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Matter-wave superradiance is based on the interplay between ultracold atoms coherently organized
in momentum space and a backscattered wave. Here, we show that this mechanism may be triggered
by Mie scattering from the atomic cloud. We show that the system evolves into a superposition of
states, where the scattering process imprints a phase grating on the atomic dipoles. This grating
generates coherent emission even when there is at most one excited atom in the system at a time,
contributing to the backward light wave onset. The atomic recoil ’halos’ created by the scattered
light exhibit a strong anisotropy, in contrast to single-atom scattering.

PACS numbers: 42.50.Ct, 03.75.-b, 42.50.Gy

Matter wave superradiance (MWSR) [1] and collective
atomic recoil lasing (CARL) [2, 3] are light-induced insta-
bilities of the density distribution in atomic clouds. More
precisely, they are due to correlations between successive
scattering events mediated by long-lived coherences in
the motional state of an (ultracold) atomic cloud or in
the light field of an optical resonator [4]. Despite con-
siderable theoretical efforts having been devoted to the
dynamics of MWSR [5–7], open questions still remain.
One of them concerns the seeding mechanism which is
able to start the MWSR instability also in the presence
of losses. Thermal and quantum fluctuations are natu-
ral candidates, however, in this paper we point out the
particular role of Mie scattering which turns out to be
important at the onset of MWSR. Being active before
any instability has developed, it induces a phase correla-
tion between the atomic dipoles which favors the build
up of an instability.

The below-threshold dynamics and the seeding of
matter-wave superradiance are interesting problems. As
long as we consider the atomic cloud as a homogeneous
entity, e.g. a Bose-Einstein condensate (BEC) in the
mean field description, no scattering should occur at
all. Theoretical models which describe BECs as mat-
ter waves without fluctuations thus fail to explain how
MWSR starts when no seeding wave is present [8]. On
the other hand, recent work has shown [9, 10] how atomic
coarse-graining, density fluctuations and Mie scattering
from finite-sized clouds can influence the scattering even
of a single photon. Also optical cavities may strongly
affect the scattering by shaping the angular distribution
of the density of modes that are capable of receiving the
scattered photons [11, 12]. These processes have a deci-
sive impact on the mode competition preceding the ex-
ponential instability, and hence on the instability itself.

Here we show,that Mie scattering, caused by the finite
size of the atomic cloud, favors the formation of a matter
wave dipole grating. This has already been suspected
in [13]. Indeed, prior to any significant motion of the
atoms, their dipoles collectively order which in turn leads
to coherent emission.

In previous papers [14–17], we discussed the impact of
atomic coarse-graining and finite scattering volumes on
the radiation pressure force which acts on the cloud’s
center-of-mass. Here, we investigate the momentum
distribution after a cooperative single-photon scattering
process from a BEC. Our theoretical model describes the
atomic cloud as a macroscopic matter wave which is ho-
mogeneously distributed within a sphere, i.e. the atoms
are considered to be strongly delocalized and density fluc-
tuations are neglected. We find that the momentum dis-
tribution of the atoms adopts the shape of a recoil halo,
very similar to the ones observed experimentally in time-
of-flight images of BECs. The halo indicates the direc-
tions into which the atoms are preferentially scattered
before the density distribution is noticeably modified. In
particular, it exhibits a pronounced peak at 2~k. This
corresponds to an increased backscattering of light, that
acts as a seed for MWSR.

The atomic cloud is described as a bosonic ensemble of
N two-level atoms with field operator Ψ̂(r, t) = Ψ̂g(r, t)+

Ψ̂e(r, t) (g for the ground state, e for the excited one).
We treat the condensate as an ideal gas and consider the
scattering between matter wave and optical waves, but
neglect nonlinearities due to atom-atom interaction. In
second quantization, the interaction between the atoms
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and light is described by the Hamiltonian [14, 18]

Ĥ(t) =
~Ω0

2

∫
dr

[
Ψ̂†

e(r, t)Ψ̂g(r, t)e
−i∆0t+ik0·r + h.c.

]
(1)

+ ~

∑

k

gk

∫
dr

[
Ψ̂†

e(r, t)Ψ̂g(r, t)âke
−i∆kt+ik·r + h.c.

