
HAL Id: hal-00702417
https://hal.science/hal-00702417v1

Submitted on 30 May 2012 (v1), last revised 12 Sep 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting the interoperation relationships between
Systems Engineering collaborative processes

Fabien Bouffaron, David Gouyon, Dragos Dobre, Gérard Morel

To cite this version:
Fabien Bouffaron, David Gouyon, Dragos Dobre, Gérard Morel. Revisiting the interoperation relation-
ships between Systems Engineering collaborative processes. 14th IFAC Symposium on Information
Control Problems in Manufacturing, INCOM 2012, May 2012, Bucarest, Romania. pp.190. �hal-
00702417v1�

https://hal.science/hal-00702417v1
https://hal.archives-ouvertes.fr

Revisiting the interoperation relationships between
Systems Engineering collaborative processes

Fabien BOUFFARON, David GOUYON, Dragoş DOBRE, Gérard MOREL

Nancy Research Centre for Automatic Control (CRAN), Lorraine-University, CNRS UMR 7039

Campus Science, BP 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
{fabien.bouffaron; david.gouyon; dragos.dobre; gerard.morel}@univ-lorraine.fr

Abstract:
Systems Engineering (SE) best practices are currently guided by standardized processes which must be
adapted by skill rules in order to specialize domain-dependent SE workflows as well as domain-
independent standardized languages. This paper aims to revisit first the interdisciplinary relationships
within a SE process as specification relationships between Problem Space (PS) and Solution Space (SS)
across collaborative domains. This SE rationale is then applied on a Requirement Specification (RS) work-
flow formalized with high-level Petri nets and verified on a human-robot protection case-study.
Keywords: Systems Engineering, Specification, Domain, Requirement.

1 INTRODUCTION

According to the SEBoK (Pyster et al., 2011), Systems Engi-
neering (SE) is defined as “an interdisciplinary approach and
means to enable the realization of successful systems. It fo-
cuses on holistically and concurrently understanding stake-
holder needs; exploring opportunities; documenting require-
ments; and synthesizing, verifying, validating, and evolving
solutions while considering the complete problem, from sys-
tem concept exploration through system disposal”. These SE
activities are recursively organised according to five views
and iteratively within each view related to “Business”, “Re-
quirement”, “Architecture”, “Integration Verification Valida-
tion Qualification” and “Configuration”. These SE activities
are guided by SE standardized processes as those of
(ISO/IEC 15288, 2008). Overall, SE processes and standard-
ized languages as SysML defined in OMG (2010), are de-
signed as general purpose processes and languages. However
according to Arthurs (2008), “practioners want to solve spe-
cific problems, so the challenge becomes determining what
modelling artefacts to use and how/when to use them effi-
ciently to solve problems”.

Among many mandatory prerequisites such as “system think-
ing” to understand and to apply SE basics, one of the main is
the problem-solution spaces partition which must be formally
defined to become a SE basic construct. This partition means
that any confusion between the roles assigned to any respon-
sible specifying problems and any responsible specifying
solutions would be to the detriment of meeting target system
objectives (AFIS, 2009).

Section 2 states on the iterative and recursive nature of this
problem-solution spaces relationship defined as a specifica-
tion key-artifact for SE right practices. This rationale is ap-
plied in section 3 to propose a generic workflow for the RS
process. This workflow is tested in section 4 on a case-study
related to the protection of human using robot. Section 5,
draws a first assessment of this preliminary approach towards
the transition to the industrial scale.

2 INTEROPERATION RELATIONSHIP WITHIN A
SYSTEMS ENGINEERING PROCESS

This problem-solution spaces basic construct is studied in
software development and automation domains before being
generalized to the SE domain.

2.1 Software development issues

The problem-solution spaces interoperation has been studied
by Berg et al. (2005) for traceability issues across domains
whereas Czarnecki (1998) states that any domain can be
divided into a PS and SS. According to Bjørner (2009), “by a
domain we shall here understand a universe of discourse, an
area of nature subject to laws of physics and study by physi-
cists, or an area of human activity subject to its interfaces
with other domains and to nature”.

