matrix Σ̃−1

t,s at the (i− 1)d+

1, (j − 1)d+ 1 rank. Then, it follows from the definition (4.13) of Σ̃ that for all s in (t, T ], for
all ζ in R

d: ∣
∣
∣[Σ̃−1

t,s ]j,jζ
∣
∣
∣ ≤ C(s− t)−j+1/2

∣
∣[T−1

s−t]jζ
∣
∣ ,

∣
∣
∣[Σ̃−1

t,s ]i,jζ
∣
∣
∣ ≤ C(s− t)−min(i,j)+1/2

∣
∣[T−1

s−t]max(i,j)ζ
∣
∣ ,

∣
∣
∣[Σ̃−1

t,s ]i,jζ
∣
∣
∣ ≤ C(s− t)−max(i,j)+1/2

∣
∣[T−1

s−t]min(i,j)ζ
∣
∣ ,

(4.19)

where [T−1
s−t]j stands for [T

−1
s−t]j,j with the notation above. Compute now:

|Dx2
q̃(t, x1, x2; s, y1, y2)| = C

∣
∣
∣−2[Σ̃−1

t,s ]2,1(y1 −m1,ξ
t,s (x))− 2[Σ̃−1

t,s ]2,2(y2 −m2,ξ
t,s (x))

∣
∣
∣

×q̃(t, x1, x2; s, y1, y2)

≤ C(s− t)−3/2
{∣
∣
∣[T−1

s−t]1(y1 −m2,ξ
t,s (x))

∣
∣
∣+
∣
∣
∣[T−1

s−t]2(y2 −m2,ξ
t,s (x))

∣
∣
∣

}

×q̃(t, x1, x2; s, y1, y2)

≤ C(s− t)−3/2q̂c(t, x1, x2; s, y1, y2).

|Dy1 q̃(t, x1, x2; s, y1, y2)| = C
∣
∣
∣2[Σ̃−1

t,s ]1,1(y1 −m1,ξ
t,s (x)) + 2[Σ̃−1

t,s ]1,2(y2 −m2,ξ
t,s (x))

∣
∣
∣

×q̃(t, x1, x2; s, y1, y2)

≤ C(s− t)−1/2q̂c(t, x1, x2; s, y1, y2).

|Dx1
q̃(t, x1, x2; s, y1, y2)|

=
∣
∣
∣−2[Σ̃−1

t,s ]1,1(y1 −m1,ξ
t,s (x))− 2[Σ̃−1

t,s ]1,2(y2 −m2,ξ
t,s (x))

−2[Σ̃−1
t,s ]1,2

[

(Rt,s(ξ)) (y1 −m1,ξ
t,s (x))

]

− 2[Σ̃−1
t,s ]2,2

[

(Rt,s(ξ)) (y2 −m2,ξ
t,s (x))

]∣
∣
∣

×q̃(t, x1, x2; s, y1, y2)

≤ C(s− t)−1/2
{∣
∣
∣[T−1

s−t]1(y1 −m1,ξ
t,s (x))

∣
∣
∣+
∣
∣
∣[T−1

s−t]2(y2 −m2,ξ
t,s (x))

∣
∣
∣

+C(s− t)
(

(s− t)−3/2
∣
∣
∣[T−1

s−t]1(y1 −m1,ξ
t,s (x))

∣
∣
∣+ (s− t)−3/2

∣
∣
∣[T−1

s−t]2(y2 −m2,ξ
t,s (x))

∣
∣
∣

)}

×q̃(t, x1, x2; s, y1, y2)

≤ C(s− t)−1/2q̂c(t, x1, x2; s, y1, y2).
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Note that, from the definition (4.12) of mξ
t,s(x), one has:

For i, j = 1, 2,
∣
∣
∣Dxi

mj,ξ
t,s(x)

∣
∣
∣ ≤ C

∣
∣(s− t)min(i,j)−11i≥jId

∣
∣ . (4.20)

Then, combining with the estimate above,

|D2
x2
1

q̃(t, x1, x2; s, y1, y2)|

≤
∣
∣
∣−2[Σ̃−1

t,s ]1,1Dx1
m1,ξ

t,s (x))− 2[Σ̃−1
t,s ]1,2Dx1

m2,ξ
t,s (x)

−2[Σ̃−1
t,s ]1,2

[

(Rt,s(ξ))Dx1
m1,ξ

t,s (x)
]

− 2[Σ̃−1
t,s ]2,2

[

(Rt,s(ξ))Dx1
m2,ξ

t,s (x)
]∣
∣
∣

×q̃(t, x1, x2; s, y1, y2)

+
∣
∣
∣−2[Σ̃−1

t,s ]1,1(y1 −m1,ξ
t,s (x))− 2[Σ̃−1

t,s ]1,2(y2 −m2,ξ
t,s (x))

−2[Σ̃−1
t,s ]1,2

[

(Rt,s(ξ)) (y1 −m1,ξ
t,s (x))

]

− 2[Σ̃−1
t,s ]2,2

[

(Rt,s(ξ)) (y2 −m2,ξ
t,s (x))

]∣
∣
∣

× |Dx1
q̃(t, x1, x2; s, y1, y2)|

≤ C(s− t)−1q̂c(t, x1, x2; s, y1, y2).

Since q̃ satisfies the Fokker-Planck equation [∂/∂t]q̃(t, x, T, y)+L̃
t,ξq̃(t, x, T, y) = 0, q̃(T, x, T, y) =

δy(x), x, y ∈ R
2d, one deduces from the previous estimates:

∣
∣
∣
∣

∂

∂t
q̃(t, x1, x2; s, y1, y2)

∣
∣
∣
∣
≤ C(s− t)−3/2q̂c(t, x1, x2; s, y1, y2).

The other derivatives can be deduced from the computations above and (4.20). The estimate
(4.18) follows.

We emphasize that the frozen density transition q̃ satisfies:

Remark 2. For all smooth function f from [0, T ]× R
2d to R, for all z2 in R

d:

∂

∂x2l

[∫ T

t

∫

R2d

f(t, y1, z2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

]

= 0, ∀l = 1, · · · , d. (4.21)

Also, note that the marginal law of X̃2 involves the initial condition of X̃1.

4.4 From parametrix to uniform Lipschitz estimates

In the following, we denote by C(T ) a constant, depending only on known parameters in H1
and T , that tends to 0 with T . This constant may change from line to line or from one equa-
tion to another. We give here the strategy for obtaining Lipschitz bounds on ui, = 1, 2 and
its derivative, depending only on known parameters in H1. That is, the estimates (4.2) in
Proposition 4.1. We refer the reader to Section 5 below for the detailed proof.

Before running into the strategy of the proof, let us observe that the representation (4.17)
is differentiable w.r.t. the space variable, uniformly in the freezing point ξ, and that Lebesgue
differentiation Theorem applies. So that, the derivatives of the solutions ui, i = 1, 2 are the
time-space convolution of the perturbed kernel (L̃ − L)u with the derivatives of q̃. As we
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show in Proposition 4.8, the differentiation of this function generates a time singularity which
is not always integrable. The main idea to restore integrability consists in “smoothing” this
singularity. This can be done by using the regularity of the coefficients and the exponential
decay of q̃. Let us illustrate this argument by computing the second order derivative over x1 of
the integrand of H3

i defined by (4.17):

∣
∣
∣D2

x2
1

integrand[· · · ]
∣
∣
∣

≤ C(s− t)−1 |F1(s, y)− F1(s, θt,s(ξ)| ‖Dx1
ui‖∞ q̂c(t, x; s, y)

≤ C ‖Dx1
ui‖∞







(s− t)(−1+β1
1
)/2

|y1 − θ1t,s(ξ)|
β1
1

(s− t)β
1
1
/2

︸ ︷︷ ︸

(a)

+(s− t)(−1+3β2
1
)/2

|y2 − θ2t,s(ξ)|
β2
1

(s− t)3β
2
1
/2

︸ ︷︷ ︸

(b)







q̂c(t, x; s, y).

