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HAL is

challenges, for instance when it comes to quantify lengths of curves or to detect points in imaging (see e.g. G. Aubert, L. Blanc-Féraud and R. March [START_REF] Aubert | An approximation of the Mumford-Shah energy by a family of discrete edge-preserving functionals[END_REF] about the implementation of the Mumford-Shah functional [START_REF] Mumford | Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems[END_REF] by means of Γ-convergence [START_REF] Braides | Gamma-Convergence for beginners[END_REF] and more recently D. Graziani, L. Blanc-Féraud, G. Aubert [START_REF] Graziani | A formal Γ-convergence approach for the detection of points in 2-D images[END_REF] about the detection of points in a 2D-image).

Investigating to what extend capacities may serve as alternatives for Hausdorff measures, not only the positivity of capacities becomes an issue. So does the ability to estimate and to approximate the values of such capacities. Moreover, looking towards applications, the relevant domain is more often a bounded domain Ω. Thus one cannot a priori dismiss the subsequent need to consider the capacity of a set within a given bounded domain, instead of doing so in the whole space R d .

The purpose of this article is to start answering such questions. To introduce its goals and results, we first need to recall basic facts about condenser capacities. In all this article, let The number C p,d (K, Ω) is the condenser p-capacity of the condenser (K, Ω).

Using an approximation argument, the set W (K, Ω) can be replaced in Definition 1.1 by the larger set W 0 (K, Ω) := u ∈ W 1,p 0 (Ω) ∩ C(Ω) : u ≥ 1 in K . The compact K will be called the 'internal part' of the condenser and a function u ∈ W 0 (K, Ω) an admissible function for the condenser. For simplicity, we henceforth drop the word 'condenser' and simply say 'p-capacity' instead of 'condenser p-capacity' when no confusion is possible. Similarly we drop the d of C p,d (K, Ω) simply writing C p (K, Ω) whenever no confusion is possible about the dimension of the ambient space.

Condenser capacities comply with Choquet's definition since [START_REF] Heinonen | Non linear Potential Theory of Degenerate Elliptic Equations[END_REF],

Theorem 1.2. The set function K → C p (K, Ω), where K is a compact included in the domain Ω ⊂ R d , enjoys the following properties:

(i) (Monotony) If K 1 ⊂ K 2 ⊂ Ω then C p (K 1 , Ω) ≤ C p (K 2 , Ω). (ii) (Monotony) If K ⊂ Ω 1 ⊂ Ω 2 then C p (K, Ω 2 ) ≤ C p (K, Ω 1 ). (iii) (Subadditivity) If K 1 ⊂ Ω and K 2 ⊂ Ω then C p (K 1 ∪ K 2 , Ω) + C p (K 1 ∩ K 2 , Ω) ≤ C p (K 1 , Ω) + C p (K 2 , Ω).
(iv) (Descending continuity) If (K n ) n≥0 is a decreasing sequence of compact subsets of Ω, that is

Ω ⊃ K 0 ⊃ K 1 ⊃ • • • ⊃ K n ⊃ K n+1 ⊃ • • • and K := ∩ n≥0 K n , then C p (K, Ω) = lim n→+∞ ↓ C p (K n , Ω).
(v) (Ascending continuity) If (K n ) n≥0 is an ascending sequence of compact subsets of Ω and if K := ∪ n≥0 K n is compact, then

C p (K, Ω) = lim n→+∞ C p (K n , Ω).
1.3. Goals and results of the article. One a priori expects the condenser capacity of (K, Ω) to depend on the shape of K but also on its localization in Ω and on the shape and size of Ω. For instance let a point {x 0 } ⊂ Ω ⊂ R 2 we shall see that C 3 ({x 0 } , Ω) > 0 while

C 3 ({x 0 } , R 2 ) = 0. Moreover it is easy to see that C p (K, Ω) = 0 implies c p (K) = 0 and accordingly c p (K) > 0 implies C p (K, Ω) > 0. Then if follows from rule (1.1) that if K be a compact submanifold of dimension k, with k > d -p, then C p (K, Ω) > 0. But if k ≤ d -p, is C p (K, Ω
) positive or null? Heinonen et al. [START_REF] Heinonen | Non linear Potential Theory of Degenerate Elliptic Equations[END_REF] provide two positivity results which do not apply when the bounded domain Ω is given once for all. Furthermore, while variational capacities in R d were extensively studied, estimates of condenser capacities in a given domain Ω remain mostly, to our best knowledge, to be obtained. Only the capacities of spherical condensers were calculated explicitly in the literature ( [START_REF] Heinonen | Non linear Potential Theory of Degenerate Elliptic Equations[END_REF] or [START_REF] Maz'ya | Sobolev Spaces[END_REF]).

Therefore the present article focuses on condenser capacities of points and segments in a given bounded domain Ω. While the case of a point may partly be asymptotically reduced to the study an isotropic p-Laplace equation, the perturbation entailed by a segment-shaped obstacle in the p-Laplace equation leads to consider a strongly anisotropic problem. Most available results regarding p-Laplace problems address the case of isolated singularities (Serrin [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF][START_REF] Serrin | Singularities of solutions of nonlinear equations[END_REF], Kichenassamy & Véron [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF] and for a recent review Véron [START_REF] Véron | Singular p-harmonic functions and related quasilinear equations on manifolds, Luminy conference on Quasilinear Ellipctic and Parabolic Equations and Systems[END_REF]). Anisotropic p-harmonic functions in the form u(x) = |x| λ ω(x/ |x|), where λ ∈ R and ω is defined on S d-1 , were studied for quasilinear equations with Dirichlet conditions in domains with conical boundary points (see Tolksdorf [START_REF] Tolksdorf | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF] and Porretta & Véron [START_REF] Porretta | Separable p-harmonic functions in a cone and related quasilinear equations on manifolds[END_REF]). But the effect of the anisotropy induced in the p-Laplace equation by a prolate ellipsoid or a segment obstacle, has not yet been calculated.