This interoperation relationship has been the subject of many
researches in the field of computer science. Hall et al. (2002)
extend the problem frames approach (Jackson, 2001) towards
the Twin Peaks model (Fig.1) in order to define the iterative
nature of the software development process as an iterative
specification between problem and solution structures.

Fig.1. Variation of the Twin Peaks model by

Hall et al. (2002)
Another works within the problem frames approach defined
precisely the nature of a specification (Gunter et al., 2000).
The proposed reference model (Fig.2) gives five artifacts
distributed among the environment domain and the system
domain: the world knowledge W as a description of the rele-
vant environment, the statement of requirements R, the speci-
fication S that mediates between the environment and the
machine, the description of the machine M and the program
P which executed on the machine M implements the specifi-

cation S. In a more general way, the machine M with the
program P represents the system to be constructed. Jackson
(1997) distinguishes two types of description of the environ-
ment: Description optative mood “expresses a condition over
the phenomena of the environment that we wish to make true
by installing the machine” and may be associated with R;
Description indicative mood may be associated with W and
“expresses a condition over the phenomena of the environ-
ment that we know to be true irrespective of the properties
and behaviour of the machine”. The separation between envi-
ronment and system, according to Gunter et al. (2000) allows
the separation of phenomena (states, events, individuals),
owned and controlled by the environment e={ev, eh} or by the
system s={sv, sh} (Fig.2).

Fig.2. A reference model for requirements and specifications

(Gunter et al., 2000)

On the one hand, there are phenomena eh, ev and sv visible to
the environment and used in W and R. On the other hand,
there are phenomena sh, sv and ev visible to the system and
used in P and M. Therefore the specification S is expressed in
the common phenomena sv and ev, and defined by (1):

 , . e s W S R" (1)

Regarding this with a domain engineering point of view,
Bjørner (2010), expressed that “ Before Software can be
designed we must understand the Requirements, and before
Requirements can be expressed we must understand the Do-
main ” and provides a formalization of the specification S in
Domain D (2), where S R means that S is a model of R:
 ,D S R (2)

2.2 Automation issues

The above-mentioned interoperation relationship has been
also studied in the field of automation in order to revisit the
Fusaoka’s automatic control synthesis condition (3)
(Fusaoka, 1983) arguing that the design of any automation
systems consists in prescribing the (unknown) control rules
of the (known) dynamics of a physical system from the be-
havioural (known) goals to be met:
 D ynam ics U nknow n C ontrol Rules G oal É (3)

This weak prescription É is more broadly interpreted by
Lamboley (2001) as a predicate implemented with a B-
method based process:
 C o n tro l S p ecifica tio n P r o cess S p ecifica tio n

S ystem S p ecifica tio n

 (4)

To ensure the a priori correctness of each term of this auto-
mation predicate and their coherence as a whole, Pétin, et al.
(2006) propose a model-driven specification approach ensur-
ing the predicate:

 C OP P S (5)

where the architecture PC PO of automation PC of a process
PO must satisfy the specification S.

2.3 Systems Engineering issues

Dobre (2010) combines recently these above mentioned
works focusing mainly on specialist engineerings in order to
take into account the interdisciplinary process required to
engineer a system as a whole.
The predicate (5) must be re-formulated according to prob-
lem frames approach as:

 C OW P P R (6)

where W represents the context of the system-of-interest
within the existing SS of the domain-of-interest. This inter-
pretation considers that the domain-of-interest (i) is parti-
tioned in two spaces of problem (Psi) and solution (Ssi) and
generalizes this partition to any domain involved in a collabo-
rative SE process. Each interoperation relationship between a
problem space Psa and a solution space Ssb is considered as a
contractual descriptive / prescriptive specification Sab. The
resulting generalized SE specification process applies this
rationale iteratively between Psa and Ssb, and recursively
(Herzog, 2004) during the whole SE process (Fig.3).