The inequality above holds for all ξ in R
2d. By letting ξ = x, we know that the freezing curve

matches the mean of the Gaussian process: ∀s ∈ [t, T ], ∀x ∈ R
2d: θt,s(x) = mx

t,s(x). Then
the terms (a) and (b) are compensated by the exponential decay in q̂c (see Proposition 4.8 and
Section 3), and this term is integrable. This is how the regularity of the coefficients counter-
balances the singularity generated by the differentiation of the frozen kernel. We emphasize
that the control depends only on known parameters in H1 and on the supremum norm of the
derivative of the solution. Moreover, it is small as T is small. In the following, this observation
is crucial.

The representation (4.17) of each ui, i = 1, 2, involves the derivatives of the solution itself.
In order to obtain the Lipschitz bounds, one has to estimate each derivative that appears in
(4.17) and use a circular argument. In the following, ui denotes the i

th component of the solu-
tion u = (u1, u2)

∗ of the linear systems of PDE (4.1). The steps of the proof that are described
below hold for i = 1, 2.

(i) Bound on Dx1
ui and D

2
x2
1

ui: In these cases, the regularity of the coefficients allows to

compensate the singularity generated by the differentiation of q̃. By using a circular argument,
we obtain in Section 5.1 an estimate of the supremum norm of Dx1

ui and D
2
x2
1

ui in terms of the

supremum norm of Dx2
ui:

∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

≤ C(T ) (1 + ‖Dx2
ui‖∞) , (4.22)

‖Dx1
ui‖∞ ≤ C(T ) (1 + ‖Dx2

ui‖∞) . (4.23)

(ii) Bound on Dx2
ui: In that case, the singularity induced by the differentiation the frozen

kernel is of order 3/2 (see Proposition 4.8). The first way for smoothing this singularity consists
in using the regularity of the coefficients fromH1. Nevertheless, the regularity of the coefficients
“F1” and “a” do not settle the problem, indeed:

(s−t)−3/2 |F1(s, y)− F1(s, θt,s(ξ)| ≤ C(s−t)−(3−β1
1
)
|y1 − θ1t,s(ξ)|

β2
1
/2

(s− t)β
1
1
/2

+C(s−t)−3(1−β2
1
)
|y2 − θ2t,s(ξ)|

β2
1
/2

(s− t)3β
2
1
/2

.
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Because of the specific choice of β2
1 , the second term in the right hand side is integrable. But

the first term is not integrable. A way for overcoming this difficulty consists in using the a
priori regularity of the solution. This can be done by centering the term as:

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, y2)

]
·Dx1

ui(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

=

∫ T

t

∫

R2d

[
F1(s, y1, θ

2
t,s(ξ)))− F1(s, y1, y2)

]
·Dx1

ui(s, y1, y2)

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, θ

2
t,s(ξ))

]
· [Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θt,s(ξ))]

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, θ

2
t,s(ξ))

]
·Dx1

ui(s, y1, θt,s(ξ))

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

By differentiating w.r.t x2, the last term in the right hand side is equal to 0 (see Remark 2).
Having in mind that the cross derivative of D2

x1x2
ui is bounded, we use the Lipschitz regularity

of Dx1
ui w.r.t the degenerate component. This allows to smooth the singularity: by the Mean

Value Theorem:

(s− t)−3/2 |Dx1
ui(s, y1, y2)−Dx1

ui(s, y1, θt,s(ξ))| ≤
∥
∥D2

x1x2
ui
∥
∥
∞

|y2 − θ2t,s(ξ)|

(s− t)3/2
,

which is compensated by the exponential decay of the Gaussian transition density when ξ = x.
The argument does not work with the diffusive term H2

i in (4.17). Because the derivative of the
solution that appears in this term is D2

x2
1

ui. The idea is to use an integration by parts argument,

in order to recover the same framework as H3
i . Then, by using the centering argument described

above, one can differentiate the “centered” version of H2
i w.r.t x2 and get ride of the singularity.

Same type of argument as in (i) allows to control the derivative of the termH4
i . Then, we deduce

in Section 5.2 a bound on the supremum norm of Dx2
ui depending only on T and on supremum

norms of Dx1
ui, D

2
x2
1

ui, D
2
x1x2

ui. By a circular argument and (i) (the constants behind the

estimates are small as T is small), one has:

‖Dx2
ui‖∞ ≤ C(T )

(
1 +

∥
∥D2

x1x2
ui
∥
∥
∞

)
. (4.24)

(iii) Bound on D2
x1x2

ui: In order to conclude the circular argument, it remains to bound the
supremum norm of D2

x1x2
ui. Proposition 4.8 shows that the singularity that follows from the

cross differentiation of q̃ w.r.t x1 and x2 is of order 2. We emphasize that the procedure describe
in (ii) allows to estimate the terms D2

x1x2
H1

i , D
2
x1x2

H2
i , D

2
x1x2

H3
i but not D2

x1x2
H4

i . Indeed, the
derivative of ui that appears in this term is Dx2

ui and we can not use the same argument as
in (ii), since we were not able to estimate D2

x2
2

ui. Then, we investigate the Hölder-regularity of

Dx2
ui w.r.t x2. In Section 5.3, we obtain the following estimate: for all t in [0, T ] and x1 in R

d,
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∀(x2, z2) ∈ R
2d |Dx2

ui(t, x1, x2) − Dx2
ui(t, x1, z2)|

≤ C(T )
(

1 +
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

)

|x2 − z2|
γ/3,

for any γ < 1. Then, by differentiating w.r.t x1 and x2 the centering versions of (4.17), we
deduce in Section 5.4 the following bound:

∥
∥D2

x1x2
ui
∥
∥
∞

≤ C(T ). (4.25)

(iv) Summarizing estimates (4.22) and (4.23), and combining with (4.24) and (4.25), this
completes the proof of the circular argument and gives the required uniform bounds for Propo-
sition 4.1.

5 Boundedness and regularity of the solution in small time: proof

This part is devoted to the investigation of the regularity of the solution and its derivatives
given by Proposition 4.1. We recall that these estimates are obtained under the regularization
procedure, but only depend on T and on known parameters in H1.

5.1 Supremum norms of D2
x2
1

u and Dx1
u in terms of Dx2

u:

We can give the following bound:

Proposition 5.1. Let u = (u1, u2)
∗ be the solution of (4.1) defined by (4.17). Then, for T

small enough, there exist two positive reals δ5.1 and δ̄5.1 and a constant C depending only on
known parameter in H1 such that:

∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

≤ T
δ5.1C (1 + ‖Dx2

ui‖∞) ,

and
‖Dx1

ui‖∞ ≤ T
δ̄5.1C (1 + ‖Dx2

ui‖∞) ,

for i = 1, 2.