In the preliminary section, we show how to calculate a condenser p-capacity by solving a p-Laplace equation with Dirichlet condition and we provide asymptotic bounds to the pcapacity of any condenser of which the internal part has a non-empty interior. We give a direct proof of the positivity rule for capacities of points. For approximation purposes we provide the speed of descent of the p-capacities of balls down to that of a point.

Then our main contribution is to introduce the definition of equidistant condensers and to implement a new method to prove the positivity rule for capacities of segments in a given bounded domain in section 3. We illustrate how the equidistant condensers method might be applied to compact submanifolds of higher dimensions. The purpose of section 4 is then to estimate condenser capacities of segments, when positive. For such estimating purposes, we introduce elliptical condensers. In the linear case p = d = 2, we obtain a sharp estimate and the asymtotic expansion of the condenser capacity of the segment. In the general case p > 1, p = 2, we briefly discuss how elliptic condensers might prove useful for numerical computations. 

     -∆ p (u) = 0 in Ω\K u = 1 on ∂K u = 0 on ∂Ω (2.1)
where ∆ p denotes the p-Laplace operator ∆ p (u) := div(|∇u| p-2 ∇u). Assuming that both Ω and K have smooth C 1 -boundaries, questions about existence, unicity and regularity of solution to Problem (2.1) are well known. According to Lindqvist [START_REF] Lindqvist | Notes on the p-Laplace equation[END_REF], Problem (2.1) admits a unique solution u ∈ W 1,p (Ω\K). One equivalently defines u as being the unique function that minimizes the functional J(v) := Ω\K |∇v| p in the affine space g + W 1,p 0 (Ω\K), where g ∈ C ∞ 0 (Ω) is chosen such that g = 1 on a neighborhood of K. In addition after Tolksdorf [START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF] or Wang [START_REF] Wang | Compactness methods for certain degenerate elliptic equations[END_REF], u is continuous in Ω\K (after a redefinition in a set of zero measure) and u is C 1 in Ω\K. In particular we have u = 0 on ∂Ω and u = 1 on ∂K pointwise. Proposition 2.1. Let K be a compact set of a bounded domain Ω ⊂ R d , both with C 1boundaries and let u ∈ W 1,p (Ω\K) ∩ C Ω\K be the unique solution to Problem (2.1). Then

C p (K, Ω) = Ω\K |∇u| p .
Proof. Let ũ be the extension of u in Ω obtained by setting ũ = 1 in K. Clearly ∇ũ = 0 in K and ũ ∈ W 1,p 0 (Ω) ∩ C(Ω). Thus ũ is admissible for (K, Ω). Hence C p (K, Ω) ≤ Ω |∇ũ| p = Ω\K |∇u| p . Conversely, according to definition (1.1), let (u n ) n≥0 a sequence ⊂ W (K, Ω) such that

C p (K, Ω) = lim n→+∞ Ω
|∇u n | p . Define w n := inf(u n , 1) in Ω. It follows e.g. from [START_REF] Heinonen | Non linear Potential Theory of Degenerate Elliptic Equations[END_REF] Theorem 1.20 that w n ∈ W 1,p 0 (Ω) ∩ C (Ω) and that |∇w n (x)| ≤ |∇u n (x)| for almost all x ∈ Ω. In addition u n ≥ 1 in K implies that w n = 1 in K and ∇w n = 0 in K. Thus

w n ∈ W 0 (K, Ω) with Ω |∇w n | p ≤ Ω |∇u n | p . Let v n
be the restriction of w n to Ω\K. We check that v ng ∈ W 1,p 0 (Ω\K). Hence for all n ≥ 1:

J(u) = Ω\K |∇u| p ≤ Ω\K |∇v n | p ≤ Ω |∇w n | p ≤ Ω |∇u n | p .
Letting n → +∞ yields the second required inequality.

Let v ∈ W 1,p (Ω\K) ∩ C(Ω\K) such that v = 0 on ∂Ω and v = 1 on ∂K. Let ṽ be the extension of v in Ω obtained by setting ṽ = 1 in K. Clearly ṽ is admissible for the condenser (K, Ω) in the sense of Definition 1.1. Hence by extension we say that function v is admissible for the condenser (K, Ω).

If boundaries ∂K or ∂K are not C 1 , then thanks to the two monotony properties (i) and (ii) of Theorem 1.2, we shall be able to estimate C p (K, Ω) as long as K and Ω can be properly approximated respectively by (a sequence of) some other compact and open sets with C 1boundaries to which we may in turn apply Proposition 2.1. This approximation technique will be applied in subsection 2.3 hereafter.

2.2.

Solutions for spherical condensers and asymptotic expansions. We shall need the explicit value of the admissible function minimizing the energy and the asymptotic expansion of the capacity when the radius of the internal ball tends towards zero. So let a point x 0 ∈ R d , two numbers 0 < ε < R and the concentric balls B ε := B(x 0 , ε) and B R := B(x 0 , R). 