Fig.3. Iterative and recursive specification process

3 ITERATIVE INTEROPERATION RELATIONSHIP

FOR REQUIREMENT SPECIFICATION PROCESS

SE process manipulates objects which are structured in met-
amodels. Among these metamodels, the one proposed by
Holt and Perry (2008) places requirements as key objects for
SE. Considering requirements, this section focuses on the
relationship between system domain (seen as a PS) and SE
domain (seen as a SS). It proposes a workflow, based on the
evolution of requirement types and states that we see as an
artifact of SE process, to aid the process of RS. According to
Caron (2005), a requirement type is defined by a “set of rules
characterizing the relationship that the requirement of this
type must or may have with other engineering data”. Re-
quirement state is defined by the fact that “some of these
links are instantiated or not”.

As the workflow is built upon various objects (presented in
section 3.1) and various structured activities (presented in
section 3.2), the language chosen to model it has to be able to

express such specificities. Among candidates, high level Petri
nets have been chosen because they enable to represent the
variety of objects manipulated using colours and indexes, and
to model structured activities using hierarchy in places. This
workflow has then been formalized with CPN Tools (Jensen
et al., 2007).

3.1 Objects used by the workflow

This section defines the various objects used during RS:
- Stakeholder requirement: expresses the expected system
interactions with its environment;
- Skill: is seen as the indicative mood within the meaning of
Jackson (1997). It represents the known properties of system
environment validated by an expert. Skills are required at
each stage of the specification process, and can be for exam-
ple characteristics of good requirements including character-
istics about syntax or semantics (INCOSE, 2010), domain
skills for transformation...
- Optative requirement: expresses a condition that is to be on
the phenomena of the environment domain (Jackson, 1997).
An initial optative requirement corresponds to the description
of a stakeholder requirement. An optative requirement can be
verified or not verified, according to a verification activity
which is detailed in the next section;
- Transformation: corresponds to the requirement modifica-
tion based on SS skills;
- System requirement: a requirement which has to be satisfied
by the future system, prescribed to PS. A system requirement
can have several states: {Not Prescribed, Not Validated},
{Prescribed, Not Validated} and {Not Prescribed, Validated}.
These states are defined by prescription and validation activi-
ties;
- Specification: the set of all system requirements.

A static view of these objects and their relations, due to defi-
nition, description, transformation, prescription and valida-
tion activities, is formalized as a meta-model presented in
(Fig.4). Packages of meta-model represent different reposito-
ries to ensure traceability throughout the process of require-
ment specification.

Fig.4. Meta-model used by the workflow

3.2 Iterative workflow between problem and solution spaces

The activities of RS, which compose the proposed workflow
and are described below, are modelled by hierarchical transi-
tions in a high level Petri net, while sets of requirements,
including repositories, are modelled by places (Fig.5).

Fig.5. Main structure of the iterative workflow proposed for RS

Requirements and skills are represented using tokens, which
colour depends of their type (stakeholder, optative, system
…). Indexes are used to uniquely identify them. In this paper
only places and transitions related to the workflow are
shown. For readability purposes, places allowing the execu-
tion of the model have been hidden.

We propose in this section to define the different activities
performed during the requirement process specification:
- Stakeholder requirement definition: during this activity, PS
defines its need in the form of several stakeholder require-
ments. The definition of a new requirement produces a new
couple token (Stakeholder_requirement(i), ID_SR(i)) in place
Stakeholders requirements. At this stage, ID_SR(i) is redun-
dant information because it represents the identifier of the
stakeholder requirement, but it ensures traceability between
the stakeholder requirement and the different requirements
resulting from transformations of it. Moreover a couple token
(Stakeholder_requirement(i),ID_SR(i)) is stored in place
Stakeholders requirements repository, which represents a
requirement repository ensuring the traceability of stakehold-
ers requirements;
- Description Optative mood: description transforms a stake-
holder requirement (from PS) into an optative requirement
(into SS), but its content is not altered. This change of re-
quirement type expresses that the requirement is addressed in
another space. During description, a token (Stakehold-
er_requirement(i),ID_SR(i)) becomes a token (Opta-
tive_requirement(i),ID_SR(i)). Traceability between stake-
holder and optative requirements is ensured because they
have the same identifier;
- Transformation: we have identified four transformation
mechanisms: refinement, induction, decomposition and com-
position. For the last two, it is possible to add a suffix (AND,
OR, XOR) to precise the relation between the requirements
which are produced or used. For this reason, the transition
“Transformation” of (Fig.5) can be decomposed as presented
in (Fig.6) and an enumeration of types of transformations is
given (Fig.4).