]
,

where the first (second) line describes the absorption
and emission of a pump mode Ω0 (a vacuum mode âk).
Doppler effects are neglected. Replacing Ψ̂e(r, t) →
Ψ̂e(r, t)e

i∆0t induces an energy shift of −∆0|Ψ̂e|2 in the
Hamiltonian from which the Heisenberg equations may
be derived:

∂Ψ̂g

∂t
= −iΨ̂e

[
Ω0

2
e−ik0·r +

∑

k

gkâ
†
k
e−i(∆0−∆k)t−ik·r

]
,(2)

∂Ψ̂e

∂t
= −iΨ̂g

[
Ω0

2
eik0·r +

∑

k

gkâke
i(∆0−∆k)t+ik·r

]

+i∆0Ψ̂e (3)

dâk
dt

= −igke−i(∆0−∆k)t

∫
drΨ̂†

g(r, t)Ψ̂e(r, t)e
−ik·r. (4)

For large atom numbers and for far detuning from the
atomic transition frequency, one can neglect quantum
fluctuations and treat the operators as c-numbers (Ψ̂ →
ψ). Eq.(4) is integrated over time as

ak = −igk
∫ t

0

dt′e−i(∆0−∆k)t
′

∫
drψ∗

g(r, t
′)ψ′

e(r, t)e
−ik·r,

(5)
and inserted into (3). Furthermore, we switch to a
continuous-mode description

∑
k → (Vν/(2π)

3)
∫
dk and

obtain:

∂ψe

∂t
= i∆0ψe(r, t)− i

Ω0

2
eik0.rψg(r, t)− ψg(r, t)

∫
dr′(6)

×
∫

dkg2ke
ik·(r−r′)

∫ t

0

dt′ei(∆0−∆k)(t−t′)ψ∗
g(r

′, t)ψe(r
′, t′).

During the short time of the incident light pulse,
the atomic density does not significantly change, i.e.
ψg(r, t) ≈ ψg0(r) in (6) with ρ0(r) = |ψg0(r)|2 being the
initial density of the cloud. Using the Markov approxi-
mation, i.e. the photon time of flight through the cloud
is much shorter than the atomic decay time, the last in-
tegral in (6) is replaced by δ(k − k0)ψg0(r

′)ψe(r
′, t)/c.

With the assumption that all the electromagnetic modes
are equally present in the system (gk ≈ gk0

) and by keep-
ing rotating-wave-approximation terms, one can show
that [19]:

∫
dkg2ke

ik·d

∫ ∞

0

dt′ei(∆0−∆k)(t−t′) =
Γ

2ik0|d|
eik0|d|,

(7)
where Γ = Vνg

2
k0
k20/πc is the atomic decay rate. For the

normalized excitation field β(r, t) = ψe(r, t)/ψg0(r) with

|β(r)|2 being the probability for an atom to be excited,
one obtains [25]

∂β(r, t)

∂t
=

(
i∆0 −

Γ

2

)
β(r, t)− i

Ω0

2
eik0·r

− Γ

2

∫
dr′ρ0(r

′)
exp (ik0|r− r′|)
ik0|r− r′| β(r′, t). (8)

which recovers the model of cooperative scattering of a
plane-wave introduced in [14].
Eq.(8) can be used to describe the scattering of light

from a dielectric medium with an index of refraction
mc =

√
1− 4πρ0Γ/k30(∆0 + iΓ/2) in the steady-state

regime [17]. The excitation pattern inside the cloud can
be calculated analogous to Mie’s theory [20, 21]: the
electromagnetic fields inside and outside the cloud are
decomposed into elementary solutions of the Helmholtz
equation (∆+m2

ck
2
0)β = 0 and their amplitudes are calcu-

lated according to the boundary conditions on the fields.
For a homogeneous spherical cloud of radius R, the field
β(r) reads:

β(r) =
dE0

~Γ

∞∑

n=0

(2n+ 1)inβnjn(mck0r)Pn(cos θ), (9)

with jn the spherical Bessel functions and Pn the Leg-
endre polynomials (see e.g. [17] for an expression of the
scattering coefficients βn). Note, that the excitation field
β satisfies the Helmholtz equation. This means that
Mie scattering actually imprints a phase grating (with
wavevector mck0) onto the wavefunction of the excited
state. This phase grating will be at the origin of the
backscattering wave that acts as a seed for MWSR. In-
deed, the field radiated by the atoms inside the cloud in
a direction u(θ, φ) is given by the structure factor:

sc(u) =
1

N

∫
ρ(r)β(r)e−imck0u·rdr, (10)

with the index of refraction mc given above. Hence, the
coherent emission by the cloud is a direct consequence of
periodic excitation field and the resulting dipole grating.
The scattered light is difficult to observe directly,

however, the radiation pattern is also present in the
momentum distribution of the atoms which can be
easily recorded by time of flight imaging. Different
to an N -body model, the quantum matter field ap-
proach yields the momentum distribution simply as
the Fourier transform of the matter field, ψ̂(p) =
(2π~)−3