Proof. We have the following Lemma:

Lemma 5.2. Under our assumption, it holds:
∥
∥
∥D2

x2

1

ui

∥
∥
∥
∞

≤ C
{(

T 3β2
2
/2 + T (1+α1)/2

)

‖Dx2
ui‖∞

+
(

T β1
1
/2 + T 3β2

1
/2
)

‖Dx1
ui‖∞ + T β1

i /2 + T 3β2

i /2
}

‖Dx1
ui‖∞ ≤ C

{(

T 1/2+3β2
2
/2 + T (3+α1)/2

)

‖Dx2
ui‖∞

+
(
T + T 2

)
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞
+ T (1+β1

i )/2 + T (1+3β2

i )/2
}

,

for i = 1, 2 and where C is a positive constant depending only on known parameters in H1.
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From Lemma 5.2, we easily deduce a bound for the supremum norms of D2
x2
1

ui and Dx1
ui

only depending on known parameters in H1 and on the supremum norm of Dx2
ui . Such a

bound is small as T is small enough.

Proof of Lemma 5.2: Let i ∈ {1, 2}. From the representation (4.17), one has:

[

D2
x2
1

ui(t, x1, x2)
]

(x1,x2)=(ξ1,ξ2)
(5.1)

=

∫ T

t

∫

R2d

φi(s, y1, y2)
[

D2
x2
1

q̃(t, x1, x2; s, y1, y2)
]

(x1,x2)=(ξ1,ξ2)
dy1dy2ds (5.2)

+
1

2

∫ T

t

∫

R2d

Tr
[(
a(s, θ1t,s(ξ), θ

2
t,s(ξ))− a(s, y1, y2)

)
D2

x2
1

ui(s, y1, y2)
]

×
[

D2
x2
1

q̃(t, x1, x2; s, y1, y2)
]

(x1,x2)=(ξ1,ξ2)
dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, y2)

]
·D2

x2
1

ui(s, y1, y2)

×
[

D2
x2
1

q̃(t, x1, x2; s, y1, y2)
]

(x1,x2)=(ξ1,ξ2)
dy1dy2ds

+

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)

[

D2
x2
1

q̃(t, x1, x2; s, y1, y2)
]

(x1,x2)=(ξ1,ξ2)
dy1dy2ds.

From Remark 2, one can center the term (5.2) as follows:

[

D2
x2
1

∫ T

t

∫

R2d

φi(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds

]

(x1,x2)=(ξ1,ξ2)

=

[

D2
x2

1

∫ T

t

∫

R2d

(
φi(s, y1, y2)− φi(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

)
q̃(t, x1, x2; s, y1, y2)dy1dy2ds

]

(x1,x2)=(ξ1,ξ2)

+

[

D2
x2
1

∫ T

t

∫

R2d

φi(s, θ
1
t,s(ξ), θ

2
t,s(ξ))q̃(t, x1, x2; s, y1, y2)dy1dy2ds

]

(x1,x2)=(ξ1,ξ2)

=

[

D2
x2
1

∫ T

t

∫

R2d

(
φi(s, y1, y2)− φi(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

)
q̃(t, x1, x2; s, y1, y2)dy1dy2ds

]

(x1,x2)=(ξ1,ξ2)

=

∫ T

t

∫

R2d

(
φi(s, y1, y2)− φi(s, θ

1
t,s(ξ), θ

2
t,s(ξ))

)

×
[

D2
x2
1

q̃(t, x1, x2; s, y1, y2)
]

(x1,x2)=(ξ1,ξ2)
dy1dy2ds. (5.3)

Plugging (5.3) into (5.1), using Proposition 4.8, Lemma 4.7 and regularity of the coefficients
(hypothesis H1), we get:



5.1 Supremum norms of D2
x2
1

u and Dx1
u in terms of Dx2

u: 25

∣
∣
∣
∣

[

D2
x2
1

ui(t, x1, x2)
]

(x1,x2)=(ξ1,ξ2)

∣
∣
∣
∣

≤ C

∫ T

t

(s− t)−1

∫

R2d

2∑

j=1

(s− t)(j−1/2)βj
i

∣
∣[T−1

s−t]j(yj − θjt,s(ξ))
∣
∣
βj
i q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2ds.

+C

∫ T

t

[

(s− t)−1
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

×

∫

R2d

2∑

j=1

(s− t)(j−1/2)
∣
∣[T−1

s−t]j(yj − θjt,s(ξ))
∣
∣ q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2

]

ds

+C

∫ T

t

[

(s− t)−1 ‖Dx1
ui‖∞

×

∫

R2d

2∑

j=1

(s− t)(j−1/2)βj
1

∣
∣[T−1

s−t]j(yj − θjt,s(ξ))
∣
∣
βj
1 q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2

]

ds

+C

∫ T

t

[

(s− t)−1 ‖Dx2
ui‖∞

×

∫

R2d

(s− t)3β
2
2
/2
∣
∣[T−1

s−t]2(y2 − θ2t,s(ξ))
∣
∣
β2
2 + (s− t)(1+α1)/2

∣
∣[T−1

s−t]1(y1 − θ1t,s(ξ))
∣
∣
1+α1

×q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2

]

ds.

So that, by integrating w.r.t the space variables:

∣
∣
∣
∣

[

D2
x2
1

ui(t, x1, x2)
]

(x1,x2)=(ξ1,ξ2)

∣
∣
∣
∣

≤ C

∫ T

t

2∑

j=1

(s− t)−1+(j−1/2)βj
i ds+ C

∫ T

t

(
(s− t)−1/2 + (s− t)1/2

)
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞
ds

+C

∫ T

t

2∑

j=1

(s− t)(j−1/2)βj
2
−1 ‖Dx1

ui‖∞ ds

+C

∫ T

t

(

(s− t)−1+3β2
1
/2 + (s− t)(α

1−1)/2
)

‖Dx2
ui‖∞ ds.

Finally, we obtain:

∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

≤ C

{(

T 3β2
2
/2 + T (1+α1)/2

)

‖Dx2
ui‖∞

+
(

T β1
1
/2 + T 3β2

1
/2
)

‖Dx1
ui‖∞

+
(
T 1/2 + T 3/2

)
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞
+ T β1

i /2 + T 3β2

i /2

}

,
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and the result follows for T small enough. The proof of the second statement of Lemma 5.2
can be done by the same arguments.

5.2 Supremum norm of Dx2
u in term of supremum norm of D2

x1x2
u:

Proposition 5.3. Let u = (u1, u2)
∗ be the solution of (4.1) defined by (4.17). Then, there exist

a real δ5.3 > 0 and a constant C depending only on known parameters in H1, such that, for T
small enough:

‖Dx2
ui‖∞ ≤ CT

δ5.3
(
1 +

∥
∥D2

x1x2
ui
∥
∥
∞

)
,

for i = 1, 2.