Fig.6. Types of requirement transformations

All these transformations follow a same pattern, using
(Pre)requirements and skills to generate (Post)requirements
which have to be verified (Fig.7).

Fig.7. Transformation pattern

Let R, PreR, PostR and SK the sets of elements manipulated
during transformations:
- R = {preR1,…,preRn,postR1,…,postRm}, n N,I ,
mN,I , the set of optative requirements;

- PreR = {preR1,…,preRn}, nN,I , the set of optative re-
quirements to transform, PreR R;
- PostR = {postR1,…,postRm}, mN,I the set of optative
requirements transformed, PostR R;
- SK = {sk0,sk1,…,ski} the set of domain skills. For each
transformation skill skiSK can have a different role.

Considering these sets, the transformations are defined as:
- Refinement: the requirement « preRn » refined with the skill
« ski » produces the refined requirement « postRm ». The skill
« ski » bridges the gap between « preRn » and « postRm ».
- Induction: the requirement « preRn » with the skill « ski »
induce a new requirement « postRm » while retaining the
requirement « preRn ». « ki » is a skill from which is induced
« postRm »;
- Decomposition: (Decomposition_AND, Decomposition_OR
and Decomposition_XOR) the requirement « preRn » can be
decomposed into a set of requirements {postRm ,postRm+1,…,
postRm+n} where n+1 represents the number of decomposi-
tion, using the skill « ski » to justify the decomposition;
- Composition: (Composition_AND, Composition_OR and
Composition_XOR) the set of requirements {preRn, preRo,...,
preRx}» can be composed into a requirement « postRm »,
using the skill « ski » to justify the composition.

For each transformation, a quadruplet token (PreRequire-
ment, TOT, Skill, PostRequirement) is created. PreRequire-
ment is a List[Optative_requirement(i), ID_SR(i)]. TOT is
the Type Of Transformation completed, Skill is the Skill(i)
that enabled the transformation. PostRequirement is a
List[Optative_requirement(j), ID_SR(j)].
 - Verification: after each transformation, the compliance of
the set PostRequirement with the set PreRequirement is veri-
fied. If it is unverified, the set PreRequirement is returned to
the place Optative requirements. Otherwise if it is verified
the set PostRequirement is returned, and a quadruplet token
(PreRequirement, TOT, Skill, PostRequirement) is stored in
the repository System requirement repository thereby making
the traceability between the requirements of different levels;
- Transformation End: after several transformations, the set
of optative requirements obtained is, according to the skill
(Skill(i)), at a system level. Accordingly a token (Opta-
tive_requirement(i),ID_SR(i)) becomes a token (Sys-
tem_requirement(i),ID_SR(i)). Traceability between optative
and system requirements is ensured because they have same
identifiers;

- Prescription: during this activity, system requirements
issued from a same stakeholder requirement are simultane-
ously prescribed to PS for validation. The statement of re-
quirements remains the same but the requirements change
from state Not Prescribed to Prescribed;
- Validation: during validation, the client validates all sys-
tems requirements issued from a same stakeholder require-
ment, considering the links between them which are stored in
the System requirements repository (Fig.8). This is to ensure
that the SS clearly understands and expresses the stakeholder
requirements, and that the compromises made are acceptable.
If it is not validated, a token (Optative_requirement(i),
ID_SR(i)) is returned in place Optative requirement. This
optative requirement corresponds to the stakeholder -
requirement described (Stakeholder_requirement(i),ID_SR(i))
from which the validation was performed. If it is validated,
the set of system requirements (System_requirement(i),
ID_SR(i)) is sent to the place Specification, and changes from
Not Validated to Validated. Moreover, a couple token
(List[Stakeholder_requirement(i)], List[System_require-
ment(i)]) is stored in Problem requirement repository. This
token links stakeholder requirements described and system
requirements prescribed as answers.

