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ABSTRACT
In [1], the authors have approached the sphere-like surfaces
using the tensor product of an algebraic cubic spline quasi-
interpolant with a 2π-periodic Uniform Algebraic Trigono-
metric B-splines (UAT B-splines) of order four. In this pa-
per, we improve the results given in [1], by introducing a
new quasi-interpolant based on the tensor product of an al-
gebraic cubic spline quasi-interpolant with a periodic cubic
spline quasi-interpolant, obtained by the periodization of an
algebraic cubic spline quasi-interpolant. Our approach allows
us to obtain an approximating surface which is of class C2

and with an approximation order O(h4). We show that this
method is particularly well designed to render 3D closed sur-
faces, and it has been successfully applied to reconstruct hu-
man organs such as the left ventricle of the heart.

Index Terms— B-spline, Quasi-interpolant, Sphere-like
surface, Medical imaging.

1. INTRODUCTION

Let S be a sphere-like surface, i.e. a surface of R3 which
is topologically equivalent to a sphere. Assume that we have
a set of scattered points P1, . . . , Pd located on S , along with
real numbers r1, . . . , rd associated with each of these points.
As in practice these numbers are derived, in general, from ex-
periments and are almost always noisy, we are interested in
this paper to find a function F defined on S which approxi-
mates them in the sense that

F (Pi) ' ri, 1 ≤ i ≤ d. (1)

Data fitting problems where the underlying domain is a
sphere-like surface arise in many areas, including e.g. geo-
physics and meteorology where S is taken as a model of earth
(see [6]), and in medical modeling where S may be the sur-
face of a human organ like heart, lung, bladder, kidney, etc.
In most of these applications, the function F is constructed
so that its associated closed surface SF = {F (s)s, s ∈ S} is
at least continuous. In some cases, the C1 or C2 continuity is
required.

Several methods have been proposed in the literature in
the past fifteen years for fitting scattered data on sphere-like

surfaces. For a survey of these methods on the sphere see [6]
and references therein. Some other methods based on specific
techniques have been developed in [7], [8], [9], [10], [11] and
[12].

Among the methods developed for solving Problem (1)
and based on quasi-interpolants, we encounter tensor spline
methods. The principle of these methods consists in conver-
ting Problem (1) to one defined on a rectangle. More speci-
fically and without loss of generality, when the surface S is
the unit sphere, it can be identified with the rectangle H =
[−π

2 , π
2 ]× [0, 2π] by the mapping χ defined by

χ : H −→ S

(θ, φ) −→



cos(θ)cos(φ)
cos(θ)sin(φ)

sin(θ)


 .

The representation f of F in polar coordinates, defined on
H by f = Foχ, is identical to that of F , i.e. Sf = SF =
{f(θ, φ)χ(θ, φ), (θ, φ) ∈ H}. However, the smoothness pro-
perties of f are not equivalent to those of its corresponding
closed surface Sf . More specifically, the surface Sf = SF is
of class Cp, p = 0, 1, 2, on S if and only if f ∈ Cp and
satisfies the following (2p + 2) conditions :

f(θ, 0) = f(θ, 2π), (C1)

f(±π

2
, φ) = c±, (C2)

∂f

∂φ
(θ, 0) =

∂f

∂φ
(θ, 2π), (C3)

∂f

∂θ
(±π

2
, φ) = a±cos(φ) + b±sin(φ), (C4)

∂2f

∂φ2
(θ, 0) =

∂2f

∂φ2
(θ, 2π), (C5)

∂2f

∂θ2
(±π

2
, φ) = d± + e±cos(2φ) + f±sin(2φ), (C6)

with a±, b±, c±, d±, e± and f± are real constants (see [2]).
Now, if we set Fp = {f ∈ Cp(H) : conditions (C1) −

(C2p+2) hold}, then the problem of finding F such that SF

is of class Cp and satisfies F (Pi) ' ri, 1 ≤ i ≤ d, be-
comes equivalent to finding f belonging to Fp and satisfies



f(θi, φi) ' ri, 1 ≤ i ≤ d, where (θi, φi) are the polar coor-
dinates of Pi, i.e. χ(θi, φi) = Pi.
Since the problem is now posed on a rectangular domain, it is
natural to use a tensor spline method. Then, in this case, the
quasi-interpolant emanating from such method for approxi-
mating f has the following form

f̃(θ, φ) =
m∑

i=1

n∑

j=1

ci,jvi(θ)ṽj(φ) (2)

where {v1, . . . , vm} (resp. {ṽ1, . . . , ṽn}) is a linearly inde-
pendent set of functions on [−π

2 , π
2 ] (resp. on [0, 2π]).

In Section 2, we give some preliminary results on cubic
polynomial B-splines and we construct an associated quasi-
interpolant of order four. In Section 3, we construct the per-
iodic quasi-interpolant based on cubic polynomial B-splines
of order four. Section 4, is devoted to the construction of a lo-
cal quasi-interpolant on the sphere. Finally, in Section 5, we
illustrate the performance of the method with some numerical
tests (see Figure 2 and Figure 3) and applications to the left
ventricle of the heart (see Figure 5).

2. QUASI-INTERPOLANT BASED ON CUBIC
POLYNOMIAL B-SPLINES

In this section we construct a quasi-interpolant based on
cubic polynomial B-splines which will be used in Section 4.
For I = [−π

2 , π
2 ] and a given positive integer n, let Θn =

{θi}n+3
i=−3, with mesh length h = π

n , be a uniform partition of
the interval I defined by





θi = −π
2 + ih for i = 0, ..., n

θ−3 = θ−2 = θ−1 = −π
2

θn+1 = θn+2 = θn+3 = π
2

The associated polynomial spline space of order 4 is defined
by

S4(I, Θn) = {s ∈ C2 : s|[θi,θi+1] ∈ P3},
where P3 is the polynomial space of degree ≤ 3. The clas-
sical normalized cubique B-splines B4

i satisfy supp(B4
i ) =

[θi, θi+4] and B4
i (θ) > 0, for θi < θ < θi+4. They form

a partition of unity, i.e.
∑n+3

i=1 B4
i (θ) = 1 and the family

{B4
i , i = 1, . . . , n + 3} forms a basis of S4(I,Θn).

We now construct a local linear operator Q1 which maps a
given function f onto the cubic spline space S4(I, Θn) and
which has an optimal approximation order. This operator is
the C2 cubic spline quasi-interpolant defined by

Q1f :=
n+3∑

i=1

µi(f)B4
i , (3)

where the coefficients µi(f) are defined as linear combina-
tions of some values and derivatives of f on the set Θn in
order to have the exactness of the quasi-interpolantQ1 on P3,

i.e. Q1p = p, for all p ∈ P3.
More specifically, these coefficients are defined as follows

µ1(f) = f(−π

2
),

µ2(f) = f(−π

2
) +

h

3
f ′(−π

2
),

µ3(f) = f(−π

2
) + hf ′(−π

2
) +

h2

3
f ′′(−π

2
),

µi(f) =
1
6
(−f(θi−3) + 8f(θi−2)− f(θi−1)), 4 ≤ i ≤ n,

µn+1(f) = f(
π

2
)− hf ′(

π

2
) +

h2

3
f ′′(

π

2
),

µn+2(f) = f(
π

2
)− h

3
f ′(

π

2
),

µn+3(f) = f(
π

2
).

Using classical theorems of approximation, see for example
[3], we can easily prove that

‖Q1f − f‖∞,I = O(h4).

3. PERIODIC QUASI-INTERPOLANT BASED ON
CUBIC POLYNOMIAL B-SPLINES

In this section we construct a periodic quasi-interpolant
based on cubic polynomial B-splines. It is obtained by the
periodization of the quasi-interpolant introduced in Section 2.
More precisely, for J = [0, 2π] and a given positive integer
m, let Φm = {φj}m+3

j=−3, with mesh length k = 2π
m , be a

uniform partition of the interval J defined by




φj = jk for j = 0, ...,m
φ−3 = φm−3, φ−2 = φm−2, φ−1 = φm−1

φm+3 = φ3, φm+2 = φ2, φm+1 = φ1

Then, this quasi-interpolant, can be written in the form

Q2f :=
m+3∑

j=1

νj(f)B4
j , (4)

where

νj(f) =
1
6
(−fj−3 + 8fj−2 − fj−1), for 1 ≤ j ≤ m + 3,

and fj = f(φj), ∀j.
It easy to see that for any periodic fonction f ∈ C4(J) of
period 2π we have

‖Q2f − f‖∞,J ≤ Ck4‖f (4)‖∞,J ,

where C is a constant independent of m (see [4]).



4. QUASI-INTERPOLANT ON THE SPHERE

Now, we construct in this section a quasi-interpolant Q
obtained by the tensor product of Q1 and Q2 defined in the
preceding sections. This quasi-interpolant is given by

Qf(θ, φ) :=
n+3∑

i=1

m+3∑

j=1

µi(νj(f))B4
i (θ)B4

j (φ) (5)

where
f ∈ F2 = {s ∈ C2(H) : conditions (C1)− (C6) hold}.

It is obvious that this local linear operator Qf is of class
C2 on H and with an approximation ordre O(h4).

5. NUMERICAL RESULTS AND APPLICATIONS TO
MEDICAL IMAGING

5.1. Comparaison and application to synthetic data

To test the general performance of our method on synthe-
tic data, we use the following function f defined explicitly on
the rectangular domain H by

f(θ, φ) =
3∑

i=1

(gi(θ, φ))−1/2,

where
gi(θ, φ) =

(
cos(θ)cos(φ)

αi

)2

+
(

cos(θ)sin(φ)
αi+1

)2

+
(

sin(θ)
αi+2

)2

with
(α1, α2, α3, α4, α5) = (5, 1, 2, 5, 1), (see Figure 1).
It is easy to verify that f ∈ {s ∈ C2(H) : conditions
(Ci) are satisfied, ∀i = 1, ..., 6} (see [5]).

We present in the following table a comparison on the
error and the computation time corresponding to the quasi-
interpolant Q and the quasi-interpolant Q̃ studied in [1], for
different values of m and n.

m n Mean Square Error (MSE) Computation time (seconds)
Q̃ Q Q̃ Q

50 50 1.2639 0.1326×10−3 1.2734 0.0432
100 100 0.8505 0.0347×10−3 9.1892 0.0786
150 150 0.7126 0.0156×10−3 30.2975 0.1214
200 200 0.6437 0.0089×10−3 71.7041 0.1797
250 250 0.6023 0.0058×10−3 139.4654 0.2431
300 300 0.5747 0.0040×10−3 247.4534 0.3272
350 350 0.5550 0.0029×10−3 393.1402 0.4160
400 400 0.5402 0.0023×10−3 602.9566 0.5121

Table 1. The MSE and the computation time of the quasi-
interpolant Q compared with the quasi-interpolant Q̃ given
in [1].

Definition 1 The MSE between Sf and SQf was calculated
as follow :

MSE =
1

n.m

n∑

i=1

m∑

j=1

(Qf(θi, φj)− f(θi, φj))2,

where n and m represent the mesh sizes.

In the following figures, we illustrate the graph of the clo-
sed surface associated with f (see Figure 1), and The graph
of the closed surface associated with Qf for m = n = 8
and m = n = 16 (see Figure 2 and Figure 3). We notice
that the reconstructed surface is closer to the originale one for
m = n = 16 than for m = n = 8.
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Fig. 1. The graph of the closed surface associated with f .
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Fig. 2. The graph of the closed surface associated with Qf
for n = 8 and m = 8.
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Fig. 3. The graph of the closed surface associated with Qf
for n = 16 and m = 16.



5.2. Application to medical imaging

Medical imaging provides an ideal field to test the validity
of our quasi-interpolation method. For example, the left ven-
tricle of the human heart is a muscle hollow area that can be
considered closed. In this regard, we consider 1024 points of
the real surface of the left ventricle. So that we can reconstruct
the closed surface associated with the left ventricle using our
quasi-interpolant Q (see Figure 5). We first convert the data
on the rectangle H using the application χ. Then, we apply
the method of least squares that distributes these data evenly
over the rectangle H (see Figure 4). Finally, we reconstruct
the closed surface associated with these data using the quasi-
interpolants Q.
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Fig. 4. Surface mesh on the rectangleH obtained by using the
least squares method.

Fig. 5. The closed surface associated with the left ventricle
using our quasi-interpolant Q.
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