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GENERALIZED NAVIER-STOKES FLOWS

MARC ARNAUDON AND ANA BELA CRUZEIRO

Abstract. We introduce a notion of generalized Navier-Stokes flows on mani-

folds, that extends to the viscous case the one defined by Brenier. Their kinetic

energy extends the kinetic energy for classical Brownian flows, defined as the
L2 norm of their drift. We prove that there exists a generalized flow which

realizes the infimum of kinetic energies among all generalized flows with pre-

scribed initial and final configuration. Finally we construct generalized flows
with prescribed drift and kinetic energy smaller than the L2 norm of the drift.
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1. Introduction

Consider the Euler equations describing the velocity of incompressible non vis-
cous (perfect) fluids,

(1.1)
∂

∂t
u = −(u.∇)u−∇p, div u = 0.

The corresponding Lagrangian flows g(t), namely the integral curves for u, so-
lutions of d

dtg(t)(x) = u(t, g(t)(x)), g(0)(x) = x, can be characterized as geodesics
on the infinite dimensional ”manifold” of measure preserving diffeomorphisms of
the underlying configuration space (c.f. [2], [3]). In particular such solutions g(t)
minimize the following action functional, defined in the time interval [0, T ],

(1.2) S[g] =
1

2

∫ T

0

∫ ∣∣∣∣ ddtg(t)(x)

∣∣∣∣2 dx
and the corresponding Euler-Lagrange equations are precisely equations (1.1).

The work of Ebin and Marsden ([7]) showed that, given a final condition g(T )
with some suitable Sobolev regularity (and, in particular, smooth) lying in a small
corresponding neighborhood of the identity, existence and uniqueness of a local
minimal geodesic can be obtained. However, in general, there may be situations
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where such a geodesic is not defined (c.f.[13]). The main difficulty lies in that the
topology induced by the energy is not strong enough to deal with the regularity of
the maps.

In [4] Y. Brenier introduced the notion of generalized solutions for the minimal
action principle, in the spirit of the Monge-Kantarovich problem. These solutions
are probability measures defined on the set of Lagrangian trajectories. This weaker
variational approach allows to consider measure-preserving maps g(t) with possible
splitting and crossing during the evolution. He proved, in particular, that classical
solutions can be regarded as generalized solutions and that there exist generalized
solutions which do not correspond to classical flows.

In the viscous case, where the velocity obeys the Navier-Stokes system

(1.3)
∂

∂t
u = −(u.∇)u+ ν∆u−∇p, div u = 0

with a viscosity coefficient ν > 0, it is not so clear how to define a corresponding
variational principle. Following the initial ideas in [11] and [15] we have considered a
stochastic variational principle defined on stochastic Lagrangian flows. The classical
action is defined for these flows and we have characterized the stochastic processes
which are critical for the action as processes whose drift satisfies Navier-Stokes
equation (c.f. [5] for flows living on the flat torus and [1] for flows in a general
compact Riemannian manifold). The abovementionned difficulties encountered in
the Euler case to prove existence of critical paths remain in this setting.

So, in the spirit of Brenier’s work, we introduce and study here a concept of
generalized Lagrangian flows for the Navier-Stokes problem.

We mention that another approach to Lagrangian trajectories for the Navier-
Stokes equation as geodesics in a different geometric framework was considered in
[14]. There the approach is deterministic: what is deformed to pass from Euler to
Navier-Stokes is the geometry.

2. Stochastic generalized flows

Let (M,g) be a compact oriented Riemannian manifold of dimension d ≥ 2,
without boundary. Denote by ρ the Riemannian distance in M .

We shall write dx for integration with respect to the (normalized) volume mea-
sure on M .

Let a ∈ Γ(TM ⊗ TM) satisfying a(x, x) = g−1(x) for all x ∈ M . Assume there
exists a separable Hilbert space H and a C2 map σ ∈ Γ(Hom(H,TM) such that
a(x, y) = σ(x)σ∗(y) for all x, y ∈M . Assume furthermore that

(2.4) tr∇σ(·)σ(·) = 0 and ∀v ∈ H, divσ(v)(·) = 0.

Remark 2.1. Our main example concerns M = T = R/2πZ × R/2πZ the two
dimensional torus, H the Hilbert space of real-valued sequences indexed by Z2⊕Z2,
σ the map defined by

(2.5) σ((k1, k2) + (0, 0))(θ) =: A(k1,k2)(θ) = (k2,−k1) cos k · θ

and

(2.6) σ((0, 0) + (k1, k2))(θ) =: B(k1,k2)(θ) = (k2,−k1) sin k · θ.

In this situation it has been proved in [5] that condition (2.4) is fulfilled.
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Another example is given by any compact semi-simple Lie group G endowed with
the metric given by the opposite of the Killing form. Then one can take H = TeG
where e is the identity of G and for x ∈ G, σ(x) = TLx with Lx the left translation.

In the same spirit many examples can be constructed by projection on symmetric
spaces of compact type.

Let η a probability measure on M ×M with marginals equal to dx: in particular
it disintegrates as η(dx, dy) = dxηx(dy). Consider semimartingale flows g(t)(x)
on M , defined on time interval [0, T ] for some fixed T > 0, with the following
properties:

(1) g(0)(x) ≡ x and for all x ∈M , g(T )(x) has law ηx;
(2) g(·)(x) satisfies he Itô equation

(2.7) dg(t)(x) = σ(g(t)(x)) dWt + b(t, g(t)(x), ω) dt

where Wt is a cylindrical Brownian motion in H and (t, x, ω) 7→ b(t, x, ω) ∈
TxM is a time-dependent adapted drift with locally bounded variation in x
(in the sense of distributions). Recall that if P (g(x))t : TxM → Tg(t)(x)M
is the parallel transport along g(t)(x), then

dg(t)(x) = P (g(x))td

(∫ ·
0

P (g(x))−1s ◦ dg(s)(x)

)
t

;

(3) the kinetic energy of g

(2.8) E (g) :=
1

2
E

[∫
M

(∫ T

0

‖b(t, x, ·) dt‖2
)
dx

]
is finite.