(x 0 , ε), B(x 0 , R) and r = |x -x 0 | for x ∈ B R \B ε . If p = d, then for all x ∈ B R \B ε we have:      s p,d (x) = [ln(R/r)/ ln(R/ε)] , |∇s p,d (x)| = [r ln(R/ε)] -1 , C p (ε, R) = A d-1 [ln(R/ε)] 1-p ,
and for ε > 0 small enough:

C p (ε, R) = A d-1 [-ln ε] 1-p [1 + (p -1)(ln R/ ln ε) + o (1/ ln ε)] . If p = d, then for all x ∈ B R \B ε we have:        s p,d (x) = (R β -r β )/(R β -ε β ), |∇s p,d (x)| = β R β -ε β r β-1 , C p (ε, R) = A d-1 |β| p-1 R β -ε β 1-p , and for ε > 0 small enough    C p (ε, R) = A d-1 β p-1 R d-p 1 + (p -1) (ε/R) β + o ε β if p > d, C p (ε, R) = A d-1 (-β) p-1 ε d-p 1 + (p -1) (ε/R) -β + o ε -β if p < d.
The proof is obtained solving Problem (2.1) in spherical coordinates and then applying Proposition 2.1. Asymptotic expansions easily follow.

2.3.

Internal parts with non-empty interior and asymptotic expansions. Thanks to the descending continuity property (iv) of Theorem 1.2, one can approximate the capacity of a condenser of which the internal part has an empty interior, by capacities of condensers of which the internal parts have non-empty interiors with sizes tending towards zero. Hence it is useful to provide asymptotic inequalities of capacities for the latter type of condensers (see figure [START_REF] Adams | Function Spaces and Potential Theory[END_REF]).

∂Ω ∂ω ε R 2 r = ρ 2 ε R 1 x 0 r = ρ 1 ε ∂ω O ρ 2 ρ 1 ω Figure 1. An internal part ω ε with a non-empty interior in a bounded domain Ω. Let a point x 0 ∈ Ω, R 1 := sup {R > 0; B(x 0 , R) ⊂ Ω} > 0 and R 2 := inf {R > 0; Ω ⊂ B(x 0 , R)}.
Let a non-empty bounded domain ω ⊂ R d such that 0 ∈ ω and the two numbers ρ 1 := sup {ρ > 0; B(x 0 , ρ) ⊂ ω} and ρ 2 := inf {ρ > 0; ω ⊂ B(x 0 , ρ)}. Lastly set ω ε := x 0 + ε • ω ⊂ B(x 0 , R 1 ) for ε small enough and consider the condenser (ω ε , Ω).

Proposition 2.3. The following asymptotic inequalities hold. If p = d, then:

-

A d-1 (p -1) ln(R 2 /ρ 1 ) [-ln ε] -p + o [ln ε] -p ≤ C p (ω ε , Ω) -A d-1 [-ln ε] 1-p ≤ -A d-1 (p -1) ln(R 1 /ρ 2 ) [-ln ε] -p + o [ln ε] -p . If p > d, then: A d-1 β p-1 R d-p 2 1 + (p -1) (ρ 1 ε/R 2 ) β + o ε β ≤ C p (ω ε , Ω) ≤ A d-1 β p-1 R d-p 1 1 + (p -1) (ρ 2 ε/R 1 ) β + o ε β .
If p < d, then:

A d-1 (-β) p-1 (ρ 1 ε) d-p 1 + (p -1) (ρ 1 ε/R 2 ) -β + o ε -β ≤ C p (ω ε , Ω) ≤ A d-1 (-β) p-1 (ρ 2 ε) d-p 1 + (p -1) (ρ 2 ε/R 1 ) -β + o ε -β .
The proof is obtained noticing that after the monotony properties (i) and (ii) of Theorem 1.2, for any positive real numbers ρ

′ , ρ ′′ , R ′ and R ′′ such that B(x 0 , ρ ′ ε) ⊂ ω ε ⊂ B(x 0 , ρ ′′ ε) ⊂ B(x 0 , R ′ ) ⊂ Ω ⊂ B(x 0 , R ′′ ), we have: C p (ρ ′ ε, R ′′ ) ≤ C p (B ρ ′ ε , Ω) ≤ C p (ω ε , Ω) ≤ C p (B ρ ′′ ε , Ω) ≤ C p (ρ ′′ ε, R ′ ).
Then applying formulae stated in Proposition 2.2 completes the proof. No assumptions at all are required about the smoothness of boundaries ∂ω and ∂Ω.

Remark 2.4. The expansions stated in Proposition 2.3 are actually topological expansions (see Masmoudi [START_REF] Masmoudi | The topological asymptotic[END_REF], Amstutz [START_REF] Amstutz | Thèse de doctorat[END_REF], Maz'ya, S. Nazarov, B. Plamenevskij [START_REF] Maz'ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Operator theory[END_REF], Sokolowski et al. [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF] and subsequent articles). Proposition 2.3 provides the first available topological expansions in the case of a nonlinear partial differential operator.

If 

p = d, then C p (ω ε , Ω) = A d-1 [-ln ε] 1-p + o [-ln ε]
(B ε , Ω) = A d-1 (-β) p-1 ε d-p + o ε d-p . The topological gradient equals A d-1 (-β) p-1 . It is constant in Ω.
It does not depend on the shape of the domain Ω.

In the linear case p = 2 , in 2 or 3 dimensions, the results hereabove yield the topological expansions previously proved for the Laplace operator with Dirichlet boundary condition by Guillaume & Idris [START_REF] Ph | The topological asymptotic expansion for the Dirichlet problem[END_REF].

Remark 2.5. In such an asymptotic approach, it is standard to change the scale, dividing all distances by ε. The internal part then becomes the unit set ω while the outer boundary ∂Ω is sent to infinity when ε → 0. We check that the outer boundary ∂Ω, through parameters R 1 and R 2 do not impact the main term of the asymptotic expansion when p ≤ d. In contrast when p > d, the shape of ∂Ω determines the main term of the expansion. This case exemplifies a major difference between condenser capacities in Ω and variational capacities in R d . It follows from the intuitive idea that the higher p, the slower the spatial diffusion process.

2.4.