∫
ψ(r)e−ip·r/~dr. Hence, for an homogeneous

cloud, the momentum distribution of the excited state
is directly proportional to the structure factor: ψ̂e(p) ∝
sc(p/~), with p = mc~k and k = k0u. Using Eq.(9), it

can be deduced that the momentum wavefunction ψ̂e for
an uniform sphere of radius R reads:

ψ̂e(p) =
dE0

√
ρ0

~Γ(2π~)3

∞∑

n=0

(2n+ 1)βnγn(p)Pn(cos θ), (11)



3

with γn(p) = 4π
∫ R

0
r2jn(mck0r)jn(pr/~)dr. Fig.1(a)
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FIG. 1. Momentum distribution of the excited state De =
|ψ̂e|

2, in logarithmic scale. The emission pattern |sc(k)|
2 con-

centrates around a circle with radius p = mc~k0 (black line).
Simulations for a laser detuning ∆0 = −3GHz and a cloud
(a) of size k0R = 20, atom number N = 1.15 × 106 and re-
fractive index mc = 1.2, (b) of size k0R = 20, atom number
N = 1 and refractive index mc = 1 + 2.10−7. For rubidium,
kRb
0 = 8.05 × 106m−1 and ΓRb = 6.1MHz.

shows a typical momentum distribution of the excited
atoms |ψ̂e(p)|2 and the associated scattering pattern
|sc(k)|2 of the light. Different to a single-atom process,
Mie scattering turns out to be fundamentally anisotropic.
The matter field allows for multiple scattering i.e. an
atom may absorb a photon that was already scattered.
This explains the presence of a halo for the excited state.
In optically dilute clouds multiple scattering is reduced
with the consequence of less pronounced halos. For large
clouds (k0R ≫ 1), most of the photons are scattered into
the forward direction, a process that leaves the atomic
momentum distribution unchanged. For example, in
Fig.1(a), most atoms recoil to k = k0ẑ. Nevertheless,
a significant amount of light is still scattered backward
(k = −k0ẑ) and acts as a seed for the MWSR instability.
Note that the momentum distribution De(p) =

|ψ̂e(p)|2 is concentrated along a circle with radius p =
mc~k0 rather than ~k0 (i.e. that γn(p) reaches a max-
imum for p = mc~k0) . This is a signature of the
Minkowski momentum for atomic recoil [22]. The blur-
ring of the momentum wavefunction along the circle orig-
inates in the finite size of the cloud, that creates a natural
momentum spread σp ∼ ~/R. The ripples of the distribu-
tion are due to the sharp boundary of the cloud’s density,
yielding a Fourier transform with many secondary peaks.
The halo shown in Fig.1(a) and its radius of mc~k0

instead of ~k0 is a clear indication that a single photon
is scattered by all atoms collectively [15], since multiple
scattering now allows for absorption of photons nonparal-
lel to the laser. For comparison, the excited state momen-
tum distribution for a single atom is shown in Fig.1(b)
(N = 1). As expected, Rayleigh scattering from individ-
ual, initially delocalized atom does not exhibit the intri-
cate pattern of Mie scattering and the momentum distri-

bution is simply centered at ~k0. If the atoms are ini-
tially localized, e.g. for non-condensed clouds of atoms,
the momentum distribution enlarges and the halo washes
out eventually. Note that our model neglects the single-
atom isotropic decay pattern, that yields a uniform halo,
so that it is not valid at very low density.
After an atom absorbs a photon from the laser with a

momentum kick mc~k0 the photon is reemited according
to the Mie pattern sc(p/~) ∝ ψ̂e(p). Thus the atom will
gain an extra momentum mc~k0 with a direction oppo-
site to the emitted photon and the momentum pattern
of the ground state atoms after the scattering process is
given by |ψ̂e(mc~k0 − p)|2. Experimentally, the column-