(4) almost surely for all t ∈ [0, T ], div b(t, ·, ω) = 0. This together with (2.4)
implies that the flow is incompressible, i.e. for all t, ω a.s. for all f ∈ C(M),

(2.9)

∫
M

f(g(t)(x)(ω)) dx =

∫
M

f(x) dx.

Remark 2.2. In (2.7) we could have replaced Itô equation by Stratonovitch equa-
tion since tr∇σ(·)σ(·) = 0.

Definition 2.3. We denote by H = H2(σ, η, T ) the space of laws of such semi-
martingale flows.

Notice that H is a convex set.
When the viscosity parameter is zero, namely in the case where σ = 0 we can

consider ηx = δh(x) and this notion of semimartingale flow coincides with the one
of generalized flow introduced in [4].

It is not clear how to obtain the existence of critical points for our variational
principles within the space of measures H , which are measures supported on real
(semimartingale) flows g, with, in particular, g(0)(x) = x . Therefore the transports
will be considered. To a semimartingale flow g(t)(x) ∈H2(σ, η, T ) we can associate
a transport Θ, defined as a map which to two elements ϕ, φ ∈ L2(M) associates
the process

(2.10) Θt(ϕ, φ) =

∫
M

ϕ(x)φ(g(t)(x)) dx.
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In the sequel we always take ϕ, φ ∈ C∞(M). In this situation the process Θt is a
real valued semimartingale which satisfies

Θt(ϕ, φ) = (ϕ, φ)L2(M) +

∫ t

0

∑
i≥1

Θs(ϕ,div(φσi)) dW
i
s

+

∫ t

0

Θs(ϕ,div(φb(s, ·, ω)) ds+
1

2

∫ t

0

Θs(ϕ,∆φ) ds

(2.11)

where W i
t = 〈Wt, αi〉 and σi = σ(αi) for a fixed orthonormal basis (αi)i≥1 in H.

Clearly

(2.12) Θt(ϕ, φ) = (θϕ(t, ·), φ)L2(M)

where x 7→ θϕ(t, x)(ω) is the function M → R defined by

(2.13) θϕ(t, x) = ϕ
(
(g(t)(·)(ω))−1(x)

)
.

Notice that for A a Borelian set in M and ϕ = 1A we have θϕ(t, x) = 1g(t)(A)(x).
From equation (2.13) we immediately see that if h : R→ R is a smooth function

then

(2.14) θh◦ϕ = h ◦ θϕ.

We have ∫
M

θϕ(t, x) dx =

∫
M

ϕ(x) dx.(2.15)

Moreover, using the fact that for all x g(T )(x) has law ηx,

E [ΘT (ϕ, φ)] = E
[∫

M

ϕ(x)φ(g(T )(x)) dx

]
=

∫
M

ϕ(x)E [φ(g(T )(x))] dx

=

∫
M

ϕ(x)

(∫
M

φ(y) ηx(dy)

)
dx

=

∫
M×M

ϕ(x)φ(y)η(dx, dy).

(2.16)

Now if ϕ1, φ1, ϕ2, φ2 are smooth functions of M , the covariance of Θ(ϕ1, φ1) and
Θ(ϕ2, φ2) is given by

d [Θ(ϕ1, φ1),Θ(ϕ2, φ2)]t =
∑
i≥1

(Θt(ϕ1,div(φσi)) (Θt(ϕ2,div(φσi)) dt.(2.17)
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In particular

d [Θ(ϕ, φ),Θ(ϕ, φ)]t

=
∑
i≥1

(∫
M

θϕ(t, x) div(φσi)(x) dx

)2

dt

=
∑
i≥1

(∫
M

θϕ(t, x) 〈dφ, σi〉x dx
)2

dt since divσi = 0

≤
(∫

M

(θϕ(t, x))2dx

)∫
M

∑
i≥1

〈dφ, σi〉2x dx

 dt

=

(∫
M

(θϕ(t, x))2 dx

)(∫
M

‖ gradφ(x)‖2dx
)
dt since σ(x)σ∗(x) = h−1(x)

=

∫
M

(ϕ
(
g(t)(·)−1(x)

)2
dx ‖gradφ‖2L2(M) dt.

Since g(t)(·)−1 preserves the Lebesgue measure on M we obtain

(2.18) d [Θ(ϕ, φ),Θ(ϕ, φ)]t ≤ ‖ϕ‖
2
L2(M) ‖gradφ‖2L2(M) dt.

Notice that Θt is nonnegative, that is Θt(ϕ, φ) ≥ 0 whenever ϕ and φ are non-
negative functions.

Denote by DΘt(ϕ, φ) the time derivative of the drift of the semimartingale
Θt(ϕ, φ). It is given by

(2.19) DΘt(ϕ, φ) := Θt

(
ϕ,div(φb)(t, ·, ω) +

1

2
∆φ

)
.

Define

(2.20) Θ̃t(ϕ, φ) := Θt(ϕ, φ)− 1

2

∫ t

0

Θs(ϕ,∆φ) ds

and the kinetic energy of Θ as

E ′(Θ) =
1

2
sup

{
m∑
j=1

∑̀
k=1

E

∫ T

0

dt

(
DΘ̃t(ϕ

j , φk)
)2

Θt(ϕj , 1)

 , m, ` ≥ 1,

ϕj , φk ∈ C∞(M), ϕj ≥ 0,

m∑
j=1

ϕj = 1, φk s.t. ∀v ∈ TM,
∑̀
k=1

〈gradφk, v〉2 ≤ ‖v‖2
}
,

(2.21)

where DΘ̃t(ϕ
j , φk) denotes the time derivative of the drift of Θ̃t(ϕ

j , φk). Notice
that Θt(ϕ

j , 1) =
∫
M
ϕj(x)dx by (2.15).

We are ready to define generalized flows.

Definition 2.4. A generalized flow with diffusion coefficient σ and final config-
uration η is a bilinear map Θ which to ϕ, φ ∈ C∞(M) associates a continuous
semimartingale t 7→ Θt(ϕ, φ) with the following properties :

(1) for all ϕ, φ ∈ C∞(M),

(2.22) E [ΘT (ϕ, φ)] =

∫
M×M

ϕ(x)φ(y)η(dx, dy);
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(2) for all ϕ, φ ∈ C∞(M),

(2.23) Θt(ϕ, 1) ≡
∫
M

ϕ(x) dx and Θt(1, φ) ≡
∫
M

φ(x) dx a.s. for all t;

(3) for all ϕ1, φ1, ϕ2, φ2 ∈ C∞(M)

d [Θ(ϕ1, φ1),Θ(ϕ2, φ2)]t =
∑
i≥1

(Θt(ϕ1,div(φ1σi)) (Θt(ϕ2,div(φ2σi)) dt.(2.24)

(4) for all ϕ, φ ∈ C∞(M)

(2.25) d [Θ(ϕ, φ),Θ(ϕ, φ)]t ≤ ‖ϕ‖
2
L2(M) ‖gradφ‖2L2(M) dt.

(5) for all ϕ, φ ∈ C∞(M), the semimartingale Θ̃(ϕ, φ) as defined in (2.20) has

absolute continuous drift with time derivative DΘ̃(ϕ, φ), and the energy
E ′(Θ) of Θ as defined in (2.21) is finite. In particular

(2.26) E

[∫ T

0

dt(DΘ̃t(ϕ, φ))2

]
≤ 2E ′(Θ)‖ϕ‖2L2(M) ‖gradφ‖2L∞(M) .

(6) for all ϕ, φ ∈ C∞(M),

(2.27) Θ0(ϕ, φ) = (ϕ, φ)L2(M).

(7) Θ is nonnegative, that is for all nonnegative ϕ, φ ∈ C∞(M), Θ(ϕ, φ) is a
nonnegative process.

(8) for all ϕ, φ ∈ C∞(M), a.s. for all t ∈ [0, T ],

(2.28) |Θt(ϕ, φ)| ≤ ‖ϕ‖L2(M)‖φ‖L2(M).

Notice that (3) and (8) imply (4).

Definition 2.5. The kinetic energy E ′(Θ) of a generalized flow Θ is given by for-
mula (2.21). The set of laws of generalized flows with finite kinetic energy, diffusion
coefficient σ and final configuration η will be denoted by H ′ = H ′(σ, η, T ).

From the discussion above and equations (2.12), (2.13) to any semimartingale
flow we can associate a map Θ = Θg.

Proposition 2.6. We have

(2.29) E ′(Θg) = E (g).

As a consequence, the map g 7→ Θg yields a natural inclusion H (σ, η, T ) ⊂H ′(σ, η, T ).

Proof. We begin with the inequality E ′(Θg) ≤ E (g). For this it is sufficient to
prove that taking Θ = Θg,

(2.30)
1

2

m∑
j=1

∑̀
k=1

E

∫ T

0

dt

(
DΘ̃t(ϕ

j , φk)
)2

Θt(ϕj , 1)

 ≤ E (g)
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for all m, `, ϕj , φk as in the definition. But from (2.12) and (2.13),

m∑
j=1

∑̀
k=1

E

∫ T

0

dt

(
DΘ̃t(ϕ

j , φk)
)2

Θt(ϕj , 1)


=

m∑
j=1

∑̀
k=1

E

[∫ T

0

dt
1

Θt(ϕj , 1)

(∫
M

θϕ
j

(t, x) div(φkb(t, ·, ω))(x)dx

)2
]

≤
m∑
j=1

∑̀
k=1

E

[∫ T

0

dt

∫
M

θϕ
j

(t, x)
(
div(φkb(t, ·, ω))(x)

)2
dx

]

≤
∫ T

0

E

∫
M

m∑
j=1

(
ϕj(g(t)(·)−1(x))

∑̀
k=1

〈
dφk, b(t, ·, ω)

〉2
x

)
dx

 dt
since div b(t, ·, ω) ≡ 0, so

m∑
j=1

∑̀
k=1

E

∫ T

0

dt

(
DΘ̃t(ϕ

j , φk)
)2

Θt(ϕj , 1)


≤
∫ T

0

E

∫
M

m∑
j=1

ϕj(g(t)(·)−1(x))‖b(t, x, ω)‖2 dx

 dt by definition of φk

=

∫ T

0

E

∫
M

m∑
j=1

ϕj(x)‖b(t, g(t)(x), ω)‖2 dx

 dt
=

∫ T

0

E
[∫

M

‖b(t, g(t)(x), ω)‖2 dx
]
dt = 2E (g).

Let us now prove the converse inequality. We have

E (g)− 1

2

m∑
j=1

∑̀
k=1

E

∫ T

0

dt

(
DΘ̃t(ϕ

j , φk)
)2

Θt(ϕj , 1)


=

1

2

m∑
j=1

E

[∫ T

0

dt

(∫
M

‖b(t, g(t)(y), ω)‖2ϕj(y) dy

− 1∫
M
ϕj(x)dx

∑̀
k=1

(∫
M

ϕj(y)
〈
dφk, b(t, ·, ω)

〉
g(t)(y)

dy

)2
)]

which rewrites as

1

2

m∑
j=1

E

[∫ T

0

dt
1∫

M
ϕj(x)dx

∫
M×M

ϕj(y)ϕj(z)

(
‖b(t, g(t)(y), ω)‖2

−
∑̀
k=1

〈
dφk, b(t, ·, ω)

〉
g(t)(y)

〈
dφk, b(t, ·, ω)

〉
g(t)(z)

)
dydz

]
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and this equals

1

2

m∑
j=1

E

[∫ T

0

dt
1∫

M
ϕj(x)dx

∫
M

ϕj(y)ϕj(z)

(
‖b(t, g(t)(y), ω)‖2

−
∑̀
k=1

〈
dφk, b(t, ·, ω)

〉2
g(t)(y)

)
dy

]

+
1

2

m∑
j=1

E

[∫ T

0

dt
1∫

M
ϕj(x)dx

∫
M×M

ϕj(y)ϕj(z)
∑̀
k=1

〈
dφk, b(t, ·, ω)

〉
g(t)(y)

×

(〈
dφk, b(t, ·, ω)

〉
g(t)(y)

−
〈
dφk, b(t, ·, ω)

〉
g(t)(z)

)
dydz

]
.

Choosing (φ1, . . . , φ`) an isometric embedding of M into R`, the first term in the
right vanishes. Then with Cauchy-Schwartz inequality and the first part of the
proof we obtain

E (g)− 1

2

m∑
j=1

∑̀
k=1

E

∫ T

0

dt

(
DΘ̃t(ϕ

j , φk)
)2

Θt(ϕj , 1)


≤ 1√

2
E (g)1/2

(∑̀
k=1

E

[∫ T

0

dt

∫
M×M

m∑
j=1

1∫
M
ϕj(x)dx

ϕj(y)ϕj(z)

×

(〈
dφk, b(t, ·, ω)

〉
g(t)(y)

−
〈
dφk, b(t, ·, ω)

〉
g(t)(z)

)2

dydz

])1/2

.

Since M is compact there exists a finite number of charts covering M , whose image
is equal to B(0, 1). For each n ≥ 1, letting ε = 1

2n there exist functions ϕ1
ε, . . . ϕ

mε
ε

all with support included in a ball of radius ε: supp(ϕjε) ⊂ B(xj , ε). We can assume
that there exists δ > 0 independent of n such that for all j = 1, . . . ,mε,

(2.31)

∫
M

ϕjε(x) dx ≥ δεd :

this needs some work but it is quite intuitive. Start with covering M with a finite
number of B(xj , ε), such that for each point y in M the number of balls containing
y is bounded above by a constant non depending on ε. A candidate for ϕjε would be
1B(xj ,ε) but it is not smooth and the sum is not equal to 1. However it is possible to
smoothen it keeping the same support and almost the same integral. Normalizing
by dividing by the sum of all obtained functions, we get the ϕjε satisfying (2.31).
For (U,ψ) one of the charts, let us denote by IU the set of indices j such that
B(xj , ε) ⊂ U . Since the number of charts is finite, for ε sufficiently small any ball
of radius ε is included in the domain of a chart. Let us prove that for all k = 1, . . . , `,

E

[∫ T

0

dt

∫
M×M

∑
j∈IU

1∫
M
ϕjε(x)dx

ϕjε(y)ϕjε(z)

(〈
dφk, b(t, ·, ω)

〉
g(t)(y)

−
〈
dφk, b(t, ·, ω)

〉
g(t)(z)

)2

dydz

]
→ 0
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as n→∞.
If we restrict the sum to j ∈ IU then the integral on M ×M can be replaced

by an integral on U ×U . Making the change of variables (v, w) = (ψ(y), ψ(z)) this
integral becomes

∫
B(0,1)×B(0,1)

∑
j∈IU

1∫
M
ϕjε(x)dx

ϕjε ◦ ψ−1(v)ϕjε ◦ ψ−1(w)

(〈
dφk, b(t, ·, ω)

〉
g(t)(ψ−1(v))

−
〈
dφk, b(t, ·, ω)

〉
g(t)(ψ−1(w))

)2

κ(v, w)dvdw

where κ is the absolute value of the determinant of the Jacobian of (ψ−1, ψ−1). Let
C1 > 0 an upper bound for κ and C2 > 0 such that〈

dφk, b(t, ·, ω)
〉
g(t)(ψ−1(v))

−
〈
dφk, b(t, ·, ω)

〉
g(t)(ψ−1(w))

≤ C2

∥∥b(t, g(t) ◦ ψ−1(v), ω)− b(t, g(t) ◦ ψ−1(v), ω)
∥∥2 .

Denote by

b′(v) = b′(t, v, ω) = b(t, g(t) ◦ ψ−1(v), ω)

which is clearly an L2 function in v for almost all (t, ω). The same integral is
bounded by

C1C2

δεd

∫
B(0,1)×B(0,1)

∑
j∈IU

ϕjε ◦ ψ−1(v)ϕjε ◦ ψ−1(w) ‖b′(v)− b′(w)‖2 dvdw

=
C1C2

δεd

∑
j∈IU

∫
ψ(B(xj ,ε))

dvϕjε ◦ ψ−1(v)

×

(∫
ψ(B(xj ,ε))−v

daϕjε ◦ ψ−1(v + a) ‖b′(v)− b′(v + a)‖2
)
.

There exists C3 > 0 independent of j and ε such that ψ(B(xj , ε)) ≤ B(ψ(xj), C3ε).
Extending ϕjε ◦ ψ−1 and b′ ◦ ψ−1 by 0 outside B(0, 1), we can bound the above
expression by

C1C2

δεd

∑
j∈IU

∫
2B(0,C3ε)

da

(∫
ψ(B(xj ,ε))

dvϕjε ◦ ψ−1(v) ‖b′(v)− b′(v + a)‖2
)

≤ C1C2

δεd

∫
2B(0,C3ε)

da

(∫
Rd

dv ‖b′(v)− b′(v + a)‖2
)

≤ C1C2C
d
3

δ
sup

a∈2B(0,C3ε)

∫
Rd

dv ‖(b′ − τ−ab′)(v)‖2

where τab(v) = b(v − a). By continuity in L2 of a 7→ τab
′ the above expression is

bounded by a function δ(t, ω) > 0 converging to 0 dt⊗ dP(ω) a.e. as ε→ 0.



10 M. ARNAUDON AND A. B. CRUZEIRO

On the other hand∫
M×M

mε∑
j=1

1∫
M
ϕjε(x)dx

ϕjε(y)ϕjε(z)

×

(〈
dφk, b(t, ·, ω)

〉
g(t)(y)

−
〈
dφk, b(t, ·, ω)

〉
g(t)(z)

)2

dydz

]

≤ 2

∫
M×M

mε∑
j=1

1∫
M
ϕjε(x)dx

ϕjε(y)ϕjε(z)

×

(〈
dφk, b(t, ·, ω)

〉2
g(t)(y)

+
〈
dφk, b(t, ·, ω)

〉2
g(t)(z)

)
dydz

]

= 4

∫
M

〈
dφk, b(t, ·, ω)

〉2
g(t)(y)

dy

(2.32)

which is integrable with respect to (k, t, ω) and does not depend on ε. We conclude
with the dominated convergence theorem on the integrals with respect to (k, t, ω).

�

Remark 2.7. It is clear from definitions 2.4 and 2.5 that H ′ is a convex set.