Fig.8. System requirements validation

4 WORKFLOW APPLICATION ON A CASE STUDY

The proposed workflow is illustrated on a case study from the
training center AIP-Primeca Lorraine (http://www.aip-
primeca.net). To be compliant with the French labour code,
the AIPL develops and implements security systems to pre-
vent risky situations. For example, the power supply of the 6-
axis articulated robot should be cut if a door of its protective
enclosure is open.

In the PS, this need can be defined by a stakeholder require-
ment: Stakeholder_requirement(1): “Robot power supply
must be cut if a door of the protective enclosure is open”. A
token (Stakeholder_requirement(1),[ID_SR(1)]) is put in
place Stakeholders requirements and is also stored in the
repository Stakeholders requirements repository.

Fig.9. 6-axis articulated robot with a protective enclosure

Firstly, the PS describes to the SS the couple (Stakehold-
er_requirement(1),[ID_SR(1)]) that becomes the couple
(Optative_requirement(1),[ID_SR(1)]). Secondly, a Skill(1):
“The robot is equipped with a power input board with two
inputs FN1 and FN2 on which is connected a switch installed
on the door. They enable to cut the power supply of the robot
if the switch is open” informs that Optative_requirement(1)
can be refined into a new requirement Opta-
tive_requirement(2) “Security access door enslavement must
be connected with inputs FN1 and FN2 of the power input
board”. Considering the pattern of transformation previously
defined, we have {PreRequirement = [(Opta-
tive_requirement(1), [ID_SR(1)])], TOT = Refinement, skill
= Skill(1), PostRequirement = [(Optative_requirement(2),
[ID_SR(1)])}. This is presented by place “3-
PreRequirement/TOT/Skill/PostRequirement” of (Fig.10), in
which the contained token means that the Opta-
tive_requirement(1), in connection with the stakeholder re-
quirement of index ID_SR(1), can be refined thanks to
Skill(1) to produce a new requirement Optative
_requirement(2) in connection with the stakeholder require-
ment of index ID_SR(1). Once completed the Refinement, the
correctness of the transformation is checked using verifica-
tion rules. Considering that the transformation is correct, a
new Optative_requirement(2) is obtained. Moreover a new
token ([(Optative_requirement(1), [ID_SR(1)])], Refine-
ment,Skill(1),[(Optative_requirement(2), [ID_SR(1)])], [ID_
SR(1)]) is put in place “Solution Requirement Repository”, to
ensure traceability between Optative_requirement(1) and
Optative_requirement(2) according to the Skill(1).

After transformation, a token (Optative_requirement(2),
ID_SR(1)) is in place Optative requirements. A skill, Skill(2):
“Sensors are in the interface between the system to design
and the environment represented by the robot” defines that
this requirement is at system-level, accordingly transfor-
mations can be stopped, and this optative requirement be-
comes a system requirement (System_requirement(2),
ID_SR(1)). Once the SS has defined system requirements to
answer all initial optative requirements, they are prescribed to
the PS for validation. Thus, (System_requirement(2),
ID_SR(1)) is prescribed to PS, and is finally validated with
respect to the stakeholder requirement (Stakehold-
er_requirement(1),ID_SR(1)) from which it comes. Then,
(System_requirement(2), ID_SR(1)) is placed in place “Speci-
fication”. Finally, a couple token ([Stakeholder require-
ment(1)], [(System_requirement(2), ID_SR(1))]) is stored in
place “Problem Requirement Repository” ensuring traceabil-
ity between stakeholder requirement and system requirement.

Fig.10. Refinement of requirement Optative_requirement(1)

from Skill(1)

5 CONCLUSIONS AND PERSPECTIVES

Although these works are preliminary, well formulating basic
SE constructs is of importance for engineering use as well as
for training purposes. As example, SysML, the de-facto do-
main-independent system modelling language defined in
OMG (2010), remains controversial for Model Based Sys-
tems Engineering domain dependent because of its too gen-
eral semantics. Applying our approach leads to improve this
semantics for specification issues by manipulating modelling
objects (dependencies, boundary-box,...) based on defined
constructs as optative-indicative moods, problem-solution
spaces, World/Domain which turn out to be already efficient
in practice within the requirement definition process. Current
work aims to enrich SysML metamodel by stereotyping the
proposed constructs and by developing new system model-
ling objects.