Cases of positivity and estimates of p-capacities of a point. Theorem 2.6. Let x 0 be a point of a bounded domain Ω ⊂ R d . The following positivity rule holds:

C p ({x 0 } , Ω) > 0 if and only if p > d. Moreover, if p > d, then:

A d-1 β p-1 R d-p 2 ≤ C p ({x 0 } , Ω) ≤ A d-1 β p-1 R d-p 1 (2.2)
where R 1 := sup {R > 0; B(x 0 , R) ⊂ Ω} and R 2 := inf {R > 0; Ω ⊂ B(x 0 , R)}. In particular, if p > d and if Ω = B(x 0 , R), then we have

C p ({x 0 } , B R ) = A d-1 β p-1 R d-p
Theorem 2.6 follows from Proposition 2.3 combined with the descending continuity property (iv) of Theorem 1.2. In connection with Remark 2.5, note that when p > d, we have

C p ({x 0 } , B R ) > 0 while C p ({x 0 } , R d ) = 0.
If one wishes to obtain an estimate of the capacity of a point better than the one provided by inequalities (2.2), one may rely on the descending property (iv) of Theorem 1.2 and compute numerically the capacity of a ball with a radius r small enough. How small should be this radius depending on the required precision for the value of the capacity of the point?

The following proposition answers this question.

Proposition 2.7. If p > d, for 0 < r < R, we have C p (B(x 0 , r), B(x 0 , R)) -C p ({x 0 } , B(x 0 , R)) = O r β (2.3)
Proposition 2.7 follows from the expansion stated in Proposition 2.2 in the case p > d. When d ≥ 2, since 0 < β < 1, the speed of convergence to zero of O r β is slow when r → 0.

Equidistant condensers. Cases of positivity for condenser p-capacities of segments

We provide in this section the comprehensive positivity rule for condenser p-capacities of segments, by means of a new method.

The natural try is to start from Proposition 2.1 and then to apply the descending property (iv) of Theorem 1.2. But as mentioned previously, the anisotropy induced by a prolate ellipsoid or by a segment obstacle in the p-Laplace equation remains uncalculated. Moreover while the definition of a condenser capacity allows to obtain upper bounds by considering energies of admissible functions, obtaining lower bounds to a capacity is a more difficult task. For these reasons, we introduce a new type of condensers, called equidistant condensers. Equidistant condensers are defined in order to enable a meticulous process of comparison with admissible functions of some other appropriately chosen spherical condensers. Our approach provides a lower bound to the p-capacity of a segment by means of comparison with capacities of points in dimensions d and d -1. Upper bounds will be obtained by extending to an equidistant condenser the solutions of two appropriately chosen spherical condensers. Therefore we conclude on the cases of positivity for condenser p-capacities of segments, depending on p and d. Lastly, we illustrate how our method based on equidistant condensers might be extended by induction reasoning to establish positivity rules for condenser capacities when the internal part is a compact submanifold of higher dimensions. In all section 3, let S ε ⊂ R d (d ≥ 2), be a (closed) segment of length ε > 0 and centered on a point x 0 . Let 0 < η < R and consider the equidistant condenser (K η , Ω R ) derived from the segment S ε (figure 2).

z η S ε Cylindrical part C y = (r, ξ) ε ∂K η ∂Ω R Half-spherical part S - Half-spherical part S + R H 0 x 0 x - x + H a x a Figure 2. An equidistant condenser (K η , Ω R ).
Some notations are useful. Let z be an axis passing through the point x 0 and parallel to the segment S ε . Due to the symmetry of revolution of the condenser (K η , Ω R ) around the z-axis, it is convenient to use the cylindrical coordinates x = (z, y) = (z, r, ξ), with z ∈ R, y = rξ ∈ R d-1 , r ≥ 0 and ξ ∈ S d-2 . Let x -(resp. x + ) the endpoint of the segment S ε , of cylindrical coordinates (z = -ε/2, r = 0) (resp. (z = ε/2, r = 0)).

Let Lastly for any a ∈ [-ε/2, ε/2] , let H a be the affine hyperplane {z = a} and x a the intersection between H a and the z-axis. It is pivotal to note that (K η ∩ H a , Ω R ∩ H a ) is a (d-1)-dimensional spherical condenser. The admissible function minimizing the energy of this condenser is denoted s p,d-1 and we have

C := {x ∈ Ω R \K η ; |z| < ε/2} be the open cylindrical subset of Ω R \K η and S ± := {x ∈ Ω R \K η ; ±z > ε/2} the two open half-spherical subsets of Ω R \K η and S := S -∪ S + . So that (Ω R \K η ) \ (C ∪ S) is of zero Lebesgue measure. We denote u ∈ W 1,p (Ω R \K η ) ∩ C Ω R \K η ∩ C 1 (Ω R \K η ) the unique solution to Problem (2.1) when K = K η and Ω = Ω R . After Proposition 2.1, the p-capacity of the condenser (K η , Ω R ) is C p,d (K η , Ω R ) = C∪S |∇u| p dx
C p,d-1 (η, R) = B d-1 (xa,R)\B d-1 (xa,η) |∇ y s p,d-1 | p dy,
where ∇ y denotes the gradient operator in R d-1 and dy the Lebesgue measure in R d-1 .

3.2.

A lower-bound to the p-capacity of a segment. Proposition 3.2. With the previous notations, the p-capacity of the equidistant condenser (K η , Ω R ) admits the following lower-bound

C p,d (K η , Ω R ) ≥ C p,d (η, R) + ε C p,d-1 (η, R). (3.1)
Proof. Since C p,d (K η , Ω R ) = C |∇u| p dx+ S |∇u| p dx, we estimate separetaly each integral.