3. Existence of generalized minimal flows

In this section we prove our main result, the existence of generalized minimal
flows with prescribed final configuration.

For g a semimartingale flow let Dg(t)(x) = b(t, x) denote its drift. Notice that

Dg(t)(x) = lim
ε→0

1

ε
Et
[
exp−1g(t)(x) g(t+ ε ∧ τ(t, x, r))(x)

]
where Et denotes conditional expectation with respect to the past filtration, τ(t, x, r)
is the exit time of s 7→ g(t+ s)(x) from a small ball B(x, r) (r > 0).

The kinetic energy of g has already been defined as

(3.33) E (g) =
1

2
E

[∫
M

(∫ T

0

‖b(t, x, ·) dt‖2
)
dx

]
.

When the vector field u is smooth and satisfies Navier-Stokes equations, the
process dgu(t) = σ(gu(t))dW (t) +u(t, gu(t))dt will be critical for the kinetic energy
functional (c.f. [5] and [1]).

Again we notice that when the viscosity is zero the semimartingales are paths of
bounded variation and the kinetic energy reduces to (1.2).

If η is a final configuration at time T one can define

(3.34) E (σ, η, T ) = inf {E (g), Law(g) ∈H2(σ, η, T )}

where by convention E (σ, η, T ) =∞ if there is no semimartingale flow with config-
uration η at time T .

Similarly we define

(3.35) E ′(σ, η, T ) = inf {E ′(Θ), Law(Θ) ∈H ′(σ, η, T )}

with E ′(σ, η, T ) =∞ if there is no generalized flow with configuration η at time T .



11

From Proposition 2.6 we know that

(3.36) E ′(σ, η, T ) ≤ E (σ, η, T ).

In this section we shall prove the following

Theorem 3.1. If E ′(σ, η, T ) <∞ then there exists a generalized flow Θ such that
E ′(Θ) = E ′(σ, η, T ).

Proof. Assume E ′(σ, η, T ) < ∞. Let (Θn)n≥1 be a sequence of generalized flows
with laws in H ′(σ, η, T ) satisfying

(3.37) lim
n→∞

E ′(Θn) = E ′(σ, η, T ).

Consider a sequence (ϕ̃j)j≥1 of elements of C∞(M) dense for the topology of uni-

form convergence, and a sequence (φ̃k)k≥1 of elements of C∞(M) dense for the
topology of uniform convergence of functions and their first and second order deriva-
tives.

For fixed j, k ≥ 1 and n ≥ 1, the semimartingale

Θ̃n
t (ϕ̃j , φ̃k) = Θn

t (ϕ̃j , φ̃k)− 1

2

∫ t

0

Θn
s (ϕ̃j ,∆φ̃k) ds

has starting point (ϕ̃j , φ̃k)L2(M). Its drift DΘ̃n
t (ϕ̃j , φ̃k) satisfies

(3.38) E

[∫ T

0

dt
(
DΘ̃n

t (ϕ̃j , φ̃k)
)2]
≤ 2

∥∥ϕ̃j∥∥2
L∞(M)

∥∥∥grad φ̃k
∥∥∥2
L∞(M)

E ′(Θn).

On the other hand the bracket of Θ̃n(ϕ̃j , φ̃k) satisfies

(3.39) d
[
Θ̃n(ϕ̃j , φ̃k), Θ̃n(ϕ̃j , φ̃k)

]
t
≤ ‖ϕ̃j‖2L2(M)

∥∥∥grad φ̃k
∥∥∥2
L2(M)

dt.

We also have

(3.40) E

[∫ T

0

∣∣∣Θn
s (ϕ̃j ,∆φ̃k)

∣∣∣2 ds] ≤ T‖ϕ̃j‖2L∞(M)

∥∥∥∆φ̃k
∥∥∥2
L∞(M)

.

With Theorem 3 in [16] we can conclude that the sequence

(3.41)

(
Y n· :=

(
Θ̃n(ϕ̃j , φ̃k),

1

2

∫ ·
0

Θn
s (ϕ̃j ,∆φ̃k) ds

))
n≥1

is tight and that we can extract a subsequence which converges in law. In fact, we
can extract a subsequence such that all((

Θ̃n(ϕ̃j , φ̃k),
1

2

∫ ·
0

Θn
s (ϕ̃j ,∆φ̃k) ds

))
n≥1

, j, k ≥ 1

together with all their covariances simultanuously converge in law to a limit for
which all linear combinations are preserved. For simplicity we denote by (Y n)n≥1
this subsequence.

Let (Θ̃·(ϕ̃
j , φ̃k), A·(ϕ̃

j , φ̃k)) be the limit of (Y n· )n≥1 and

(3.42) Θt(ϕ̃
j , φ̃k) := Θ̃t(ϕ̃

j , φ̃k) +At(ϕ̃
j , φ̃k).

By Theorem 10 in [10], we have

(3.43) E

[∫ T

0

dt
(
DΘ̃t(ϕ̃

j , φ̃k)
)2]
≤ lim sup

n→∞
E

[∫ T

0

dt
(
DΘ̃n

t (ϕ̃j , φ̃k)
)2]
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which implies

(3.44) E

[∫ T

0

dt
(
DΘ̃t(ϕ̃

j , φ̃k)
)2]
≤ 2

∥∥ϕ̃j∥∥2
L∞(M)

∥∥∥grad φ̃k
∥∥∥2
L∞(M)

E ′(σ, η, T ).

Inequality (3.39) also extends to the limiting process:

(3.45) d
[
Θ̃(ϕ̃j , φ̃k), Θ̃(ϕ̃j , φ̃k)

]
t
≤ ‖ϕ̃j‖2L2(M)

∥∥∥grad φ̃k
∥∥∥2
L2(M)

dt.

As for the starting point we have

(3.46) Θ̃0(ϕ̃j , φ̃k) = (ϕ̃j , φ̃k)L2(M).

Furthermore, by bilinearity of all the the Θ̃n, (3.44), (3.45) and (3.46) are still

true with functions ϕ and φ which are linear combinations of functions ϕ̃j and φ̃k.
Moreover Θ̃ is bilinear for theses combinations.

For ϕ, φ ∈ C∞(M) there exist sequences (ϕ̃j`)`≥1 and (φ̃k`)`≥1 which converge
uniformly to ϕ and φ (for the second sequence uniform convergence holds for func-
tions and their first order derivatives). From (3.44), (3.45) and (3.46) and the bilin-

earity of Θ̃ we deduce that Θ̃(ϕ̃j` , φ̃k`) converges to a semimartingale Θ̃(ϕ, φ) which

does not depend on the sequences (ϕ̃j`)`≥1 and (φ̃k`)`≥1. Here the convergence is
taken in the topology of L2 convergence of the drift and the quadratic variation
(the so-called H2 topology). It is also easy to check that (ϕ, φ) 7→ Θ̃(ϕ, φ) is bi-

linear and that for all ϕ, φ ∈ C∞(M), Θ̃(ϕ, φ) is the limit in law of (Θ̃n(ϕ, φ))n≥1
(the last point is due to the fact that the bounds in the right of (3.38) and (3.39)
can be taken indepent of n, and this allows to identify any limit of a subsequence
of (Θ̃n(ϕ, φ))n≥1 to Θ̃(ϕ, φ)). Similarly, for ϕ1, φ1, ϕ2, φ2 ∈ C∞(M), the process

[Θ̃(ϕ1, φ1), Θ̃(ϕ2, φ2)] is the limit in law of ([Θ̃n(ϕ1, φ1), Θ̃n(ϕ2, φ2)])n≥1.
As a consequence, for all,j, k ≥ 1

(3.47) At(ϕ̃
j , φ̃k) =

1

2

∫ t

0

Θs(ϕ̃
j ,∆φ̃k) ds

and by bilinearity, for ϕ, φ ∈ C∞(M)

(3.48) Θt(ϕ, φ) = Θ̃t(ϕ, φ) +
1

2

∫ t

0

Θ(ϕ,∆φ) ds.

It remains to prove that Θ is an element of H ′(σ, η, T ) and that

(3.49) E ′(Θ) ≤ E ′(σ, η, T ).

By passing to the limit we get (1), (2), (3), (4), (6), (7), (8) of Definition 2.4. We
are left to prove (3.49). For this we need to improve (3.43). Theorem 10 in [10]
says that for any ϕ, φ ∈ C∞(M) and any K > 0, if for all n ≥ 1

E

[∫ T

0

dt
(
DΘ̃n

t (ϕ, φ)
)2]
≤ K

then

E

[∫ T

0

dt
(
DΘ̃t(ϕ, φ)

)2]
≤ K
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Let

K = lim inf
n→∞

E

[∫ T

0

dt
(
DΘ̃n

t (ϕ, φ)
)2]

.

Consider a subsequence Θn` such that

lim
`→∞

E

[∫ T

0

dt
(
DΘ̃n`

t (ϕ, φ)
)2]

= K.

Then fixing ε > 0 and applying the above result to the sequence Θ̃n` for sufficiently
large ` we obtain

E

[∫ T

0

dt
(
DΘ̃t(ϕ, φ)

)2]
≤ K + ε.

Letting ε→ 0 we obtain

(3.50) E

[∫ T

0

dt
∥∥∥DΘ̃t(ϕ, φ)

∥∥∥2] ≤ lim inf
n→∞

E

[∫ T

0

dt
∥∥∥DΘ̃n

t (ϕ, φ)
∥∥∥2] .

Letting ϕj , φk as in (2.21), we have

m∑
j=1

∑̀
k=1

E

∫ T

0

dt

(
DΘ̃t(ϕ

j , φk)
)2

Θt(ϕj , 1)

 ≤ m∑
j=1

∑̀
k=1

lim inf
n→∞

E

∫ T

0

dt

(
DΘ̃n

t (ϕj , φk)
)2

Θn
t (ϕj , 1)


≤ lim inf

n→∞

m∑
j=1

∑̀
k=1

E

∫ T

0

dt

(
DΘ̃n

t (ϕj , φk)
)2

Θn
t (ϕj , 1)


≤ E ′(σ, η, T ).

Finally taking the supremum in the left as in (2.21) yields

(3.51) E ′(Θ) ≤ E ′(σ, η, T )

and this achieves the proof. �

Remark 3.2. At this stage several questions arise. If a flow g is a critical point of
the energy in H2(σ, η, T ), does it minimize the energy? Is the equality E ′(σ, η, T ) =
E (σ, η, T ) true? If the law of generalized flow Θ minimizing E ′ in H ′

2 (σ, η, T ) is
unique, is it the law of a flow g ∈H2(σ, η, T )? The next result establishes convexity
for the set of laws of drifts of generalized flows with minimizing energy. Do extremal
laws in this set correspond to laws of drifts of flows g ∈H2(σ, η, T )?

Proposition 3.3. The set of laws of processes DΘ̃ where Θ ∈ H ′
2 (σ, η, T ) mini-

mizes E ′ is convex.

Proof. Let Θ1 and Θ2 minimizing E ′ defined respectively on Ω1 and Ω2. On Ω1 ×
Ω2 × {1, 2} endowed with product filtration and product probability (on {1, 2} we
consider the uniform probability) define Θ(ω1, ω2, i) = Θi(ωi). It is straightforward
to check that Θ ∈ H ′

2 (σ, η, T ) and E ′(Θ) ≤ 1
2 (E ′(Θ1) + E ′(Θ2)). So E ′(Θ) =

E ′(σ, η, T ). �
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4. Constructing generalized flows with prescribed drift

We have shown in section 2 that semimartingale flows can be regarded as gen-
eralized ones. A smooth solution of Navier-Stokes equation will thus give rise to a
generalized solution of the corresponding variational problem. We shall now show
that these are not the only possible generalized flows: indeed, we can define weaker
solutions (which, in particular, will not necessarily correspond to semimartingale
flows) of the Navier-Stokes variational problem built upon weak solutions of some
transport equations.

Now consider a deterministic drift b(t, x) such that b ∈ L1([0, T ], L2(TM)) and
div b ≡ 0 in the weak sense.

Theorem 4.1. There exists a generalized flow Θt with drift b(t, x) i.e. such that
for all ϕ, φ ∈ C∞(M), (t, ω) ∈ [0, T ]× Ω almost everywhere

(4.52) DΘ̃t(ϕ, φ) = Θt(ϕ,div(φb)),

and with kinetic energy smaller than or equal to
1

2

∫ T

0

(∫
M

‖b(t, x)‖2 dx
)
dt.

Proof. For ε > 0, as in [9] Section 4.4 we regularize b by using the de Rham-Hodge
semi-group on differential forms eε� with � = −(dδ+ δd), δ the codifferential form
of d. For a differential 1-form α on M we denote by α] the vector field on M
associated to α by the metric, and for a vector field A on M we denote by A[ the
differential 1-form associated to A by the metric: we have

〈α,A〉 = 〈α], A〉 = 〈α,A[〉
where the first bracket is for duality, the second one is the scalar product in TM ,
the third one the scalar product in T ∗M . By letting

(4.53) (b′)ε =
(
eε�(b[)

)]
we get a smooth time-dependent vector field satisfying div(b′)ε = 0 (see [9] Propo-
sition 4.4.1). Then we regularize (b′)ε in time by convolution with a smooth kernel
with support [−ε/2, ε/2] (for this we need to extend b by letting b(t, x) = 0 for t < 0
and for t > T ). Let us call bε(t, x) the regularized vector field. It is also divergence
free, and it approximates b in (L2([0, T ] ×M,TM)). For each ε > 0 we can con-
struct a semimartingale flow as a strong solution to (2.7) where b(t, g(t)(x), ω) has
been replaced by bε(t, g(t)(x)). Let us denote by gε the solution. Letting (εn)n≥0
a sequence of positive numbers decreasing to 0 we let Θn = Θgεn . Now using the
fact that

E (gε) =
1

2

∫ T

0

(∫
M

‖bε(t, x) dt‖2 dx
)
dt ≤ 1

2

∫ T

0

(∫
M

‖b(t, x) dt‖2 dx
)
dt+ 1

for ε sufficiently small we proceed similarly to the proof of Theorem 3.1 to establish
that possibly by extracting a subsequence, there exists a generalized flow Θt such
that for all ϕ, φ ∈ C∞(M) Θn(ϕ, φ) converges in law to Θ(ϕ, φ) and

∫ ·
0
DΘ̃n

s (ϕ, φ) ds

converges in law to the drift of Θ̃(ϕ, φ). We have DΘ̃n(ϕ, φ) = Θn(ϕ,div(φbεn))
which is defined as

∫
M
ϕ(x) div(φbεng(·)(x)) dx. Since b is time-dependent and not

smooth we have to extend this definition. We let (ψ̃i)i≥1 be a family of smooth func-

tions [0, T ]→ R such that, possibly by extending the family φ̃k defined in the proof

of Theorem 3.1, linear combinations of functions (t, x) 7→ ψ̃i(t)φ̃k(x) with rational
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coefficients are dense in L2([0, T ]×M). Now for all β(t, x) =
∑L
`=1 a`ψ̃

i`(t)φ̃k`(x)
with rational a` we can assume that the processes

t 7→
∫ t

0

Θn
s (φ̃j , β(s, ·)) ds =

L∑
`=1

a`

∫ t

0

Θn
s (φ̃j , φ̃k`)ψ̃i`(s) ds

all together converge in law as n→∞ to processes t 7→
∫ t

0

Θs(φ̃
j , β(s, ·)) ds which

satisfy

(4.54) E

[∫ T

0

Θs(φ̃
j , β(s, ·))2 ds

]
≤ ‖φ̃j‖22‖β‖2L2([0,T ]×M),

from the fact that for all n ≥ 1

(4.55) E

[∫ T

0

Θn
s (φ̃j , β(s, ·))2 ds

]
≤ ‖φ̃j‖22‖β‖2L2([0,T ]×M)

This bound allows to define t 7→
∫ t

0

Θs(φ, β(s, ·)) ds for all smooth φ and β ∈

L2([0, T ] × M). So t 7→
∫ t
0

Θs(ϕ,div(φb)) ds is well defined, and by an argu-

ment similar to the proof of Theorem 3.1 we see that t 7→
∫ t
0

Θn
s (ϕ,div(φbεn)) ds

converges in law to t 7→
∫ t
0

Θs(ϕ,div(φb)) ds. So we can make the identification∫ t
0
DΘ̃s(ϕ, φ) ds =

∫ t
0

Θs(ϕ,div(φb)) ds.
We are left to prove the bound for the kinetic energy. But this is exactly similar

to the first part of the proof of Proposition 2.6. �

5. Constructing generalized flows from solutions of finite variation
transport equations

In this section we aim to give an alternative construction of generalized flow
with prescribed drift, using Ocone Pardoux method and weak solution of transport
equations (in the sense of DiPerna and Lions).

To start with, let us consider a semimartingale flow g(t)(x) satisfying g(0)(x) ≡ x
and

(5.56) dg(t)(x) = σ(g(t)(x)) ◦ dWt + b(t, g(t)(x), ω)g(t)(x)dt,

with the same assumptions as in the beginning of section 2. In particular the vector
fields σi are divergence free. Assume that σ and b are C1 in the space variable. Let
g̃(t)(x) be the martingale flow satisfying

(5.57) dg̃(t)(x) = σ(g̃(t)(x)) ◦ dWt, g̃(0)(x) ≡ x.
Notice that g̃(t) is measure preserving. The method of Ocone and Pardoux ([12])
consists in writing

(5.58) g(t)(x) = g̃(t) (ψ(t)(x))

with ψ(t)(x) a bounded variation flow to be determined. From (5.58) we get

(5.59) dg(t)(x) = (dg̃(t)) (ψ(t)(x)) + Tψ(t)g̃(t) (dψ(t)(x))

which together with (5.56) and (5.57) yields

(5.60) dψ(t)(x) = b̃(t, ψ(t)(x), ω) dt
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with

(5.61) b̃(t, y, ω) = (Ty g̃(t)(·))−1 (b(t, g̃(t)(y), ω)) .

For ϕ ∈ C∞(M) define θg,ϕt , θg̃,ϕt ,θψ,ϕt as: for φ ∈ C∞(M)
(5.62)

Θg(ϕ, φ) = (θg,ϕt , φ)L2(M) , Θg̃(ϕ, φ) =
(
θg̃,ϕt , φ

)
L2(M)

,Θψ(ϕ, φ) =
(
θψ,ϕt , φ

)
L2(M)

From (2.13) and (5.58) we get

θg,ϕt = ϕ ◦ g(t)−1

= ϕ ◦ ψ(t)−1 ◦ g̃(t)−1.
(5.63)

and this yields

(5.64) Θg
t (ϕ, φ) = Θ

g̃(t)
t

(
θψ,ϕt , φ

)
which implies

(5.65) Θg
t (ϕ, φ) = Θψ

t (ϕ, φ ◦ g̃(t))

where we used the fact that g̃(t) is measure preserving.

Lemma 5.1. We have for all φ ∈ C∞(M), t ∈ [0, T ], a.s.

(5.66)

∫
M

(
div b̃(t, ·, ω)

)
(x)φ(x) dx =

∫
M

div b(t, ·, ω)(y)
(
φ ◦ (g̃(t))−1

)
(y) dy.

In particular, if div b(t, ·, ω) ≡ 0 then div b̃(t, ·, ω) ≡ 0.

Proof. We will write b(y) = b(t, y, ω), b̃(x) = b̃(t, x, ω) For φ ∈ C∞(M),∫
M

(div b̃)φ =

∫
M

〈dφ, b̃〉

=

∫
M

〈
dφ, (T g̃)−1 ◦ b ◦ g̃

〉
=

∫
M

〈
d
(
φ ◦ (g̃)−1

)
(g̃(x)), b(g̃(x))

〉
dx

=

∫
M

〈
d
(
φ ◦ (g̃)−1

)
(y), b(y)

〉
dy

=

∫
M

(
φ ◦ (g̃)−1

)
(y)(div b)(y) dy

where we used in the fourth equality the fact that g̃ is measure preserving. �

Now consider a deterministic drift b(t, x) such that b ∈ L1([0, T ], L2(TM)) and
div b ≡ 0 in the weak sense. It is easily seen that Lemma 5.1 is still valid for b, so
we have a.s. div b̃ ≡ 0. Moreover a.s. b̃ ∈ L1([0, T ], L2(TM)). Under this condition
we can apply Proposition II.1 in [6] and we deduce that a.s. the transport equation
which is the weak version of (5.60), namely

(5.67)
∂θt
∂t

= −(b̃ · ∇)θt, θ0 = ϕ, ϕ ∈ C∞(M),

has a solution θb̃,ϕt in
⋂
p≥1

L∞(0, T ;Lp(M)). Moreover since b̃ is adapted the process

θb̃,ϕt can also be chosen so that all θb̃,ϕt , ϕ ∈ C∞(M) and also g̃,W are jointly
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adapted to the same filtration for whichW is still a cylindrical Brownian motion and

g̃ satisfies (5.57): instead of considering θb̃,ϕt as the limit in law of some regularized

processes θb̃
ε,ϕ
t , consider ((θb̃,ϕ̃

j

t , g̃,W ) as limit in law of ((θb̃
ε,ϕ̃j

t , g̃,W ) for (ϕ̃j)j≥1
a dense subsequence in C∞(M).

So by analogy to (5.64) we define

(5.68) Θσ,b
t (ϕ, φ) = Θg̃

t

(
θb̃,ϕt , φ

)
, ϕ, φ ∈ C∞(M)

Proposition 5.2. Take a deterministic drift b(t, x) such that b ∈ L1([0, T ], L2(TM))
and div b ≡ 0 in the weak sense. Then the generalized flow Θσ,b defined in equa-
tion (5.68) is a generalized flow with kinetic energy

(5.69) E ′
(
Θσ,b

)
≤ E (b)

where

(5.70) E (b) =
1

2

∫ T

0

dt

∫
M

dx‖b(t, x)‖2

Proof. We have

Θσ,b(ϕ, φ) = Θg̃
t

(
θb̃,ϕt , φ

)
=

∫
M

θb̃,ϕt
(
(g̃(t))−1(x)

)
φ(x) dx

=

∫
M

θb̃,ϕt (x)φ (g̃(t)(x)) dx

(5.71)

and this implies

dΘ̃σ,b(ϕ, φ)

=

∫
M

θb̃,ϕt (x)
〈
dφ, dItôg̃(t)(x)

〉
dx+

∫
M

θb̃,ϕt (x) div
(
b̃(φ ◦ g̃(t))

)
(x) dx dt

=

∫
M

θb̃,ϕt (x) 〈dφ, σ (g̃(t)(x)) dWt〉 dx+

∫
M

θb̃,ϕt (x)
〈
d(φ ◦ g̃(t)), b̃

〉
(x) dx dt

=
∑
i≥1

∫
M

θb̃,ϕt (x) 〈dφ, σi〉 (g̃(t)(x)) dx dW i
t +

∫
M

θb̃,ϕt (x) 〈dφ, b〉 (g̃(t)(x)) dx dt

=
∑
i≥1

∫
M

θb̃,ϕt
(
(g̃(t))−1(y)

)
〈dφ, σi〉 (y) dydW i

t +

∫
M

θb̃,ϕt
(
(g̃(t))−1(y)

)
〈dφ, b〉 (y) dy dt

=
∑
i≥1

Θσ,b(ϕ, 〈dφ, σi〉) dW i
t + Θσ,b(ϕ, 〈dφ, b〉) dt

(5.72)

where the first term in the right is the martingale part and the second term is the
finite variation part. We prefer to write the last equality as

(5.73) dΘ̃σ,b(ϕ, φ) =
∑
i≥1

Θg̃
(
θb̃,ϕt , 〈dφ, σi〉

)
dW i

t + Θg̃
(
θb̃,ϕt , 〈dφ, b〉

)
dt.

From this equation the properties of a generalized flow are easily checked.
We are left to prove that E ′(Θσ,b) ≤ E (b). Again this can be done via a regular-

ization procedure of b̃ of the form b̃ε =
(
eε�(b̃[)

)]
, an extraction of subsequence,

and similar estimates as before. We leave the details to the reader.
�
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