Transition to more operational context is on-going in order to
prove the relevance of the proposed workflow at the industri-
al scale. First application is related to railway embedded
control system, in order to formally control passenger access
through train door. A second application is related to the
formal specification of a computer-aided device to improve
human-based plant operation (Dobre, 2010).

6 REFERENCES

AFIS (2009), Discover and understand systems engineering

(v3), Association Française d’Ingénierie Systèm (in french).
Arthurs, G (2008), Model-Based System Engineering, Ele-

ments for deploying an Efficient Development Environ-
ment, Telelogic White paper, IBM Company.

Berg, K., Bishop, J. (2005). Tracing Software Product Line
Variability – From Problem to Solution Space. 2005 annual
research conference of the South African institute of com-

puter scientists and information technologists on IT re-
search in developing countries, White River, South Africa.

Bjørner, D. (2009). From Domains to Requirements. On a
Triptych of Software Development.
www.complang.tuwien.ac.at/bjorner/book.pdf

 Bjørner, D. (2010). Domain engineering. In Formal Meth-
ods;State of the Art and New Directions, P. Boca, J. P.
Bowen, and J. I. Siddiqi, Eds. Springer-Verlag, London, pp.
1-41, ISBN 978-1848827356.

Caron, F. (2005), Collaborative management of engineering
data system, Génie logiciel, 75, pp. 2–6, (in french).

Czarnecki, K. (1998), Generative programming. Principles
and Techniques of Software Engineering Based on Auto-
mated Configuration and Fragment-Based Component
Models, PhD thesis, Technical University of Ilmenau.

Dobre, D. (2010), Contribution to the modelling of an inter-
active system driving assistance of an industrial process,
PhD thesis (in french), Nancy University.

Fusaoka, A., Saki H., Takahashi, A. (1983). Description and
reasoning of plant controllers in temporal logic. Interna-
tional Joint Conference on Artificial Intelligence. Karlsruhe
8-12/09, pp. 405-408

Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P. (2000), A
reference model for requirements and specifications, IEEE
Software, 17 (3), pp. 37–43.

Hall, J.G., Jackson, M.A., Laney, R.C, Nusbeibeh, B., Ra-
panotti, L. (2002). Relating Software Requirements and Ar-
chitectures using Problem Frames, IEEE RE 2002.

Herzog, E. (2004), An approach to systems engineering tool
data representation and exchange, PhD thesis, Linköping
University.

Holt, J., Perry, S. (2008). SysML for Systems Engineering
Using a Model-Driven Development Approach. White Pa-
per, I_Logix, Andover, MA.

INCOSE (2010), Systems Engineering Handbook : a guide
for system life cycle processes and activities (v 3.2.1), In-
ternational Council on Systems Engineering.

ISO/IEC 15288 (2008). Systems and software engineering –
System life cycle processes. International Organisation for
Standardization.

Jackson, M. (1997), The meaning of requirements, Annals of
Software Engineering, 3 (1), pp. 5–21.

Jackson, M. (2001), Problem Frames: Analysing & Structur-
ing Software Development Problems, ISBN 020159627X

Jensen, K., Kristensen, L.M., Wells, L. (2007), Coloured
Petri Nets and CPN Tools for modelling and validation of
concurrent systems, International Journal on Software
Tools for Technology Transfer, 9(3), pp. 213–254.

Lamboley, P. (2001), Production systems automation formal
method proposal, PhD thesis (in french), Nancy University.

OMG, (2010), OMG Systems Modeling Language (OMG
SysML) (v1.2).

Pétin, J.-F., Morel, G., Panetto, H. (2006), Formal specifica-
tion method for production systems automation, European
Journal of Control 12 (2), pp. 115-130.

Pyster, A., Olwell, D., Squires, A., Hutchison, N., Enck, S.,
Eds. (2011) A Guide to the Systems Engineering Body of
Knowledge (SEBoK). Version 0.5. Stevens Institute of
Technology, Hoboken, NJ, USA.