In the cylindrical subset C, for any a ∈ (-ε/2, ε/2), let w a be the restriction of u to H a ∩ Ω R \K η , that is w a (y) = u(a, y) for all y ∈ R d-1 , η ≤ |y| ≤ R. Due to the regularity of function u, w a is well-defined pointwise, continuous in H a ∩ Ω R \K η and w a admits a classical gradient in H a ∩ (Ω R \K η ). Since u is admissible for the condenser (K η , Ω R ), |y| = η implies w a (y) = u(a, y) = 1 and |y| = R implies w a (y) = u(a, y) = 0. Moreover for all y ∈ R d-1 , η < |y| < R we have:

|∇ y w a (y)| = |∇ y u(a, y)| ≤ |∇ y u(a, y)| 2 + |∂ z u(a, y)| 2 1/2 = |∇u(a, y)| .
For a given a ∈ (-ε/2, ε/2), if Ha∩(Ω R \Kη) |∇ y w a (y)| p dy < +∞, then w a is admissible to the (d -1)-dimensional condenser (B d-1 (x a , η), B d-1 (x a , R)). Thus: 

C p,d-1 (η, R) ≤ Ha∩(Ω R \Kη) |∇ y w a (y)| p dy ≤ Ha∩(Ω R \Kη) |∇ u(a,
ε C p,d-1 (η, R) ≤ C |∇ u(x)| p dx. (3.3) 
Let v be the function defined in B(x 0 , R)\B(x 0 , η) which inherits the values taken by u in the two half-spherical subsets S ± . More precisely, for all

x ∈ R d , η ≤ |x -x 0 | ≤ R, we define v(x) := u(x + + x -x 0 ) if z(x -x 0 ) ≥ 0, v(x) := u(x -+ x -x 0 ) if z(x -x 0 ) < 0.
Since u is continuous in Ω R \K η and symmetric relatively to the hyperplane H 0 , it follows that v is continuous in B(x 0 , R)\B(x 0 , η). Similarly u ∈ L p (Ω R \K η ) implies that v ∈ L p B(x 0 , R)\B(x 0 , η) . For any x ∈ B(x 0 , R)\B(x 0 , η) ∩ {z = 0} we have

∇v(x) = ∇u(x + + x -x 0 ) if z(x -x 0 ) > 0, ∇v(x) = ∇u(x -+ x -x 0 ) if z(x -x 0 ) < 0. Thus ∇u ∈ L p (Ω R \K η ) entails ∇v ∈ L p B(x 0 , R)\B(x 0 , η) ∩ {z > 0} and similarly ∇v ∈ L p B(x 0 , R)\B(x 0 , η) ∩ {z < 0} . Moreover, since v is continuous in B(x 0 , R)\B(x 0 , η)
and thus has no jump accross {z = 0}, the results about distribution derivatives (e.g. [START_REF] Vladimirov | Methods of the Theory of Generalized Functions, Analytical Methods and Special Functions[END_REF]) entail that the distribution ∇v defined in the domain B(x 0 , R)\B(x 0 , η) can be identified to the vector field {∇v} defined in B(x 0 , R)\B(x 0 , η) ∩ {z = 0}. Hence ∇v ∈ L p B(x 0 , R)\B(x 0 , η) . Recall u is admissible for the condenser (K η , Ω R ). Thus we have v

(x) = 1 for all x ∈ R d , |x -x 0 | = η and v(x) = 0 for all x ∈ R d , |x -x 0 | = R.
Therefore v is an admissible function for the condenser (B(x 0 , η), B(x 0 , R)) and it follows that:

C p,d (η, R) ≤ B(x 0 ,R)\B(x 0 ,η) |∇ v(x)| p dx = S |∇ u(x)| p dx. (3.4) 
Summing inequalities (3.3) and (3.4) yields the claimed result.

Thanks to equidistant condensers, we can now state the following lower-bound to the condenser p-capacity of a segment. Recall C p,d ({x 0 } , B R ) (resp. C p,d-1 ({x 0 } , B R ) denotes the p-capacity of the point {x 0 } in the d-dimensional ball B(x 0 , R) (resp. the p-capacity of the point {x 0 } in the (d -1)-dimensional ball B d-1 (x 0 , R)). Theorem 3.3. Let Ω be a bounded domain of R d and x 0 ∈ Ω. Let R := sup {|yx 0 | ; y ∈ Ω} ∈ (0, +∞). Let S ε be a (closed) segment centered on the point x 0 and of length ε > 0 such that S ε ⊂ Ω. Then the following lower-bound holds:

C p,d (S ε , Ω) ≥ C p,d ({x 0 } , B R ) + ε C p,d-1 ({x 0 } , B R ).
(3.5)

Proof. For any λ > 0 and any η, 0 < η < R, inequality (3.1) of Proposition 3.2, applied to radiuses η and R + λ, reads:

C p,d (η, R + λ) + ε C p,d-1 (η, R + λ) ≤ C p,d (K η , Ω R+λ ) . (3.6)
Three decreasing sequences of compacts are involved as follows:

∩ η>0 B(x 0 , η) = {x 0 } , ∩ η>0 B d-1 (x 0 , η) = {x 0 } and ∩ η>0 K η = S ε .
The continuity property (iv) of Theorem 1.2 hence implies that:

         lim η→0 C p,d (B(x 0 , η), B(x 0 , R + λ)) = C p,d ({x 0 } , B(x 0 , R + λ)) lim η→0 C p,d-1 (B(x 0 , η), B(x 0 , R + λ)) = C p,d-1 ({x 0 } , B(x 0 , R + λ)) lim η→0 C p,d (K η , Ω R+λ ) = C p,d (S ε , Ω R+λ ).
Therefore passing to the limit when η → 0 in inequality (3.6) yields 

C p,d ({x 0 } , B R+λ ) + ε C p,d-1 ({x 0 } , B R+λ ) ≤ C p,d (S ε , Ω R+λ ) . ( 3 
ε C p,d-1 ({x 0 } , B R ) ≤ C p,d (S ε , Ω) In particular, C p,d (S ε , Ω) > 0. • If p > d, both capacities C p,d ({x 0 } , B R ) and C p,d-1 ({x 0 } , B R ) are positive. Then again C p,d (S ε , Ω) > 0. • If p ≤ d -1 , both capacities C p,d ({x 0 } , B R ) and C p,d-1 ({x 0 } , B R ) are null.
Thus we can state the first part of the searched positivity rule for condenser capacities of segments.