Before proving this result, we first give the following:

Lemma 5.4. Let u = (u1, u2)
∗ be the solution of (4.1) defined by (4.17). Then,

[Dx2
ui(t, x1, x2)]

= Dx2
H1

i (t, x1, x2) +Dx2
H2

i (t, x1, x2) +Dx2
H3

i (t, x1, x2) +Dx2
H4

i (t, x1, x2),

for i = 1, 2 and where the (Hj
i )j=1,··· ,4 are defined by (4.17). Moreover, for all ξ ∈ R

2d, all
(t, x1, x2) ∈ [0, T ]× R

2d one can write:

Dx2
H1

i (t, x1, x2)

=

∫ T

t

∫

R2d

(
φi(s, y1, y2)− φi(s, y1, θ

2
t,s(ξ))

)
[Dx2

q̃(t, x1, x2; s, y1, y2)] dy1dy2ds. (5.4)

Dx2
H2

i (t, x1, x2) (5.5)

=
1

2

∫ T

t

∫

R2d

Tr
[(
a(s, y1, θ

2
t,s(ξ))− a(s, y1, y2)

)
D2

x2
1

ui(s, y1, y2)
]

× [Dx2
q̃(t, x1, x2; s, y1, y2)](x1,x2)=(ξ1,ξ2)

dy1dy2ds

−
1

2

d∑

l=1

∫ T

t

∫

R2d

[
∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

. [Dx1
ui(s, y1, y2)−Dx1

ui(s, y1, θt,s(ξ))]

× [Dx2
q̃(t, x1, x2; s, y1, y2)] dy1dy2ds

+
1

2

d∑

l=1

∫ T

t

∫

R2d

[
al.(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− al.(s, y1, θ

2
t,s(ξ))

]

·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]
[

Dx2

(
∂

∂y1l
q̃(t, x1, x2; s, y1, y2)

)]

dy1dy2ds,

where al. denotes the l
th line of the matrix a.
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Dx2
H3

i (t, x1, x2) (5.6)

=

∫ T

t

∫

R2d

[
F1(s, y1, θ

2
t,s(ξ))− F1(s, y1, y2)

]
·Dx1

ui(s, y1, y2)

×Dx2
q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, θ

2
t,s(ξ))

]
·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

×Dx2
q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

Proof. Let i ∈ {1, 2}. The H1
i case: from (4.17) we know that, for all ξ ∈ R

2d, all (t, x1, x2) ∈
[0, T ]× R

2d:

H1
i (t, x1, x2) =

∫ T

t

∫

R2d

φi(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds,

so that,

Dx2
H1

i (t, x1, x2)

=

∫ T

t

∫

R2d

(
φi(s, y1, y2)− φi(s, y1, θ

2
t,s(ξ))

)
[Dx2

q̃(t, x1, x2; s, y1, y2)] dy1dy2ds

+

∫ T

t

Dx2

[∫

R2d

φi(s, y1, θ
2
t,s(ξ))q̃(t, x1, x2; s, y1, y2)dy1dy2

]

ds.

By differentiating w.r.t x2 and using Lemma (2), we get:

Dx2
H1

i (t, x1, x2)

=

∫ T

t

∫

R2d

(
φi(s, y1, y2)− φi(s, y1, θ

2
t,s(ξ))

)
[Dx2

q̃(t, x1, x2; s, y1, y2)] dy1dy2ds.

The H2
i case: here, we deal with the term H2

i by using “centering” and “integration by
parts” arguments as discussed in Subsection 4.4. Note that H2

i can be written as:

H2
i (t, x1, x2) =

∫ T

t

∫

R2d

1

2
Tr
[(
a(s, θ1t,s(ξ), θ

2
t,s(ξ))− a(s, y1, y2)

)
D2

x2
1

ui(s, y1, y2)
]

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds

=

∫ T

t

∫

R2d

1

2
Tr
[(
a(s, y1, θ

2
t,s(ξ))− a(s, y1, y2)

)
D2

x2
1

ui(s, y1, y2)
]

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds (5.7)

+

∫ T

t

∫

R2d

1

2
Tr
[(
a(s, θ1t,s(ξ), θ

2
t,s(ξ))− a(s, y1, θ

2
t,s(ξ))

)
D2

x2

1

ui(s, y1, y2)
]

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds. (5.8)

Now focus on the term (5.8): we know from H1 that the coefficient a is Lipschitz continuous,
so that, it is a.e differentiable. By an integration by parts argument we get:



285 BOUNDEDNESS AND REGULARITY OF THE SOLUTION IN SMALL TIME: PROOF

∫ T

t

∫

R2d

1

2
Tr
[(
a(s, θ1t,s(ξ), θ

2
t,s(ξ))− a(s, y1, θ

2
t,s(ξ))

)
D2

x2
1

ui(s, y1, y2)
]

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds

= −
1

2

d∑

l=1

∫ T

t

∫

R2d

[
∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

·Dx1
ui(s, y1, y2)

×q̃(t, x1, x2, s, y1, y2)dy1dy2ds (5.9)

+
1

2

d∑

l=1

∫ T

t

∫

R2d

[
al.(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− al.(s, y1, θ

2
t,s(ξ))

]
·Dx1

ui(s, y1, y2)

×
∂

∂y1l
q̃(t, x1, x2, s, y1, y2)dy1dy2ds. (5.10)

The terms (5.9) and (5.10) can be centered (w.r.t the derivative Dx1
ui) as:

−
1

2

d∑

l=1

∫ T

t

∫

R2d

[
∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

×q̃(t, x1, x2, s, y1, y2)dy1dy2ds

+
1

2

d∑

l=1

∫ T

t

∫

R2d

[
al.(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− al.(s, y1, θ

2
t,s(ξ))

]
·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

×
∂

∂y1l
q̃(t, x1, x2, s, y1, y2)dy1dy2ds (5.11)

−
1

2

d∑

l=1

∫ T

t

∫

R2d

[
∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

·Dx1
ui(s, y1, θ

2
t,s(ξ))

×q̃(t, x1, x2, s, y1, y2)dy1dy2ds

+
1

2

d∑

l=1

∫ T

t

∫

R2d

[
al.(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− al.(s, y1, θ

2
t,s(ξ))

]
·Dx1

ui(s, y1, θ
2
t,s(ξ))

×
∂

∂y1l
q̃(t, x1, x2, s, y1, y2)dy1dy2ds.

The functions which appear in the two last terms of the equality above do not depend on the
variable “y2”. From Remark 2, by differentiating w.r.t x2, these terms are equal to 0. Then,
plugging (5.11) into the expression for H2

i and by differentiating w.r.t x2 we get:
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Dx2
H2

i (t, x1, x2)

=
1

2

∫ T

t

∫

R2d

Tr
[(
a(s, y1, θ

2
t,s(ξ))− a(s, y1, y2)

)
D2

x2
1

ui(s, y1, y2)
]

× [Dx2
q̃(t, x1, x2; s, y1, y2)] dy1dy2ds

−
1

2

d∑

l=1

∫ T

t

∫

R2d

[
∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

.
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

× [Dx2
q̃(t, x1, x2; s, y1, y2)] dy1dy2ds

+
1

2

d∑

l=1

∫ T

t

∫

R2d

[
al.(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− al.(s, y1, θ

2
t,s(ξ))

]

·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]
[

Dx2

(
∂

∂y1l
q̃(t, x1, x2; s, y1, y2)

)]

dy1dy2ds.