integrated momentum distribution is observed in time of
flight images. This leads to defining the projected distri-
bution Dy

g(px, pz) =
∫
|ψ̂g(p)|2dpy. Such an integrated

distribution is presented in Fig.2(a). The atoms are ob-
served to inhomogeneously fill a circle of radiusmc~k0. In
particular, the part of the sphere around p = (3/2)~k0 is
weakly populated, which reflects the anisotropic nature
of Mie scattering.
Experimentally, the atomic recoil patterns are investi-

gated by using the set-up of [10]. After the interaction
with the light, the 87Rb atoms ballistically expand for
tF = 20ms. The density distribution of the expanded
cloud is recorded by standard absorption imaging yield-
ing the initial momentum distribution before the expan-
sion according to p = mRbr/tF (the initial size of the
cloud ∼ 20µm is much smaller than its expanded size at
the time of imaging).
The integrated momentum distribution observed ex-

perimentally reproduces the features predicted by Mie
scattering (see Fig.2(b)). A sphere of radius ~k0 is filled
with atoms, yet it exhibits a region where the probabil-
ity of the atomic recoil is very low around pz = 1.5~k0.
Moreover, it can be observed that a large number of
atoms recoil around the p = 2~k0, that are the signa-
ture of the backward emitted wave. This is opposite to
single-atom scattering that scatter photons in random
directions, and not particularly backward and forward.
It is important to note that Mie scattering is a three-

dimensional process, while the MWSR only develops
along its most unstable direction. Mie scattering is a
seeding process that sends photons in many directions,
particularly also backwards, which is known to be the
most unstable direction for MWSR in a cigar-shaped
cloud illuminated along its main axis.
These two processes are illustrated in Fig.3. Initially,

Mie scattering populates a sphere of radius p ≈ mc~k0.
Then a MWSR instability develops, i.e. the phase grating
induces light emission that, in turn, starts amplifying this
atomic grating. The atoms observed in p ≈ −2mc~k0

and p ≈ 4mc~k0 are not predicted by Mie scattering and
can be explained only by the self-consistent matter-wave
dynamics.
In this paper we showed that Mie scattering induces a
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FIG. 2. (a) Integrated momentum distribution of the ex-
cited state, calculated from Eq.11 for a spherical homogeneous
cloud of radius k0R = 29.6, ∆0 = −15GHz and with a refrac-
tive index mc = 1.067 (a low-pass Gaussian filter was applied
to attenuate the ripples due to the sharp boundaries of the
homogeneous clouds, since they are irrelevant for comparison
with the experiment) (b) Experimental integrated momen-
tum distribution of the ground state for an ellipsoidal cloud
of length k0σz ∼ 29.6, transverse radius k0σ⊥ ∼ 4.7, with
N ∼ 147000 atoms and a laser detuning ∆0 = −15GHz and a
20µs laser pulse of 17mW. Its refractive index is mc ≈ 1.067.
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Mie scattering
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FIG. 3. Momentum distribution |ψ̂g |
2 above the threshold of

the MWSR. Experiment realized with an ellipsoidal cloud of
transverse radius k0σ⊥ ∼ 3.5, length k0σz ∼ 22, with N ∼
156000 atoms and a laser detuning ∆0 = −15GHz.

grating in the atomic dipole distribution even below the
threshold for the MWSR instability. Its signature is an
anisotropic three-dimensional halo in the of atomic mo-
mentum distribution. The atoms observed at p ≈ 2~k0

generate a seeding wave for MWSR. Indeed, the matter
wave modes at 0 and 2~k0 together form density grat-
ing at which subsequent photons injected from the pump
laser are Bragg-scatterered in a self-amplifying process.

Note that a mean-field approach such as the Timed-
Dicke State [23] does not yield any halo: the Fourier
transform of a βTDSe

−ik0.r state will lead to a Dirac
function in momentum space, up to the finite size of the
cloud, and the absorption-reemission process ψeψ

∗
e will

automatically send back the atoms in p ≈ 0. Thus, a
three-dimensional approach such as the Mie theory is re-
quired to describe the observed anisotropic halos.

Finally, it is interesting to remark that the off-axis
emission of photons should be associated to higher modes
(n ≫ 1) that correspond to photons with long lifetime

within the cloud [24]. Thus, a time-resolved observation
of the off-axis atomic recoils should bear the signature of
subradiance.
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