Corollary 3.5. Let S ε be a segment of length ε > 0 included in a bounded domain Ω ⊂ R d . If p > d -1 then C p,d (S ε , Ω) > 0.
3.3. Cases of nullity of the condenser p-capacity of a segment in a bounded domain. Proposition 3.6. Let S ε ⊂ Ω be a segment of length ε > 0 centered on a point x 0 . If p ≤ d -1, then the condenser p-capacity of the segment S ε in the domain Ω is null, that is

C p,d (S ε , Ω) = 0. Proof. Let Ω c := R d \Ω.
Since Ω is bounded there exists M > 0 such that Ω ⊂ B(x 0 , M ). Then S ε and Ω c ∩ B(x 0 , M ) are compacts such that S ε ∩ Ω c ∩ B(x 0 , M ) = ∅. Therefore due to the continuity of the distance, there exist x a ∈ S ε and x b ∈ Ω c ∩ B(x 0 , M ) such that:

|x a -x b | = min |x 1 -x 2 | ; x 1 ∈ S ε and x 2 ∈ Ω c ∩ B(x 0 , M ) > 0. Let R := |a -b| /2. We have S ε ⊂ Ω R ⊂ Ω thus C p,d (S ε , Ω) ≤ C p,d (S ε , Ω R ).
Therefore it suffices to prove that C p,d (S ε , Ω R ) = 0. Moreover due to the descending continuity property (iv) of Theorem 1.2, it suffices to prove that

lim η→0 C p (K η , Ω R ) = 0 (3.9)
We first prove (3.9) in the case p < d -1. Let the function v : Ω R \K η → R defined by: Furthermore an integration in cylindrical coordinates in C yields:

     if x ∈ S -∩ {z < -ε/2} then v(x) := s p,d (ρ -) with ρ -= |x -x -| , if x ∈ S + ∩ {z > ε/2} then v(x) := s p,d (ρ + ) with ρ + = |x -x + | , if x ∈ C then v(x) := s p,d (r) with r = |y|. It is easy to check that v is continuous in Ω R \K η , that v ∈ W 1,p (Ω R \K η ) and that v = 0 on ∂Ω R and v = 1 on ∂K η . Thus v is admissible for the condenser (K η , Ω R ). Hence C p,d (K η , Ω R ) ≤ C∪S |∇v| p dx,
C |∇v| p dx = ε A d-2 R η |∂ r s p,d (r)| p r d-2 dr
As p < d -1 after Proposition 2.2 we have

|∂ r s p,d (r)| = -β/(η β -R β ) r β-1 . Hence R η |∂ r s p,d (r)| p r d-2 dr = -β η β -R β p η β-1 -R β-1 1 -β .
Since β < 0, when η tends towards 0, the integral is equivalent to

(-β) p 1-β η β-1-pβ with β -1 -pβ = d -p -1 > 0. It follows that lim η→0 R η |∂ r s p,d (r)| p r d-2 dr = 0
and that lim η→0 C |∇v| p dx = 0 which completes the proof of (3.9) in the case p < d -1.

We then prove (3.9) in the case p = d -1. Let the function w : Ω R \K η → R defined by:

     if x ∈ C then w(x) := s p,d-1 (r) with r = |y|, if x ∈ S -∩ {z < -ε/2} then w(x) := s p,d-1 (ρ -) with ρ -= |x -x -| , if x ∈ S + ∩ {z > ε/2} then w(x) := s p,d-1 (ρ + ) with ρ + = |x -x + | .
As for function v, it is easy to check that w is an admissible function for the condenser (K η , Ω R ). Hence

C p,d (K η , Ω R ) ≤ C∪S |∇w| p dx,
so that it suffices to prove that lim η→0 C∪S

|∇w| p dx = 0. By definition of s p,d-1 we have C |∇w| p dx = ε C p,d-1 (η, R). Since p = d -1, recall from Theorem 2.6 that lim η→0 C |∇w| p dx = 0.
Furthermore an integration in spherical coordinates in S yields:

S |∇w| p dx = A d-1 R η |∂ ρ s p,d-1 (ρ)| p ρ d-1 dρ.
As p = d -1, the gradient reads: For instance, the choice d -1 < p ≤ d, e.g. p = 3 in 3 dimensions, seems to be a good candidate for the detection of one dimensional singularities since segments have positive capacities while points and hopefully part of the noise have null capacity. Recurring again to equistant condensers, we may think of a proof similar to the one of Proposition 3.2 in order to show that the positivity of the p-capacity of a plane rectangle in a d-dimensional bounded domain follows from the positivity of the p-capacity of a segment in a (d -1)-dimensional bounded domain, which happens when p > (d -1) -1. Such reasonings could be extended by induction to prove that the condenser p-capacity of a k-dimensional closed box in a d-dimensional bounded domain is positive as soon as p > dk.

|∂ ρ s p,d-1 (ρ)| = 1 ln(R/η) 1 ρ . Hence R η |∂ ρ s p,d-1 (ρ)| p ρ d-1 dρ = |ln(R/η)| -p (R -η).
The cases of nullity for condenser capacity of a k-dimensional closed box seem to be more intricate to establish by means of equidistant condensers as the relationship between the capacity of a segment in a d-dimensional domain and the one of a point in a (d -1)dimensional domain is not straightforward in the proof of Proposition 3.6.

