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Abstract:  
Systems Engineering (SE) best practices are currently guided by standardized processes which must be 
adapted by skill rules in order to specialize domain-dependent SE workflows as well as domain-
independent standardized languages. This paper aims to revisit first the interdisciplinary relationships 
within a SE process as specification relationships between Problem Space (PS) and Solution Space (SS) 
across collaborative domains. This SE rationale is then applied on a Requirement Specification (RS) work-
flow formalized with high-level Petri nets and verified on a human-robot protection case-study. 
Keywords: Systems Engineering, Specification, Domain, Requirement. 

 

1      INTRODUCTION 
 
According to the SEBoK (Pyster et al., 2011), Systems Engi-
neering (SE) is defined as “an interdisciplinary approach and 
means to enable the realization of successful systems. It fo-
cuses on holistically and concurrently understanding stake-
holder needs; exploring opportunities; documenting require-
ments; and synthesizing, verifying, validating, and evolving 
solutions while considering the complete problem, from sys-
tem concept exploration through system disposal”. These SE 
activities are recursively organised according to five views 
and iteratively within each view related to “Business”, “Re-
quirement”, “Architecture”, “Integration Verification Valida-
tion Qualification” and “Configuration”. These SE activities 
are guided by SE standardized processes as those of 
(ISO/IEC 15288, 2008). Overall, SE processes and standard-
ized languages as SysML defined in OMG (2010), are de-
signed as general purpose processes and languages. However 
according to Arthurs (2008), “practioners want to solve spe-
cific problems, so the challenge becomes determining what 
modelling artefacts to use and how/when to use them effi-
ciently to solve problems”. 
  
Among many mandatory prerequisites such as “system think-
ing” to understand and to apply SE basics, one of the main is 
the problem-solution spaces partition which must be formally 
defined to become a SE basic construct. This partition means 
that any confusion between the roles assigned to any respon-
sible specifying problems and any responsible specifying 
solutions would be to the detriment of meeting target system 
objectives (AFIS, 2009).  
 
Section 2 states on the iterative and recursive nature of this 
problem-solution spaces relationship defined as a specifica-
tion key-artifact for SE right practices. This rationale is ap-
plied in section 3 to propose a generic workflow for the RS 
process. This workflow is tested in section 4 on a case-study 
related to the protection of human using robot. Section 5, 
draws a first assessment of this preliminary approach towards 
the transition to the industrial scale. 
 

2      INTEROPERATION RELATIONSHIP WITHIN A 
SYSTEMS ENGINEERING PROCESS  

 
This problem-solution spaces basic construct is studied in 
software development and automation domains before being 
generalized to the SE domain. 
 
2.1 Software development issues   
 
The problem-solution spaces interoperation has been studied 
by Berg et al. (2005) for traceability issues across domains 
whereas Czarnecki (1998) states that any domain can be 
divided into a PS and SS. According to Bjørner (2009), “by a 
domain we shall here understand a universe of discourse, an 
area of nature subject to laws of physics and study by physi-
cists, or an area of human activity subject to its interfaces 
with other domains and to nature”.  
 
This interoperation relationship has been the subject of many 
researches in the field of computer science. Hall et al. (2002) 
extend the problem frames approach (Jackson, 2001) towards 
the Twin Peaks model (Fig.1) in order to define the iterative 
nature of the software development process as an iterative 
specification between problem and solution structures.  

 
Fig.1. Variation of the Twin Peaks model by  

Hall et al. (2002) 
Another works within the problem frames approach defined 
precisely the nature of a specification (Gunter et al., 2000).    
The proposed reference model (Fig.2) gives five artifacts 
distributed among the environment domain and the system 
domain: the world knowledge W as a description of the rele-
vant environment, the statement of requirements R, the speci-
fication S that mediates between the environment and the 
machine, the description of the machine M and the program 
P which executed on the machine M implements the specifi-



 
 
 

  

cation S. In a more general way, the machine M with the 
program P represents the system to be constructed. Jackson 
(1997) distinguishes two types of description of the environ-
ment: Description optative mood “expresses a condition over 
the phenomena of the environment that we wish to make true 
by installing the machine” and may be associated with R; 
Description indicative mood may be associated with W and 
“expresses a condition over the phenomena of the environ-
ment that we know to be true irrespective of the properties 
and behaviour of the machine”. The separation between envi-
ronment and system, according to Gunter et al. (2000) allows 
the separation of phenomena (states, events, individuals), 
owned and controlled by the environment e={ev, eh} or by the 
system s={sv, sh} (Fig.2). 
 

 
Fig.2. A reference model for requirements and specifications 

(Gunter et al., 2000) 
 
On the one hand, there are phenomena eh, ev and sv visible to 
the environment and used in W and R. On the other hand, 
there are phenomena sh, sv and ev visible to the system and 
used in P and M. Therefore the specification S is expressed in 
the common phenomena sv and ev, and defined by (1):   

  , . e s W S R"    (1) 
 
Regarding this with a domain engineering point of view, 
Bjørner (2010), expressed that “ Before Software can be 
designed we must understand the Requirements, and before 
Requirements can be expressed we must understand the Do-
main ” and provides a formalization of the specification S in 
Domain D (2), where S R means that S is a model of R:   
 ,D S R  (2) 
 
2.2 Automation issues   
 
The above-mentioned interoperation relationship has been 
also studied in the field of automation in order to revisit the 
Fusaoka’s automatic control synthesis condition (3) 
(Fusaoka, 1983) arguing that the design of any automation 
systems consists in prescribing the (unknown) control rules 
of the (known) dynamics of a physical system from the be-
havioural (known) goals to be met: 
 D ynam ics U nknow n C ontrol Rules G oal É  (3) 

This weak prescription É  is more broadly interpreted by 
Lamboley (2001) as a predicate implemented with a B-
method based process:  
 C o n tro l  S p ecifica tio n P r o cess  S p ecifica tio n  

S ystem  S p ecifica tio n



 (4) 

To ensure the a priori correctness of each term of this auto-
mation predicate and their coherence as a whole, Pétin, et al. 
(2006) propose a model-driven specification approach ensur-
ing the predicate: 

 C OP P S   (5) 

where the architecture PC  PO of automation PC of a process 
PO must satisfy the specification S. 
 
2.3 Systems Engineering issues   
 
Dobre (2010) combines recently these above mentioned 
works focusing mainly on specialist engineerings in order to 
take into account the interdisciplinary process required to 
engineer a system as a whole.  
The predicate (5) must be re-formulated according to prob-
lem frames approach as: 

 C OW P P R    (6) 

where W represents the context of the system-of-interest 
within the existing SS of the domain-of-interest. This inter-
pretation considers that the domain-of-interest (i) is parti-
tioned in two spaces of problem (Psi) and solution (Ssi) and 
generalizes this partition to any domain involved in a collabo-
rative SE process. Each interoperation relationship between a 
problem space Psa and a solution space Ssb is considered as a 
contractual descriptive / prescriptive specification Sab. The 
resulting generalized SE specification process applies this 
rationale iteratively between Psa and Ssb, and recursively 
(Herzog, 2004) during the whole SE process (Fig.3).  

 
Fig.3. Iterative and recursive specification process 

 
3      ITERATIVE INTEROPERATION RELATIONSHIP 

FOR REQUIREMENT SPECIFICATION PROCESS 
 
SE process manipulates objects which are structured in met-
amodels. Among these metamodels, the one proposed by 
Holt and Perry (2008) places requirements as key objects for 
SE. Considering requirements, this section focuses on the 
relationship between system domain (seen as a PS) and SE 
domain (seen as a SS). It proposes a workflow, based on the 
evolution of requirement types and states that we see as an 
artifact of SE process, to aid the process of RS. According to 
Caron (2005), a requirement type is defined by a “set of rules 
characterizing the relationship that the requirement of this 
type must or may have with other engineering data”. Re-
quirement state is defined by the fact that “some of these 
links are instantiated or not”.  
 
As the workflow is built upon various objects (presented in 
section 3.1) and various structured activities (presented in 
section 3.2), the language chosen to model it has to be able to 



 
 
 

  

express such specificities. Among candidates, high level Petri 
nets have been chosen because they enable to represent the 
variety of objects manipulated using colours and indexes, and 
to model structured activities using hierarchy in places. This 
workflow has then been formalized with CPN Tools (Jensen 
et al., 2007). 
 
3.1 Objects used by the workflow 
 
This section defines the various objects used during RS: 
- Stakeholder requirement: expresses the expected system 
interactions with its environment;  
- Skill: is seen as the indicative mood within the meaning of 
Jackson (1997). It represents the known properties of system 
environment validated by an expert. Skills are required at 
each stage of the specification process, and can be for exam-
ple characteristics of good requirements including character-
istics about syntax or semantics (INCOSE, 2010), domain 
skills for transformation... 
- Optative requirement: expresses a condition that is to be on 
the phenomena of the environment domain (Jackson, 1997). 
An initial optative requirement corresponds to the description 
of a stakeholder requirement. An optative requirement can be 
verified or not verified, according to a verification activity 
which is detailed in the next section;  
- Transformation: corresponds to the requirement modifica-
tion based on SS skills; 
- System requirement: a requirement which has to be satisfied 
by the future system, prescribed to PS. A system requirement 
can have several states: {Not Prescribed, Not Validated}, 
{Prescribed, Not Validated} and {Not Prescribed, Validated}. 
These states are defined by prescription and validation activi-
ties;  
- Specification: the set of all system requirements. 

 
A static view of these objects and their relations, due to defi-
nition, description, transformation, prescription and valida-
tion activities, is formalized as a meta-model presented in 
(Fig.4). Packages of meta-model represent different reposito-
ries to ensure traceability throughout the process of require-
ment specification.  
 

 
Fig.4. Meta-model used by the workflow 

 
3.2 Iterative workflow between problem and solution spaces 
 
The activities of RS, which compose the proposed workflow 
and are described below, are modelled by hierarchical transi-
tions in a high level Petri net, while sets of requirements, 
including repositories, are modelled by places (Fig.5). 

 
 

Fig.5. Main structure of the iterative workflow proposed for RS 
  



 
 
 

  

Requirements and skills are represented using tokens, which 
colour depends of their type (stakeholder, optative, system 
…). Indexes are used to uniquely identify them. In this paper 
only places and transitions related to the workflow are 
shown. For readability purposes, places allowing the execu-
tion of the model have been hidden. 
 
We propose in this section to define the different activities 
performed during the requirement process specification: 
- Stakeholder requirement definition: during this activity, PS 
defines its need in the form of several stakeholder require-
ments. The definition of a new requirement produces a new 
couple token (Stakeholder_requirement(i), ID_SR(i)) in place 
Stakeholders requirements. At this stage, ID_SR(i) is redun-
dant information because it represents the identifier of the 
stakeholder requirement, but it ensures traceability between 
the stakeholder requirement and the different requirements 
resulting from transformations of it. Moreover a couple token 
(Stakeholder_requirement(i),ID_SR(i)) is stored in place 
Stakeholders requirements repository, which represents a 
requirement repository ensuring the traceability of stakehold-
ers requirements; 
- Description Optative mood: description transforms a stake-
holder requirement (from PS) into an optative requirement 
(into SS), but its content is not altered. This change of re-
quirement type expresses that the requirement is addressed in 
another space. During description, a token (Stakehold-
er_requirement(i),ID_SR(i)) becomes a token (Opta-
tive_requirement(i),ID_SR(i)). Traceability between stake-
holder and optative requirements is ensured because they 
have the same identifier; 
- Transformation: we have identified four transformation 
mechanisms: refinement, induction, decomposition and com-
position. For the last two, it is possible to add a suffix (AND, 
OR, XOR) to precise the relation between the requirements 
which are produced or used. For this reason, the transition 
“Transformation” of (Fig.5) can be decomposed as presented 
in (Fig.6) and an enumeration of types of transformations is 
given (Fig.4). 
 

 
Fig.6. Types of requirement transformations  

 
All these transformations follow a same pattern, using 
(Pre)requirements and skills to generate (Post)requirements 
which have to be verified (Fig.7). 
  

 
Fig.7. Transformation pattern 

 
Let R, PreR, PostR and SK the sets of elements manipulated 
during transformations: 
- R = {preR1,…,preRn,postR1,…,postRm}, n N,I    , 
mN,I    , the set of optative requirements;  
 
- PreR = {preR1,…,preRn}, nN,I    , the set of optative re-
quirements to transform, PreR  R; 
- PostR = {postR1,…,postRm}, mN,I    the set of optative 
requirements transformed, PostR  R; 
- SK = {sk0,sk1,…,ski} the set of domain skills. For each 
transformation skill skiSK can have a different role. 

 

Considering these sets, the transformations are defined as: 
- Refinement: the requirement « preRn » refined with the skill 
« ski » produces the refined requirement « postRm ». The skill 
« ski » bridges the gap between « preRn » and « postRm ».  
- Induction: the requirement « preRn » with the skill « ski » 
induce a new requirement « postRm » while retaining the 
requirement « preRn ». « ki » is a skill from which is induced 
« postRm »; 
- Decomposition: (Decomposition_AND, Decomposition_OR 
and Decomposition_XOR) the requirement « preRn » can be 
decomposed into a set of requirements {postRm ,postRm+1,…, 
postRm+n} where n+1 represents the number of decomposi-
tion, using the skill « ski » to justify the decomposition; 
- Composition: (Composition_AND, Composition_OR and 
Composition_XOR) the set of requirements {preRn, preRo,..., 
preRx}» can be composed into a requirement « postRm », 
using the skill « ski » to justify the composition. 
 
For each transformation, a quadruplet token (PreRequire-
ment, TOT, Skill, PostRequirement) is created. PreRequire-
ment is a List[Optative_requirement(i), ID_SR(i)]. TOT is 
the Type Of Transformation completed, Skill is the Skill(i) 
that enabled the transformation. PostRequirement is a 
List[Optative_requirement(j), ID_SR(j)]. 
 - Verification: after each transformation, the compliance of 
the set PostRequirement with the set PreRequirement is veri-
fied. If it is unverified, the set PreRequirement is returned to 
the place Optative requirements. Otherwise if it is verified 
the set PostRequirement is returned, and a quadruplet token 
(PreRequirement, TOT, Skill, PostRequirement) is stored in 
the repository System requirement repository thereby making 
the traceability between the requirements of different levels; 
- Transformation  End: after several transformations, the set 
of optative requirements obtained is, according to the skill 
(Skill(i)), at a system level. Accordingly a token (Opta-
tive_requirement(i),ID_SR(i)) becomes a token (Sys-
tem_requirement(i),ID_SR(i)). Traceability between optative 
and system requirements is ensured because they have same 
identifiers; 



 
 
 

  

- Prescription: during this activity, system requirements 
issued from a same stakeholder requirement are simultane-
ously prescribed to PS for validation. The statement of re-
quirements remains the same but the requirements change 
from state Not Prescribed to Prescribed; 
- Validation: during validation, the client validates all sys-
tems requirements issued from a same stakeholder require-
ment, considering the links between them which are stored in 
the System requirements repository (Fig.8). This is to ensure 
that the SS clearly understands and expresses the stakeholder 
requirements, and that the compromises made are acceptable. 
If it is not validated, a token (Optative_requirement(i), 
ID_SR(i)) is returned in place Optative requirement. This 
optative requirement corresponds to the stakeholder -
requirement described (Stakeholder_requirement(i),ID_SR(i)) 
from which the validation was performed. If it is validated, 
the set of system requirements (System_requirement(i), 
ID_SR(i)) is sent to the place Specification, and changes from 
Not Validated to Validated. Moreover, a couple token 
(List[Stakeholder_requirement(i)], List[System_require-
ment(i)]) is stored in Problem requirement repository. This 
token links stakeholder requirements described and system 
requirements prescribed as answers. 
 

 
Fig.8. System requirements validation 

 

4      WORKFLOW APPLICATION ON A CASE STUDY 
 
The proposed workflow is illustrated on a case study from the 
training center AIP-Primeca Lorraine (http://www.aip-
primeca.net). To be compliant with the French labour code, 
the AIPL develops and implements security systems to pre-
vent risky situations. For example, the power supply of the 6-
axis articulated robot should be cut if a door of its protective 
enclosure is open.   
 
In the PS, this need can be defined by a stakeholder require-
ment: Stakeholder_requirement(1): “Robot power supply 
must be cut if a door of the protective enclosure is open”. A 
token (Stakeholder_requirement(1),[ID_SR(1)]) is put in 
place Stakeholders requirements and is also stored in the 
repository Stakeholders requirements repository.   

 
Fig.9. 6-axis articulated robot with a protective enclosure 

 
Firstly, the PS describes to the SS the couple (Stakehold-
er_requirement(1),[ID_SR(1)]) that becomes the couple 
(Optative_requirement(1),[ID_SR(1)]). Secondly, a Skill(1): 
“The robot is equipped with a power input board with two 
inputs FN1 and FN2 on which is connected a switch installed 
on the door. They enable to cut the power supply of the robot 
if the switch is open” informs that Optative_requirement(1) 
can be refined into a new requirement Opta-
tive_requirement(2) “Security access door enslavement must 
be connected with inputs FN1 and FN2 of  the power input 
board”. Considering the pattern of transformation previously 
defined, we have {PreRequirement = [(Opta-
tive_requirement(1), [ID_SR(1)])], TOT = Refinement, skill 
= Skill(1), PostRequirement = [(Optative_requirement(2), 
[ID_SR(1)])}. This is presented by place “3-
PreRequirement/TOT/Skill/PostRequirement” of (Fig.10), in 
which the contained token means that the Opta-
tive_requirement(1), in connection with the stakeholder re-
quirement of index ID_SR(1), can be refined thanks to 
Skill(1) to produce a new requirement Optative 
_requirement(2) in connection with the stakeholder require-
ment of index ID_SR(1). Once completed the Refinement, the 
correctness of the transformation is checked using verifica-
tion rules. Considering that the transformation is correct, a 
new Optative_requirement(2) is obtained. Moreover a new 
token ([(Optative_requirement(1), [ID_SR(1)])], Refine-
ment,Skill(1),[(Optative_requirement(2), [ID_SR(1)])], [ID_ 
SR(1)]) is put in place “Solution Requirement Repository”, to 
ensure traceability between Optative_requirement(1) and 
Optative_requirement(2) according to the Skill(1). 
 
After transformation, a token (Optative_requirement(2), 
ID_SR(1)) is in place Optative requirements. A skill, Skill(2): 
“Sensors are in the interface between the system to design 
and the environment represented by the robot” defines that 
this requirement is at system-level, accordingly transfor-
mations can be stopped, and this optative requirement be-
comes a system requirement (System_requirement(2), 
ID_SR(1)). Once the SS has defined system requirements to 
answer all initial optative requirements, they are prescribed to 
the PS for validation. Thus, (System_requirement(2), 
ID_SR(1)) is prescribed to PS, and is finally validated with 
respect to the stakeholder requirement (Stakehold-
er_requirement(1),ID_SR(1)) from which it comes. Then, 
(System_requirement(2), ID_SR(1)) is placed in place “Speci-
fication”. Finally, a couple token ([Stakeholder require-
ment(1)], [(System_requirement(2), ID_SR(1))]) is stored in 
place “Problem Requirement Repository” ensuring traceabil-
ity between stakeholder requirement and system requirement. 



 
 
 

  

 
Fig.10. Refinement of requirement Optative_requirement(1) 

from Skill(1) 
 

5      CONCLUSIONS AND PERSPECTIVES 
 
Although these works are preliminary, well formulating basic 
SE constructs is of importance for engineering use as well as 
for training purposes. As example, SysML, the de-facto do-
main-independent system modelling language defined in 
OMG (2010), remains controversial for Model Based Sys-
tems Engineering domain dependent because of its too gen-
eral semantics. Applying our approach leads to improve this 
semantics for specification issues by manipulating modelling 
objects (dependencies, boundary-box,...) based on defined 
constructs as optative-indicative moods, problem-solution 
spaces, World/Domain which turn out to be already efficient 
in practice within the requirement definition process. Current 
work aims to enrich SysML metamodel by stereotyping the 
proposed constructs and by developing new system model-
ling objects. 
 
Transition to more operational context is on-going in order to 
prove the relevance of the proposed workflow at the industri-
al scale. First application is related to railway embedded 
control system, in order to formally control passenger access 
through train door. A second application is related to the 
formal specification of a computer-aided device to improve 
human-based plant operation (Dobre, 2010). 
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