The H3
i case: note that H3

i can be written as:

H3
i (t, x1, x2)

=

∫ T

t

∫

R2d

[
F1(s, y1, θ

2
t,s(ξ))− F1(s, y1, y2)

]
·Dx1

ui(s, y1, y2)

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, θ

2
t,s(ξ))

]
·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, θ

2
t,s(ξ))

]
·Dx1

ui(s, y1, θ
2
t,s(ξ))

×q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

By differentiating w.r.t x2 and by Remark 2, one has:

Dx2
H3

i (t, x)

=

∫ T

t

∫

R2d

[
F1(s, y1, θ

2
t,s(ξ))− F1(s, y1, y2)

]
·Dx1

ui(s, y1, y2)

×Dx2
q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, θ

2
t,s(ξ))

]
·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

×Dx2
q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

Proof of Proposition 5.3. Let i ∈ {1, 2}. The H1
i case: from Lemma (5.4), one can

write:

Dx2
H1

i (t, x1, x2)

=

∫ T

t

∫

R2d

(
φi(s, y1, y2)− φi(s, y1, θ

2
t,s(ξ))

)
[Dx2

q̃(t, x1, x2; s, y1, y2)] dy1dy2ds.
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Then, using Proposition 4.8 we have:

∣
∣
∣

[
Dx2

H1
i (t, x)

]

(x1,x2)=(ξ1,ξ2)

∣
∣
∣ (5.12)

≤

∫ T

t

∫

R2d

C(s− t)3β
2
i /2
∣
∣[T−1

s−t]2(y2 − θ2t,s(ξ))
∣
∣β

2

i

×

∣
∣
∣
∣
[Dx2

q̃(t, x1, x2; s, y1, y2)](x1,x2)=(ξ1,ξ2)

∣
∣
∣
∣
dy1dy2ds

≤ C

∫ T

t

(s− t)−3/2(1−β2

i )ds.

And then,
∥
∥Dx2

H1
i

∥
∥
∞

≤ CT 1/2(3β2

i −1). (5.13)

The H2
i case: from Lemma (5.4), one can write:

Dx2
H2

i (t, x1, x2)

=
1

2

∫ T

t

∫

R2d

Tr
[(
a(s, y1, θ

2
t,s(ξ))− a(s, y1, y2)

)
D2

x2
1

ui(s, y1, y2)
]

× [Dx2
q̃(t, x1, x2; s, y1, y2)](x1,x2)=(ξ1,ξ2)

dy1dy2ds

−
1

2

d∑

l=1

∫ T

t

∫

R2d

[
∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

. [Dx1
ui(s, y1, y2)−Dx1

ui(s, y1, θt,s(ξ))]

× [Dx2
q̃(t, x1, x2; s, y1, y2)] dy1dy2ds

+
1

2

d∑

l=1

∫ T

t

∫

R2d

[
al.(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− al.(s, y1, θ

2
t,s(ξ))

]

·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]
[

Dx2

(
∂

∂y1l
q̃(t, x1, x2; s, y1, y2)

)]

dy1dy2ds.

Using Mean Value Theorem, we have:

|Dx1
ui(s, y1, y2)−Dx1

ui(s, y1, θt,s(ξ))| ≤
∥
∥D2

x1x2
ui
∥
∥
∞
|y2 − θ2t,s(ξ)|. (5.14)

Combining (5.14), Lipschitz regularity of a from H1 and Proposition 4.8, we obtain:

∣
∣
∣

[
Dx2

H2
i (t, x1, x2)

]

(x1,x2)=(ξ1,ξ2)

∣
∣
∣ (5.15)

≤ C
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

∫ T

t

∫

R2d

|[T−1
s−t]2(y2 − θ2t,s(ξ))|q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2ds

+C
∥
∥D2

x1x2
ui
∥
∥
∞

∫ T

t

∫

R2d

|[T−1
s−t]2(y2 − θ2t,s(ξ))|q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2ds

+C
∥
∥D2

x1x2
ui
∥
∥
∞

∫ T

t

∫

R2d

|[T−1
s−t]1(y1 − θ1t,s(ξ))||[T

−1
s−t]2(y2 − θ2t,s(ξ))|

×q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2ds.
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x1x2
u: 31

Then:

∥
∥Dx2

H2
i

∥
∥
∞

≤ CT
(∥
∥D2

x1x2
ui
∥
∥
∞
+
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

)

. (5.16)

The H3
i case: from Lemma (5.4), one can write:

Dx2
H3

i (t, x1, x2)

=

∫ T

t

∫

R2d

[
F1(s, y1, θ

2
t,s(ξ))− F1(s, y1, y2)

]
·Dx1

ui(s, y1, y2)

×Dx2
q̃(t, x1, x2; s, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, θ

2
t,s(ξ))

]
·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

×Dx2
q̃(t, x1, x2; s, y1, y2)dy1dy2ds.

From Proposition 4.8, ineq. (5.14) and H1 we get:

∣
∣
∣

[
Dx2

H3
i (t, x1, x2)

]

(x1,x2)=(ξ1,ξ2)

∣
∣
∣ (5.17)

≤ C‖Dx1
ui‖∞

∫ T

t

(s− t)−3/2(1−β2
1
)

∫

R2d

|[T−1
s−t]2(y2 − θ2t,s(ξ))|

×q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2ds

+C
∥
∥D2

x1x2
ui
∥
∥
∞

∫ T

t

(s− t)β
1
1
/2

∫

R2d

|[T−1
s−t]1(y1 − θ1t,s(ξ))|

β1
1

∣
∣[T−1

s−t]2(y2 − θ2t,s(ξ))
∣
∣

×q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2ds,

and we obtain the following bound:

∥
∥Dx2

H3
i

∥
∥
∞

≤ C
(

T (3β2
1
−1)/2 + T (β1

1
+2)/2

)∥
∥D2

x1x2
ui
∥
∥
∞
. (5.18)

The H4
i case: recall from (4.17) that:

H4
i (t, x1,2 )

=

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)q̃(t, x1, x2; s, y1, y2)dy1dy2ds,

by using Proposition 4.8, Lemma 4.7 and H1, we get:
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∣
∣
∣Dx2

[
H4

i (t, x1,2 )
]

(x1,x2)=(ξ1,ξ2)

∣
∣
∣

≤

∫ T

t

∫

R2d

∣
∣F2(s, y1, y2)− F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))−Dx1

F2(s, θ
1
t,s(ξ), θt,s(ξ))(y1 − θ1t,s)

∣
∣

× |Dx2
ui(s, y1, y2)| [Dx2

q̃(t, x1, x2; s, y1, y2)](x1,x2)=(ξ1,ξ2)
dy1dy2ds

≤ C ‖Dx2
ui‖∞

∫ T

t

∫

R2d

[

(s− t)−3/2(1−β2
2
)
∣
∣[T−1

s−t]2(y2 − θ2t,s(ξ))
∣
∣
β2
2

+(s− t)−(2−α1)/2
∣
∣[T−1

s−t]1(y1 − θ1t,s(ξ))
∣
∣
1+α1

]

q̂c(t, ξ1, ξ2; s, y1, y2)dy1dy2ds

≤ C
(

T (3β2

2
−1)/2 + T α1/2

)

‖Dx2
ui‖∞ .

So that:
∥
∥Dx2

H4
i

∥
∥
∞

≤ C
(

T (3β2
2
−1)/2 + T α1/2

)

‖Dx2
ui‖∞ . (5.19)

Combining (5.13), (5.16), (5.18), (5.19), Proposition 5.1, one can find a real δ5.3 > 0 such
that, for T small enough:

‖Dx2
ui‖∞ ≤ CT

δ5.3
(
1 +

∥
∥D2

x1x2
ui
∥
∥
∞

)
,

where C and δ5.3 only depend on known parameters in H1.

5.3 Hölder estimate of Dx2
u.

We have the following:

Proposition 5.5. Let u = (u1, u2)
∗ be the solution of (4.1) defined by (4.17). Then, there exist

a positive real δ5.5 and a positive constant C, depending only on known parameters in H1 such
that, for T small enough:

‖Dx2
ui‖C.,.,γ/3 ≤ C

(

T
δ5.5

∥
∥D2

x1x2
ui
∥
∥
∞
+ T (3β2

i −1−γ)/2
)

,

for i = 1, 2 and for any γ < 1, where ‖.‖C.,.,γ/3 denotes the Hölder norm of exponent γ/3 w.r.t
x2.

Before proving this Proposition, we give the following:

Lemma 5.6. Let H4
i , i = 1, 2 be the terms of (4.17). Then, for all (t, x1, x2) ∈ [0, T ] × R

2d
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and ξ ∈ R
2d,

Dx2
H4

i (t, x1, x2) (5.20)

=

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)Dx2

q̃(t, x1, x2; t, y1, y2)dy1dy2ds

=

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, θ

2
t,s(ξ))

]

·
[
Dx2

ui(s, y1, y2)−Dx2
ui(s, y1, θ

2
t,s(ξ))

]
Dx2

q̃(t, x1, x2; t, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F2(s, y1, θ

2
t,s(ξ))− F2(s, y1, y2)

]
·Dx2

ui(s, y1, y2)

×Dx2
q̃(t, x1, x2; t, y1, y2)dy1dy2ds,

for i = 1, 2. Moreover:

sup
(x1,x2)∈R2d

∣
∣Dx2

H4
i (t, x2, x2)

∣
∣ ≤ ‖Dx2

ui‖C.,.,γ/3

∫ T

t

(s− t)−(2+α1+γ)/2ds

+ ‖Dx2
ui‖∞

∫ T

t

(s− t)−3(1−β2
2
)/2ds, (5.21)

for i = 1, 2.

Proof. Let i ∈ {1, 2}. From (4.17), we can write:

H4
i (t, x1, x2)

=

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, y2)

]

·Dx2
ui(s, y1, y2)q̃(t, x1, x2; t, y1, y2)dy1dy2ds

=

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, θ

2
t,s(ξ))

]

·
[
Dx2

ui(s, y1, y2)−Dx2
ui(s, y1, θ

2
t,s(ξ))

]
q̃(t, x1, x2; t, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F2(s, y1, θ

2
t,s(ξ))− F2(s, y1, y2)

]
·Dx2

ui(s, y1, y2)q̃(t, x1, x2; t, y1, y2)dy1dy2ds

−

∫ T

t

∫

R2d

[
F2(s, y1, θ

2
t,s(ξ))− F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ))−Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))

]

·Dx2
ui(s, y1, θ

2
t,s(ξ))q̃(t, x1, x2; t, y1, y2)dy1dy2ds.

By differentiating w.r.t x2 and by using Remark 2, we obtain

Dx2
H4

i (t, x1, x2)

=

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, θ

2
t,s(ξ))

]

·
[
Dx2

ui(s, y1, y2)−Dx2
ui(s, y1, θ

2
t,s(ξ))

]
Dx2

q̃(t, x1, x2; t, y1, y2)dy1dy2ds

+

∫ T

t

∫

R2d

[
F2(s, y1, θ

2
t,s(ξ))− F2(s, y1, y2)

]
·Dx2

ui(s, y1, y2)

×Dx2
q̃(t, x1, x2; t, y1, y2)dy1dy2ds,
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and this conclude the proof of (5.20).

Finally, from (5.20) we have:

[
Dx2

H4
i (t, x2, x2)

]

(x1,x2)=(ξ1,ξ2)

=

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, θ

2
t,s(ξ))

]

·
[
Dx2

ui(s, y1, y2)−Dx2
ui(s, y1, θ

2
t,s(ξ))

]
[Dx2

q̃(t, x1, x2; t, y1, y2)](x1,x2)=(ξ1,ξ2)
dy1dy2ds

+

∫ T

t

∫

R2d

[
F2(s, y1, θ

2
t,s(ξ))− F2(s, y1, y2)

]
·Dx2

ui(s, y1, y2)

× [Dx2
q̃(t, x1, x2; t, y1, y2)](x1,x2)=(ξ1,ξ2)

dy1dy2ds,

by assumption H1, Proposition 4.8 and Lemma 4.7 we get:

∣
∣
∣

[
Dx2

H4
i (t, x2, x2)

]

(x1,x2)=(ξ1,ξ2)

∣
∣
∣

≤ ‖Dx2
ui‖C.,.,γ/3

∫ T

t

(s− t)−(2+α1+γ)/2

∫

R2d

∣
∣[T−1

s−t]1(y1 − θ1t,s(ξ))
∣
∣1+α1 ∣

∣[T−1
s−t]2(y2 − θ2t,s(ξ))

∣
∣γ/3

×q̂c(t, ξ1, ξ2; t, y1, y2)dy1dy2ds

+ ‖Dx2
ui‖∞

∫ T

t

(s− t)−3(1−β2
2
)/2

∫

R2d

∣
∣[T−1

s−t]2(y2 − θ2t,s(ξ))
∣
∣β

2
2 q̂c(t, ξ1, ξ2; t, y1, y2)dy1dy2ds.

Then,

sup
(x1,x2)∈R2d

∣
∣Dx2

H4
i (t, x2, x2)

∣
∣ ≤ ‖Dx2

ui‖C.,.,γ/3

∫ T

t

(s− t)−(2+α1+γ)/2ds

+ ‖Dx2
ui‖∞

∫ T

t

(s− t)−3(1−β2
2
)/2ds.

Proof of Proposition 5.5 Let i ∈ {1, 2}. For all (t, x1) in [0, T ]× R
d and (x2, z2) in R

2d,
one has:

|Dx2
ui(t, x1, x2)−Dx2

ui(t, x1, z2)| ≤

4∑

j=1

∣
∣
(
Dx2

Hj
i

)
(t, x1, x2)−

(
Dx2

Hj
i

)
(t, x1, z2)

∣
∣ , (5.22)

for i = 1, 2. We recall that the
(
Hj

i

)

j=1,··· ,4
depend on the freezing point of the process which

started from x1, x2 and x1, z2 at time t. Here, we choose the same freezing point “ξ” for the
two processes (with different initial conditions).

Suppose first that:

|x2 − z2| < (s− t)3/2. (5.23)



5.3 Hölder estimate of Dx2
u. 35

Using Mean Value Theorem we obtain:

|Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)|

≤ sup
ρ∈(0,1)

∣
∣
∣D2

x2
2

q̃(t, x1, x2 + ρ(x2 − z2); s, y1, y2)
∣
∣
∣ |x2 − z2| ,

and we know from Proposition 4.8 that:

sup
ρ∈(0,1)

∣
∣
∣D2

x2
2

q̃(t, x1, x2 + ρ(x2 − z2); s, y1, y2)
∣
∣
∣

≤ C(s− t)−3 sup
ρ∈(0,1)

q̂c̄(t, x1, x2 + ρ(x2 − z2); s, y1, y2),

where c̄ is a positive constant, so that:

|Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)|

≤ C(s− t)−3 sup
ρ∈(0,1)

q̂c̄(t, x1, x2 + ρ(x2 − z2); s, y1, y2) |x2 − z2| , (5.24)

for all t ∈ [0, T ] and s ∈ (t, T ] and ξ in R
2d. Note that one can deduce from (5.23) that:

sup
ρ∈(0,1)

q̂c̄(t, x1, x2 + ρ(x2 − z2); s, y1, y2) ≤ const. q̂c(t, x1, x2; s, y1, y2). (5.25)

Combining (5.24) and (5.25), one has:

|Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)|

≤ C(s− t)−3q̂c(t, x1, x2; s, y1, y2) |x2 − z2| ,

for all t ∈ [0, T ], s ∈ (t, T ] and ξ in R
2d. Rewrite: |x2 − z2| = |x2 − z2|

1−γ/3|x2 − z2|
γ/3 for any

0 < γ < 1. Using (5.23) we know that:

|x2 − z2| ≤ (s− t)3/2−γ/2|x2 − z2|
γ/3, (5.26)

and then:

|Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)|

≤ C(s− t)−(3+γ)/2q̂c(t, x1, x2; s, y1, y2)|x2 − z2|
γ/3, (5.27)

The H1
i case: from Lemma 5.4, one can write:

Dx2
H1

i (t, x1, x2)−Dx2
H1

i (t, x1, z2)

=

∫ T

t

∫

R2d

(
φi(s, y1, y2)− φi(s, y1, θ

2
t,s(ξ))

)
[Dx2

q̃(t, x1, x2; s, y1, y2)−Dx2
q̃(t, x1, z2; s, y1, y2)] dy1dy2ds,
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so that,

∣
∣Dx2

H1
i (t, x1, x2)−Dx2

H1
i (t, x1, z2)

∣
∣

≤

∫ T

t

∫

R2d

∣
∣φi(s, y1, y2)− φi(s, y1, θ

2
t,s(ξ))

∣
∣ |[Dx2

q̃(t, x1, x2; s, y1, y2)−Dx2
q̃(t, x1, z2; s, y1, y2)]| dy1dy2ds.

Using Proposition 4.8, assumption H1, eq. (5.27) and by letting ξ = x, we have:

∣
∣Dx2

H1
i (t, x1, x2)−Dx2

H1
i (t, x1, z2)

∣
∣

≤

[∫ T

t

∫

R2d

(s− t)−(3+γ−3β2

i )/2
∣
∣[T−1

s−t]2(y2 − θ2t,s(x))
∣
∣β

2

i q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

]

|x2 − z2|
γ/3.

Then,
∣
∣Dx2

H1
i (t, x1, x2)−Dx2

H1
i (t, x1, z2)

∣
∣ ≤ T (3β2

i −1−γ)/2|x2 − z2|
γ/3, (5.28)

for any γ < 1.

The H2
i case: from Lemma 5.4, one can write:

Dx2
H2

i (t, x1, x2)−Dx2
H2

i (t, x1, z2)

=
1

2

∫ T

t

∫

R2d

Tr
[(
a(s, y1, θ

2
t,s(ξ))− a(s, y1, y2)

)
D2

x2
1

ui(s, y1, y2)
]

× [Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)] dy1dy2ds

−
1

2

d∑

l=1

∫ T

t

∫

R2d

[
∂

∂y1l
al.(s, y1, θ

2
t,s(ξ))

]

.
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

× [Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)] dy1dy2ds

+
1

2

d∑

l=1

∫ T

t

∫

R2d

[
al.(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− al.(s, y1, θ

2
t,s(ξ))

]
·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

[

Dx2

(
∂

∂y1l
q̃(t, x1, x2; s, y1, y2)

)

−Dx2

(
∂

∂y1l
q̃(t, x1, z2; s, y1, y2)

)]

dy1dy2ds.

Using Proposition 4.8, assumption H1, eq. (5.27) and by letting ξ = x, we get:

∣
∣Dx2

H2
i (t, x1, x2)−Dx2

H2
i (t, x1, z2)

∣
∣

≤ C
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

[∫ T

t

(s− t)−γ/2

∫

R2d

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

]

|x2 − z2|
γ/3

+C
∥
∥D2

x1x2
ui
∥
∥
∞

[∫ T

t

(s− t)−γ/2

∫

R2d

q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

]

|x2 − z2|
γ/3,

and then:

∣
∣Dx2

H2
i (t, x1, x2)−Dx2

H2
i (t, x1, z2)

∣
∣ (5.29)

≤ CT 1−γ/2
(

‖D2
x2
1

ui‖∞ +
∥
∥D2

x1x2
ui
∥
∥
∞

)

|x2 − z2|
γ/3,
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for any γ < 1.

The H3
i case: from Lemma 5.4, one can write:

Dx2
H3

i (t, x1, x2)−Dx2
H3

i (t, x1, z2)

=

∫ T

t

∫

R2d

[
F1(s, y1, θ

2
t,s(ξ))− F1(s, y1, y2)

]
·Dx1

ui(s, y1, y2)

× [Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)] dy1dy2ds

+

∫ T

t

∫

R2d

[
F1(s, θ

1
t,s(ξ), θ

2
t,s(ξ))− F1(s, y1, θ

2
t,s(ξ))

]
·
[
Dx1

ui(s, y1, y2)−Dx1
ui(s, y1, θ

2
t,s(ξ))

]

× [Dx2
q̃(t, x1, x2; s, y1, y2)−Dx2

q̃(t, x1, z2; s, y1, y2)] dy1dy2ds.

Using Proposition 4.8, assumption H1, eq. (5.27) and by letting ξ = x, we get:

∣
∣Dx2

H3
i (t, x1, x2)−Dx2

H3
i (t, x1, z2)

∣
∣

≤ C‖Dx1
ui‖∞

[ ∫ T

t

∫

R2d

(s− t)−(3+γ−3β2
1
)/2
∣
∣[T−1

s−t]2(y2 − θ2t,s(x))
∣
∣
β2
1

×q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

]

|x2 − z2|
γ/3

+C‖D2
x1x2

ui‖∞

[ ∫ T

t

∫

R2d

(s− t)−(γ−β1
1
)/2
∣
∣[T−1

s−t]2(y2 − θ2t,s(x))
∣
∣
∣
∣[T−1

s−t]1(y1 − θ1t,s(x))
∣
∣β

1
1

×q̂c(t, x1, x2; s, y1, y2)dy1dy2ds

]

|x2 − z2|
γ/3,

and then:

∣
∣Dx2

H3
i (t, x1, x2)−Dx2

H3
i (t, x1, z2)

∣
∣ (5.30)

≤ C
(

T (−1+3β2
1
−γ)/2‖Dx1

ui‖∞ + T (2+β1
1
−γ)/2

∥
∥D2

x1x2
ui
∥
∥
∞

)

|x2 − z2|
γ/3,

for any γ < 1.

The H4
i case: from Lemma 5.6, one can write:

Dx2
H4

i (t, x1, x2)−Dx2
H4

i (t, x1, z2)

=

∫ T

t

∫

R2d

[
F2(s, θ

1
t,s(ξ), θ

2
t,s(ξ)) +Dx1

F2(s, θ
1
t,s(ξ), θ

2
t,s(ξ))(y1 − θ1t,s(ξ))− F2(s, y1, θ

2
t,s(ξ))

]

·
[
Dx2

ui(s, y1, y2)−Dx2
ui(s, y1, θ

2
t,s(ξ))

]

× [Dx2
q̃(t, x1, x2; t, y1, y2)−Dx2

q̃(t, x1, z2; t, y1, y2)] dy1dy2ds (5.31)

+

∫ T

t

∫

R2d

[
F2(s, y1, θ

2
t,s(ξ))− F2(s, y1, y2)

]
·Dx2

ui(s, y1, y2)

× [Dx2
q̃(t, x1, x2; t, y1, y2)−Dx2

q̃(t, x1, z2; t, y1, y2)] dy1dy2ds. (5.32)

By using (5.27), Proposition 4.8, Lemma 4.7, assumption H1 and by letting ξ = x, one gets:
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|(5.32)| ≤ C

∫ T

t

∫

R2d

[

(s− t)3(β
2
2
−1−γ/3)/2

∣
∣[T−1

s−t]2(y2 − θ2t,s(x))
∣
∣3β

2
2
/2

(5.33)

×‖Dx2
ui‖∞ q̂c(t, x1, x2; s, y1, y2) |y2 − z2|

γ/3

]

dy1dy2ds

≤ CT (−1+3β2
2
/2−γ)/2 ‖Dx2

ui‖∞ |y2 − z2|
γ/3 ,

and,

|(5.31)| ≤ C

∫ T

t

∫

R2d

(s− t)(α
1−2+γ)/2

∣
∣[T−1

s−t]1(y1 − θ1t,s(x))
∣
∣
1+α1

×
∣
∣[T−1

s−t]2(y2 − θ2t,s(x))
∣
∣
γ/3

‖Dx2
ui‖C.,.,γ/3 q̂c(t, x1, x2; s, y1, y2)dy1dy2ds(5.34)

≤ CT (α1+γ)/2 ‖Dx2
ui‖C.,.,γ/3 .

Summarizing these estimates, one deduces:

∣
∣Dx2

H4
i (t, x1, x2)−Dx2

H4
i (t, x1, z2)

∣
∣ (5.35)

≤ CT (−1+3β2
2
/2−γ)/2 ‖Dx2

ui‖∞ |y2 − z2|
γ/3 + T (α1+γ)/2 ‖Dx2

ui‖C.,.,γ/3 .

Consider now the case: |x2 − z2| ≥ (s− t)3/2. It implies that

1 ≤ (s− t)−γ/2 |x2 − z2|
γ/3 . (5.36)

From (5.22), one deduces:

|Dx2
ui(t, x1, x2)−Dx2

ui(t, x1, z2)| ≤ 2
4∑

j=1

sup
(ζ1,ζ2)∈R2d

∣
∣Dx2

Hj
i (t, ζ1, ζ2)

∣
∣ .

From inequality (5.12) in the proof of Proposition 5.3 in Subsection 5.2, we have:

sup
(ζ1,ζ2)∈R2d

∣
∣Dx2

H1
i (t, ζ1, ζ2)

∣
∣ ≤ C

∫ T

t

(s− t)−3(1−β2

i )/2ds,

so that, by (5.36),

sup
(ζ1,ζ2)∈R2d

∣
∣Dx2

H1
i (t, ζ1, ζ2)

∣
∣ ≤ C

∫ T

t

(s− t)−3(1+γ−β2

i )/2ds |x2 − z2|
γ/3

≤ CT (3β2

i −γ−1)/2 |x2 − z2|
γ/3 , (5.37)

for any γ < 1. From inequality (5.15) in the proof of Proposition 5.3 in Subsection 5.2, one
deduces:

sup
(ζ1,ζ2)∈R2d

∣
∣Dx2

H2
i (t, ζ1, ζ2)

∣
∣ ≤ C

(∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞
+
∥
∥D2

x1x2
ui
∥
∥
∞

)∫ T

t

(s− t)−γ/2ds |x2 − z2|
γ/3

≤ C
(∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞
+
∥
∥D2

x1x2
ui
∥
∥
∞
T 1−γ/2

)

|x2 − z2|
γ/3 , (5.38)
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for any γ < 1. From inequality (5.17) in the proof of Proposition 5.3 in Subsection 5.2, we get:

sup
(ζ1,ζ2)∈R2d

∣
∣Dx2

H3
i (t, ζ1, ζ2)

∣
∣

≤

(

C
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

∫ T

t

(s− t)−3/2(1−β2
1
+γ/3)ds+

∥
∥D2

x1x2
ui
∥
∥
∞

∫ T

t

(s− t)−(γ−β1
1
)/2ds

)

|x2 − z2|
γ/3

≤ C
(∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞
T (3β2

1
−1−γ)/2 +

∥
∥D2

x1x2
ui
∥
∥
∞

)

T (1+β1

1
−γ)/2 |x2 − z2|

γ/3 , (5.39)

for any γ < 1. Finally, from inequality (5.21) of Lemma 5.6, one immediately deduces:

sup
(ζ1,ζ2)∈R2d

∣
∣Dx2

H4
i (t, ζ1, ζ2)

∣
∣ ≤ C ‖Dx2

ui‖C.,.,γ/3 T
(α1+γ)/2ds (5.40)

+ ‖Dx2
ui‖∞

∫ T

t

(s− t)(3β
2
2
−1−γ)/2ds |x2 − z2|

γ/3 .

Combining (5.29), (5.30), (5.28), (5.35), (5.37), (5.38), (5.39), (5.40) with the estimates on
D2

x2
1

ui and Dx1
ui of Proposition 5.1 and the estimate on the supremum norm of Dx2

ui from

Proposition 5.3, this conclude the proof of Proposition 5.5.

5.4 Supremum norm of D2
x1x2

u in small time:

We have the following:

Proposition 5.7. Let u = (u1, u2)
∗ be the solution of (4.1) defined by (4.17). Then, there

exists a real δ̄4.1 > 0 such that, for T small enough, we have:

∥
∥D2

x1x2
ui
∥
∥
∞

≤ CT
δ̄4.1 ,

for i = 1, 2, and where C is a constant depending only on known parameters in H1.

Proof. We know from Proposition 4.8 that the time-singularity that follows from the cross dif-
ferentiation of q̃ w.r.t x1 and x2 is of order 2. Let i ∈ {1, 2}.

The Hj
i , j = 1, 2, 3 case: one can proceed with the terms H1

i , H
2
i and H3

i as for the proof of
Proposition 5.3 in Subsection 5.2: By using Lemma 5.4, and by differentiating again w.r.t x1,
this leads to the same type of inequalities as: (5.12), (5.15) and (5.17), where each integrand
in these inequalities is multiplied by (s− t)−1/2. We then get the following bounds:

∥
∥D2

x1x2
H1

i

∥
∥
∞

≤ CT 1/2(3β2

i −2) (5.41)
∥
∥D2

x1x2
H2

i

∥
∥
∞

≤ CT 1/2
(∥
∥D2

x1x2
ui
∥
∥
∞
+
∥
∥
∥D2

x2
1

ui

∥
∥
∥
∞

)

(5.42)

∥
∥D2

x1x2
H3

i

∥
∥
∞

≤ C
(

T (3β2
1
−2)/2 + T (β1

1
+1)/2

)∥
∥D2

x1x2
ui
∥
∥
∞
. (5.43)

The H4
i case: one can proceed as in the first part of the proof of Proposition 5.5 in Subsection

5.3. By using Lemma 5.6 and by differentiating w.r.t x1, we get the same type of inequalities
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as (5.33) and (5.34) , where each integrand in these inequalities is multiplied by (s − t)−1/2.
By integrating these terms w.r.t the space variables, and by taking the supremum in the right
hand side we finally obtain:

∥
∥D2

x1x2
H1

i

∥
∥
∞

≤ CT (α1+γ−1)/2 ‖Dx2
ui‖C.,.,γ/3 + CT (3β2

2
−2)/2 ‖Dx2

ui‖∞ . (5.44)

Combining (5.41), (5.42), (5.43) and (5.44), Proposition 5.3 and Proposition 5.5 , one can
find a real δ̄4.1 > 0 depending only on known parameters in H1 such that, for T small enough:

∥
∥D2

x1x2
ui
∥
∥
∞

≤ CT
δ̄4.1 .

This conclude the proof.
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