Elliptical condensers. Estimates for condenser p-capacities of segments

When p > d -1, the next arising question is about estimating the capacity of a segment in a bounded domain. For this purpose we introduce elliptical condensers which ease recurring to elliptic coordinates. Let again a (closed) segment S ε ⊂ R d (d ≥ 2), of length ε > 0 and centered on a point x 0 . Let z be an axis passing through the point x 0 and parallel to the segment S ε . We consider the cylindrical coordinates (z, y) = (z, r, ξ), with z ∈ R, y = rξ ∈ R d-1 , r ≥ 0 and ξ ∈ S d-2 . Then we move forward to the elliptic coordinates (µ, ν, ξ) (see [START_REF] Korn | Mathematical Handbook for Scientists and Engineers[END_REF] or [START_REF] Weisstein | Elliptic Cylindrical Coordinates, From MathWorld-A Wolfram Web Resource[END_REF]) implicitely defined as follows for µ ∈ [0, +∞), ν ∈ [0, π] and ξ ∈ S d-2 :

     z(µ, ν) := ε/2 cosh µ cos ν, r(µ, ν) := ε/2 sinh µ sin ν, ξ := ξ, (4.1) 
so that S ε = {µ = 0, ν ∈ [0, π]}. 

Ω M := x = (µ, ν, ξ) ∈ R d ; 0 ≤ µ < M, ν ∈ [0, π] , ξ ∈ S d-2
and the compact

K η := x = (µ, ν, ξ) ∈ R d ; 0 ≤ µ ≤ η, ν ∈ [0, π] , ξ ∈ S d-2 .
We say that (K η , Ω M ) is an elliptical condenser derived from the segment S ε . Obviously the inclusions S ε ⊂ K η ⊂ Ω M hold for any 0 < η < M . Moreover we have ∩ η>0 K η = S ε . In comparison with equidistant condensers though, letting η → 0 will not be sufficient to approximate asymptotically, when ε → 0, the condenser made of the segment S ε within a given bounded domain Ω. Indeed due to (4.1), for a given M > 0, Ω M → {x 0 } when ε → 0. So that we shall have to choose some appropriate M (ε) → +∞ to approximate a given domain Ω when letting ε → 0. Lemma 4.2. Let R > ε/2 and set M ′ := ln 2R/ε + 1 + 4R 2 /ε 2 and M ′′ := ln 2R/ε + -1 + 4R 2 /ε 2 .

z ν S ε y = (r, ξ) ε ∂ Ω M = {µ = Μ } x 0 ∂ Κη = {µ = η}
Let K a compact of R d such that K ⊂ Ω M ′′ . Then we have

C p (K, Ω M ′ ) ≤ C p (K, B R ) ≤ C p (K, Ω M ′′ ). (4.2)
In particular, for any η, 0 < η < M ′′ , we have

C p (K η , Ω M ′ ) ≤ C p (K η , B R ) ≤ C p (K η , Ω M ′′ ). (4.3) and C p (S ε , Ω M ′ ) ≤ C p (S ε , B R ) ≤ C p (S ε , Ω M ′′ ) (4.4) Proof. It follows from (4.1) that the inclusions B ε 2 sinh M ⊂ Ω M ⊂ B ε 2 cosh M hold for any M > 0. Note that R = ε 2 sinh M ′ = ε 2 cosh M ′′ . Hence letting M = M ′ and M = M ′′ , we obtain Ω M ′′ ⊂ B R ⊂ Ω M ′ Then the monotony property (ii) of Theorem 1.2 implies C p (K, Ω M ′ ) ≤ C p (K, B R ) ≤ C p (K, Ω M ′′ ) (4.5)
which, considering K = K η or K = S ε , entails both (4.3) and (4.4).

4.2.

The condenser 2-capacity of a segment. In the harmonic case p = 2, the condenser capacity of a segment is positive in a bounded domain of R 2 . In higher dimensions, the capacity is null.

Proposition 4.3. Let 0 < ε/2 < R. Let S ε a segment centered on a point x 0 and of length ε and let B R = B(x 0 , R) be both subsets of R 2 . Then the following inequalities hold:

2π ln 2R/ε + 1 + 4R 2 /ε 2 ≤ C 2 (S ε , B R ) ≤ 2π ln 2R/ε + -1 + 4R 2 /ε 2 .
Proof. We compute C p (K η , Ω M ) applying Proposition 2.1. Due to the symmetry of revolution relatively to the z-axis, the searched solution does not depend upon ξ. Thus in elliptic coordinates, the Laplace operator is given by: ∆u Then

(µ, ν) = (4/ε 2 ) (∂ µµ u + ∂ νν u) / sinh 2 µ + sin 2 ν .
|∇u| 2 = 4 ε 2 sinh 2 µ + sin 2 ν 1 (M -η) 2 Since |det D(z, r, ξ)/D(µ, ν, ξ)| = (ε/2) 2 sinh 2 µ + sin 2 ν , the change of variables leads to C 2 (K η , Ω M ) = Ω M \Kη |∇u| 2 = 2π/(M -η).
The descending continuity (iv) of Theorem 1.2 gives C 2 (S ε , Ω M ) = 2π/M . Applying the latter equality for both M = M ′ and M = M ′′ and Lemma 4.2 with (4.4) yields the claimed inequalities.

Corollary 4.4. Let S ε ⊂ R 2 be a segment centered on a point x 0 and of length ε > 0. Let Ω ⊂ R 2 be a bounded domain such that x 0 ∈ Ω. Then for ε small enough:

C 2 (S ε , Ω) = 2π -ln ε + o 1 ln ε .
The expansion of Corollary 4.4 follows from inequalities of Proposition 4.3. The first-order expansion of C 2 (S ε , Ω) does neither depend on x 0 nor on the shape of Ω. For the study of the perturbation of the Laplace equation in 2D by a Neumann homogeneous boundary condition on a segment, see [START_REF] Amstutz | Crack detection by the topological gradient method[END_REF].

Note that, for any R > ε/2, the monotony property (ii) of Theorem 1.2 and the upperbound of Proposition 4.3 imply

0 ≤ C 2 (S ε , R 2 ) ≤ C 2 (S ε , B R ) ≤ 2π/ln 2R/ε + -1 + 4R 2 /ε 2 . Letting R → +∞ yields C 2 (S ε , R 2 ) = 0.
Further developments with elliptical condensers. There are some hints that elliptical condensers might prove useful to estimate numerically the p-capacity of a segment S ε in a given domain Ω, approximating S ε by an ellipsoid K η , for η 'small enough'. Indeed chosing a convenient geometry and adequate coordinates before discretization is obviously crucial. An equidistant condenser would be cumbersome in the sense that the p-Laplace operator would be discretized in d-dimensional spherical coordinates in the sets S ± and in in (d-1)-dimensional cylindrical coordinates in the sets C leaving unsolved a delicate transition between S ± and C.

Elliptic coordinates seem advisable in the sense that they continuously account for the transition from the d-dimensional equation located at the two end points of S ε , to the roughly speaking (d -1)-dimensional equation located in the cylindrical part of the condenser. Furthermore, solutions and integrals are to be computed on the rectangle R := Such ideas remain to be tested numerically.

Conclusion and future prospects

In this paper, we first recall the definition and basic properties of condenser p-capacities of compact sets in bounded domains, emphasizing the differences with the usual variational capacities in R d and mentioning why condenser capacities are likely to prove useful as substitutes for Hausdorff measures in application fields such as imaging.

As premilinary results, we show that one can calculate a condenser p-capacity by solving a p-Laplace equation with Dirichlet boundary condition and we provide asymptotic bounds to the p-capacity of any condenser of which the internal part has a non-empty interior. We provide the asymptotic expansion when p = d and for a ball-shaped compact when p < d. We then directly establish the positivity rule for the condenser capacity of a point. When the condenser capacity of a point is positive (p > d), we estimate the speed of descent of the p-capacities of balls down to that of a point.

Then our main contribution is to establish the thorough positivity rule for condenser pcapacity of segments by introducing so-called equidistant condensers. This new method brings up the meaningful relationship existing between the capacity of a segment in a d-dimensional domain with the capacity of a point in a d-dimensional domain and more significantly with the capacity of a point in a (d -1)-dimensional domain. This result paves the way to induction reasonings for proving positivity rules of condenser capacities of k-dimensional compact submanifolds of higher dimensions.

When the condenser capacity of a segment is positive (p > d -1), we introduce so-called elliptical condensers for estimation purposes. In the linear case p = d = 2, we provide a sharp estimate of the 2-capacity of a segment along with the asymtotic expansion when the length of the segment tends towards zero. We then briefly discuss why elliptical condensers might help computing capacities of segments.

While various types of capacities are commonly used to study the local behaviour of solutions to quasilinear elliptic equations, far less is known about condenser capacities themselves. Many questions remain to be studied, both on the theoretical side, such as estimates of the speed of descent in property (iv) of Theorem 1.2, and on the numerical one, such as ways for easily computing condenser capacities. As a result, the ultimate goal will be to develop methods allowing efficient use of condenser capacities in applicative tasks requiring automatic detection and quantification of zero measure sets.
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  so that it suffices to prove that lim η→0 C∪S |∇v| p dx = 0. By definition of s p,d we have S |∇v| p dx = C p,d (η, R). Since p < d, it follows from Theorem 2.6 that lim η→0 S |∇v| p dx = 0.
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 3 Figure 3. An elliptic condenser (K η , Ω M ).
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 21 reads ∂ µµ u+∂ νν u = 0 in Ω M \K η with Dirichlet boundary condition u(η, ν) = 1 and u(M, ν) = 0 for all ν ∈ [0, π]. The separation of variables provides: u(µ, ν) = (Mµ)/(Mη).

2 sinh 2 µ + sin 2 ν p-2 2 .

 222 [η, M ] × [0, π]. For instance, denoting the weights E(µ, ν) := (sinh µ sin ν) d-for any µ > 0 and 0 ≤ ν ≤ π, one may obtain C p (K η , Ω M ) computing the following mini-, ν) |∇v(µ, ν)| p dµ dν, the infimum being searched among admissible functions v : R → R, such that v(η, ν) = 1 and v(M, ν) = 0 for all ν ∈ [0, π].

  1.4. Acknowledgements. I am indebted to Professor Mohamed MASMOUDI who suggested me to undertake the present research about condenser capacities and their estimates in the cases of points and segments. I am much grateful for the stimulating discussions I could have with him as with Samuel AMSTUTZ, Jérôme FEHRENBACH and Jean-Michel ROQUEJOFFRE at Institut de Mathématiques de Toulouse and at Université d'Avignon. This research has been supported by INSA Toulouse, Mathematics and Modelization Department, which I warmly thank. 2. Preliminary results for condenser capacities 2.1. Estimate of p-capacity through a p-Laplace problem with Dirichlet boundary condition. Consider the p-Laplace problem in Ω\K with Dirichlet boundary condition: