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Abstract

The notion of multivariate spacings was introduced and studied by Deheuvels, P.
(1983) for data uniformly distributed on the unit cube. Later on, Janson, S. (1987)
extended the results to bounded sets, and obtained a very fine result, namely, he
derived the exact asymptotic distribution of the maximal spacing. These results
have been very useful in many statistical applications.

We extend Janson’s result to the case where the data are generated from a posi-
tive, bounded support Lipchitz continuous density function, and develop a convexity
test for the support of a distribution.

Keywords: maximal spacing; convexity test; non-parametric density estimation

1 Introduction

The notion of spacings, which for one dimensional data are just the differences between
two consecutive order statistics, have been extensively studied in the one dimensional
setting; see e.g., the review papers by Pyke, R. (1965, 1972). Many important applica-
tions for testing and estimation problems, are derived from the study of the asymptotic
behavior of the spacings. Applications for testing problems dates back to Proschan, F.
and Pyke, R. (1967) who address the asymptotic theory of a class of tests for Increas-
ing Failure Rate. For estimation problems, Ranneby, B (1984) propose the maximum
spacing estimation method to estimate the parameters of a univariate statistical model.

Particular attention has been devoted to the behavior of the maximal (largest) spac-
ing (see for instance Stevens, W. L. (1939), Devroye, L. (1981) and Deheuvels, P. (1983)).

For points that are uniformly distributed in the unit cube K = [0, 1]d, Deheuvels,
P. (1983) introduced the notion of maximal spacing for the multivariate setting as the
volume of the largest cube C, parallel to the unit cube, that is contained in [0, 1]d and
do not contain any of the n sample points.

Janson, S. (1987) extended these results for a sample of random vectors uniformly
distributed on a bounded set S ⊂ R

d such that |S| = 1 (where |.| denotes the Lebesgue
measure on R

d), and the cube C is replaced by any fixed bounded convex set with a
nonempty interior. In addition to extending results on strong bounds, he derived the
exact asymptotic distribution of the maximal spacing (see Theorems 1 and Corollary
1). The notion of maximal multivariate spacing and, in particular, Janson’s result, have
been used to solve different statistical problems. In set estimation (see, for instance,
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Cuevas, A. and Fraiman, R. (1997) and Cuevas, A. and Rodriguez-Casal, A. (2004) ), it
is used to prove the optimality of the rates of convergence.

We seek to achieve the following:

i) We extend Janson’s result to the case where the data are generated by a Lipchitz
continuous density function with bounded support S, which is bounded from below
by a positive constant on S. This will require us to extend the notion of maximal
spacing to the case of non-uniform data.

ii) Based on the previous result, we develop a convexity test for the support S and
compare it with some recent results presented by Delicado, P.; Hernández, A. and
Lugosi, G. (2014).

The paper is organized as follows. First, we introduce the new notion of maximal
spacing and state the asymptotic results for the maximal spacing. Next, in Section 3, we
address the convexity test problem for two different settings: the semi-parametric case
(where the set is unknown, but the data are uniform) and the nonparametric case (where
the data are generated by an unknown density f). We study the asymptotic behavior
of the tests for both settings and conduct a small simulation study. Finally, as we show
in the Appendix, the asymptotic distribution of the maximal spacing is derived in three
steps. We start with a density that is a mixture of uniform laws with disjoint supports,
then consider a density that is a uniform mixture and finally consider a density that is
Lipchitz continuous and bounded from below.

2 Main definitions and results

We first introduce notation that will be used throughout the manuscript. Given a set
S, we denote by ∂S, S̊, and S the boundary, interior and closure of S, respectively.
We denote by B(x, ε) the closed ball of radii ε centered at x and by ωd = |B(x, 1)|
the Lebesgue measure of the unit ball in R

d. Given λ ∈ R, A,C ⊂ R
d we denote

λA = {λa : a ∈ A}, A ⊕ C = {a + c : a ∈ A, c ∈ C}, and A ⊖ C = {x : {x} ⊕ C ⊂ A}.
For the sake of simplicity, we use the notation x+C, instead of {x} ⊕ C. If λ ≥ 0 we
denote Aλ = A ⊕ λB(0, 1), and A−λ = A ⊖ λB(0, 1). Given A,C ⊂ R

d two non-empty
compact sets, the Hausdorff (or Pompeiu-Hausdorff) distance between them is given by

dH(A,C) = max

{

max
a∈A

d(a, C), max
c∈C

d(c, A)

}

where d(a, C) = inf{‖a − c‖ : c ∈ C}. Given a set S ⊂ R
d, we denote by H(S) the

convex hull of S (that is, the minimal convex set that contains S).

Let S ⊂ R
d be a bounded set with Lebesgue measure 1, but with Lebesgue measure

zero of its boundary ∂S. Let ℵn = {X1, . . . , Xn} be iid random vectors uniformly
distributed on S, and A a bounded convex set. According to Janson (Janson, S. (1987)),
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the maximal spacing is defined as:

∆∗(ℵn) = sup
{

r : ∃x such that x+ rA ⊂ S \ ℵn

}

.

To generalize Janson’s result to the non-uniform case, we need to extend the maximal
spacing definition. When the sample is drawn according to a probability measure PX ,
we consider the probability measure of the largest empty λA set. When |A| = 1 PX(x+
λA) ∼ f(x)λd for sufficiently small λ. This leads us to define the maximal spacing
extension as follows:

Definition 1. Let ℵn = {X1, . . . , Xn} be an iid random sample of points in R
d, drawn

according to a density f with bounded support S, and let A ⊂ R
d be a convex and compact

set such that |A| = 1 (where | · | denote the Lebesgue measure) and its barycentre is the
origin of Rd. We define:

∆(ℵn) = sup
{

r : ∃x such that x+
r

f(x)1/d
A ⊂ S \ ℵn

}

, (1)

V (ℵn) = ∆d(ℵn),

and
U(ℵn) = n∆d(ℵn)− log(n)− (d− 1) log

(

log(n)
)

− log(αA),

where αA > 0 is the constant defined in Janson, S. (1986). For instance, if A is a cube,

αA = 1; if A is a ball, then αA = 1
d!

(√
πΓ( d

2
+1)

Γ( d+1

2 )

)d−1

.

Finally, we denote U , a random variable, such that P(U ≤ t) = exp
(

− exp(−t)
)

.

When |S| = 1 and the sample is uniformly drawn on S, the following result can be
found in Janson, S. (1987), Theorem 1:

Theorem 1. Let S ⊂ R
d be a bounded set such that |S| = 1 and |∂S| = 0. Let

ℵn = {X1, . . . , Xn} and X be iid random vectors uniformly distributed on S: then,

U(ℵn)
L−→ U when n → ∞.

A simple rescaling extends this result to the case where |S| 6= 1:

Corollary 1. Let S ⊂ R
d be a bounded set such that |∂S| = 0 and |S| > 0. Let

ℵn = {X1, . . . , Xn} and X be iid random vectors uniformly distributed on S; then,

U(ℵn)
L−→ U when n → ∞.

We are interested in the asymptotic behavior of U(ℵn) as n → ∞, when the density is
not uniform. The main result (see Theorem 2 below) is presented for Lipschitz continuous
densities.
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Theorem 2. Let f be a density with compact support S ⊂ R
d. Suppose that f is

Lipschitz (with constant K) and that there exist positive constants f0, f1 such that for all
x ∈ S, 0 < f0 ≤ f(x) ≤ f1. Then, we have the following:

U(ℵn)
L−→ U when n → ∞.

lim inf
n→+∞

nV (ℵn)− log(n)

log(log(n))
= d− 1 a.s.

lim sup
n→+∞

nV (ℵn)− log(n)

log(log(n))
= d+ 1 a.s.

The proof is given in the Appendix.

3 A new test for convexity

3.1 The semi-parametric case

In this section, we propose, using the concept of maximal spacing defined in Section 2,
a consistent hypothesis test, based on an iid sample {X1, . . . , Xn} uniformly distributed
on a compact set S, to decide whether S is convex or not. The main idea is that, if the
set is not convex the maximal spacing between the convex hull of the set and the sample
will not converge to zero. Because the set is unknown, instead of the convex hull of the
set, we consider the convex hull of the sample. To change the set by its convex hull, we
prove some previous results which guarantee that the maximal spacings will be close.

Definition 2. Let S ⊂ R
d be a bounded set satisfying S̊ 6= ∅. We define the maximal

spacing of S (denoted ∆(S)) as

∆(S) = sup
{

r : ∃x ∈ S such that B(x, r) ⊂ S
}

.

Although there is an abuse of notation here, it is important to note that to define ∆(S),
we do not need a sample or density. In that sense, it is different from the one defined
in 1. Moreover, although the set ℵn is bounded, the condition ℵ̊n 6= ∅ is not satisfied.

Proposition 1. Let A and B be bounded and nonempty subsets of R
d. If for some

ε > 0, dH(A,B) ≤ ε and dH(∂A, ∂B) ≤ ε, then

∣

∣∆(A)−∆(B)
∣

∣ ≤ 2ε.

Proof. It is enough to prove that:

1.
{

x ∈ A : d(x, ∂A) > 2ε
}

⊂ B

2.
{

x ∈ B : d(x, ∂B) > 2ε
}

⊂ A
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From the first inclusion, we obtain that ∆(B) ≥ ∆(A) − 2ε, while from the second,
we obtain that ∆(A) ≥ ∆(B) − 2ε. Then,

∣

∣∆(A) − ∆(B)
∣

∣ ≤ 2ε. To obtain the first
inclusion (the second one is analogous), we suppose that there exists x ∈ A such that
d(x, ∂A) > 2ε but x /∈ B. Because A ⊂ Bε, we have x ∈ Bε \ B. Then d(x, ∂B) ≤ ε,
which implies that

d(x, ∂A) = dH({x}, ∂A) ≤ dH({x}, ∂B) + dH(∂B, ∂A) ≤ 2ε.

The following proposition shows that if the set S is not convex, then the maximal
spacing of the set H(S) \ S is strictly positive.

Proposition 2. Let S ⊂ R
d be a non–convex, compact non-empty set, such that S = S̊.

Then,
0 < ∆

(

H(S) \ S
)

.

Proof. We first prove that:

H(S) = ˚H(S). (2)

The fact that H(S) is a closed set implies that ˚H(S) ⊂ H(S). Thus, (2) will hold

if we prove that H(S) ⊂ ˚H(S). However, S = S̊ ⊂ H(S) and S̊ ⊂ ˚H(S) entail that (2)

follows from ˚H(S) being a convex set. Because S is not convex, there exist x, y ∈ S such
that the segment [x, y] joining them is not contained in S. However, H(S) is convex,
and therefore the segment is contained in H(S). Because S is compact, there exist δ > 0

and t ∈ [x, y] such that B(t, δ)∩S = ∅. By (2), we have that B(t, δ)∩ ˚H(S) ⊂ H(S) \S,
and therefore, ∆

(

H(S) \ S
)

≥ ∆
(

B(t, δ
)

∩ ˚H(S) \ S
)

> 0.

If S ⊂ R
d is convex and ℵn = {X1, . . . , Xn} is an iid random sample, uniformly

drawn on S, Walther, G. (1996) proved that

dH
(

S,H(ℵn)
)

= O

(

(

log(n)/n
)1/d

)

.

Moreover, under an additional regularity condition on ∂S, it has also been proven in
Walther, G. (1996) that the previous order can be improved. More specifically, the
following results holds

dH
(

S,H(ℵn)
)

= O

(

(

log(n)/n
)2/(d+1)

)

.

The regularity condition is the following:

Condition (P): For all x ∈ ∂S there exists a unique vector ξ = ξ(x) with ‖ξ‖ = 1,
such that 〈y, ξ〉 ≤ 〈x, ξ〉 for all y ∈ S, and

‖ξ(x)− ξ(y)‖ ≤ l‖x− y‖ ∀ x, y ∈ ∂S,

where l is a constant. We will denote by AP the class of convex subsets that satisfy
condition (P).
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Theorem 3. Let S ⊂ R
d be a compact subset such that S = S̊. For the following

decision problem
{

H0 : the set S is convex

H1 : the set S is not convex,
(3)

the test based on the statistic Ṽn = ωd∆
d
(

H(ℵn) \ ℵn

)

with the critical region given by

RC =
{

Ṽn > cn,γ
}

,

where

cn,γ =
|H(ℵn)|

n

(

−log
(

−log(1−γ)
)

+log(n)+(d−1) log
(

log(n)
)

+log(α)
)

= O
(

log(n)/n
)

,

and α is the constant defined in (1), is asymptotically of level smaller or equal to γ.
Moreover if S ∈ AP the asymptotic level equals γ. If S is not convex, the test has power
one for n sufficiently large n.

Proof. First observe that, if S is convex (not necessarily in AP ) from Theorem 1 and
the following inequality

∆
(

H(ℵn) \ ℵn

)

≤ ∆
(

S \ ℵn

)

,

we obtain that P
(

∆
(

H(ℵn) \ ℵn

)

> cn,γ
)

≤ γ.

We now prove that for the case S ∈ AP , PH0

(

Ṽn > cn,γ
)

→ γ and, for n sufficiently

large n, PH1

(

Ṽn > cn,γ
)

= 1. First observe that under H0, ℵn ⊂ H(ℵn) ⊂ S for all
n > 0. As condition (P) is satisfied we know that

dH
(

H(ℵn), S
)

= O

(

(

log(n)/n
)2/(d+1)

)

, (4)

which implies that

dH
(

∂H(ℵn), ∂S
)

= O

(

(

log(n)/n
)2/(d+1)

)

. (5)

We assume that |S| is known. Indeed, by (4) and (5) together with Theorem 2 in Cuevas,
A., Fraiman, R. and Pateiro-Lopez, B. (2012), we have that |H(ℵn)| → |S|. Thus, we

use c′n,γ = |S|
H(ℵn)

cn,γ instead of cn,γ .
By Proposition 1, we have that under H0:

∣

∣

∣
∆
(

H(ℵn) \ ℵn

)

−∆
(

S \ ℵn

)

∣

∣

∣
= O

(

(

log(n)/n
)2/(d+1)

)

.

If we denote εn =
∣

∣

∣
∆
(

H(ℵn) \ ℵn

)

−∆
(

S \ ℵn

)

∣

∣

∣
we can derive that

∆d
(

H(ℵn) \ ℵn

)

= ∆d(S \ ℵn) + dεn∆
d−1(S \ ℵn) + o

(

εn∆
d−1(S \ ℵn)

)

.

Applying Lemma 5 given in Subsection 4.1.2, we consider a > 0 such that
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Vn − Ṽn = O
(

(log(n)/n)1+a
)

,

where Vn = ωd∆
d(S \ ℵn), and

γn = PH0

(

Ṽn > c′n,γ
)

= PH0

(

(Ṽn − Vn) + Vn > c′n,γ
)

= PH0

(

Vn > c′n,γ + o(c′n,γ)
)

.

Therefore, by Theorem 1, γn → γ.
To prove that for sufficiently large n the power is 1 if S is not convex, we use Proposition
2, but instead of S, we use ℵn and instead of H(ℵn), we use H(S). To do so, we first
observe the following

H(S)−2εn ⊂ H(ℵn) ⊂ H(S) a.s., (6)

where εn = dH(S,ℵn). The second inclusion is immediate. To prove the first one,
we proceed by contradiction: suppose that there exists x ∈ H(S)−εn but x /∈ H(ℵn).
Because x /∈ H(ℵn), there exists a halfspace Hx such that x ∈ Hx and Hx∩ℵn = ∅. Now,
we take z ∈ B(x, 2εn) ∩ Hx such that B(z, εn) ⊂ Hx. Because z ∈ B(x, εn) ⊂ H(S),
the halfspace Hz parallel to Hx such that z ∈ ∂Hz meets S at some point s. Then
B(s, εn) ⊂ Hx, while εn = dH(S,ℵn), which implies that there exists Xi ∈ B(s, εn),
contradicting Hx ∩ ℵn = ∅. Then, we have the following:

∆
(

H(S) \ S
)

− 2εn ≤ ∆
(

H(S)−2εn \ S
)

≤ ∆
(

S−2εn \ ℵn

)

≤ ∆
(

H(ℵn) \ ℵn

)

. (7)

Because H(S) < ∞, we have that by (6), c′n,γ → 0. Then PH1
(Ṽn > cn,γ) = 1 a.s. for

sufficiently large n.

3.2 The non-parametric case

We now assume that we have a sample ℵn = {X1, . . . , Xn} of iid random vectors in R
d

drawn according to an unknown density f . We propose to plug in a density estimator
f̂n on (1), compute

δ̂
(

H(ℵn) \ ℵn

)

= sup

{

r : ∃x such that x+
r

f̂n(x)1/d
A ⊂ H(ℵn) \ ℵn

}

,

and reject H0 (the support is convex) if δ̂(H(ℵn) \ ℵn) is sufficiently large.
To increase the power of our test we need to find a density estimator that over-

estimates the density when the support is not convex. To do so, we propose the following
density estimator.
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Definition 3. Let Vor(Xi) be the Voronoi cell of the point Xi i.e. Vor(Xi) =
{

x : ‖x−
Xi‖ = miny∈ℵn ‖x− y‖

}

. If K is a kernel function and f̃hn(x) =
1

nhd
n

∑

K((x−Xi)/hn)

denotes the usual kernel density estimator, we define:

f̂n(x) = max
i,x∈Vor(Xi)

f̃(Xi). (8)

For the uniform case, we require that the boundary of the support be smooth enough
to derive the asymptotic behavior. In this more general setup, we will not have a conver-
gent level estimation and will only have a level majorization (the price to pay to estimate
the density).

Condition (P’): For a given kernel function K, we say that S is standard with
respect toK and with respect to the Lebsegue measure if there exist positive constants r0,
cS and cK such that for all x ∈ S,

∫

u∈S K((u−x)/r)du ≥ cKrd and |B(x, r)∩S| ≥ cSr
d.

We denote CK as the class of convex sets that satisfy condition (P’) and AK as the class
of all the sets that satisfy condition (P’).

We require the following assumptions on the kernel:

Definition 4. Let K be the set of positive kernel functions such that
∫

‖u‖K(u)du < ∞
and K(u) = φ(p(u)), where p is a polynomial and φ a is bounded real function of bounded
variation.

Notice that all the usual kernels are in K. Sometimes, we require the following con-
dition on the underlying density f .

Condition (B): A density f with support S fulfills condition B if it is Lipschitz
continuous and if there exists f0 > 0 such that f(x) ≥ f0 for all x ∈ S.

Theorem 4. Let K ∈ K and f̂n be defined as in Definition 3. Assume that hn = O(n−β)
for some 0 < β < 1/d. We also assume that the unknown density fulfills condition B.
For the following decision problem,

{

H0 : S ∈ CK

H1 : S /∈ CK ,
(9)

the test based on the statistic Ṽn = δ
(

H(ℵn)\ℵn

)

with critical region RC = {Ṽn ≥ Cn,γ},
where

Cn,γ =
1

n

(

− log(− log(1− γ)) + log(n) + (d− 1) log(log(n)) + log(α)
)

,

has an asymptotical level smaller than γ. Moreover, if S ∈ AK is not convex, the
power is 1 for sufficiently large n.

Remark 1. Condition B seems to be restrictive, however is unavoidable. Indeed, we
quote from Delicado, P.; Hernández, A. and Lugosi, G. (2014): “...it is impossible (in a
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well-defined sense described below) to design a decision rule that behaves asymptotically
correctly for all bounded densities of bounded support. This shows that an assumption
like the density being bounded away from zero on its support is necessary for consistent
decision rules.” (see Theorem 2).
However, condition P’ is satisfied for a large class of kernel functions, because convex
sets are standard.

The proof of this theorem is given in the next subsection. To do so, we prove
Propositions 3, 4, 5 and 6.

3.2.1 More results on the test and proofs

In the first subsection, we assume that the proposed density estimator fulfills some
“good conditions”, and in the second we prove that the density defined in (8) fulfills
those conditions when the support belongs to AK.

Asymptotic properties of the test

Proposition 3. Assume that the unknown density f fulfils condition (B). We suppose
that f̂n is a density estimator that fulfills the following:

(i) There exists a sequence ε+n → 0 such that for all x ∈ S,
(

f(x)

f̂n(x)

)1/d
≥ 1− ε+n .

(ii) There exists a sequence ε−n → 0 and a constant λ0 > 0 such that for all x ∈ H(ℵn),
(f̂n(x))

1/d ≥ λ0 − ε−n .

If we consider the following decision problem
{

H0 : S is convex

H1 : S is not convex
(10)

the test based on the statistic δ̂
(

H(ℵn) \ ℵn

)

with critical region

RC =

{

δ̂
(

H(ℵn) \ ℵn

)

>
(

λ
log(n)

n

)1/d
}

is asymptotically consistent if λ sufficiently large.

Proof. When the support is convex: We prove the following:

∆(ℵn) ≥ (1− ε+n )δ̂
(

H(ℵn) \ ℵn

)

. (11)

Observe that δ̂(H(ℵn) \ ℵn) = t ⇒ ∃x such that B̊
(

x, t/(f̂n(x))
1/d
)

⊂ H(ℵn) \ ℵn. Be-

cause S is convex,H(ℵn) ⊂ S. Then, δ̂(H(ℵn)\ℵn) = t ⇒ ∃x such thatB̊
(

x, t/(f̂n(x))
1/d
)

⊂
S \ ℵn. From the equality

(

f(x)

f̂n(x)

)1/d

B̊

(

x,
t

f(x)1/d

)

= B̊

(

x,
t

f̂n(x)1/d

)

,

9



we derive the following: if δ̂(H(ℵn) \ ℵn) = t, then there exists x such that , (1 −
ε+n )B̊

(

x, t/(f(x))1/d
)

⊂ S \ ℵn. Therefore, we have δ̂(H(ℵn) \ ℵn) = t ⇒ ∆(ℵn) ≥
(1− ε+n )t. According to Lemma 5 we have δ̂(H(ℵn) \ ℵn) ≤ rf

1−ε+n

(

log(n)
n

)1/d
eventually

almost surely.

When the support is not convex:
By assumption (ii), we know that

δ̂
(

H(ℵn) \ ℵn

)

≥ (λ0 − ε−n )∆
(

H(ℵn) \ ℵn

)

,

and from (7), we obtain

δ̂
(

H(ℵn) \ ℵn

)

≥ (λ0 − ε−n )
(

r0 − 2dH(S,ℵn)
)

,

where r0 = ∆
(

H(S) \ S
)

. Because we are assuming that S is not convex we have, by

Proposition 2, that r0 > 0. Applying Lemma 5, we have dH(S,ℵn) ≤ rf (log(n)/n)
1/d

eventually almost surely. Thus, when the support is not convex

δ̂
(

H(ℵn) \ ℵn

)

≥ r0λ0 + o(1) (eventually almost surely). (12)

Proposition 4. Assume that the unknown density f fulfills condition (B). Suppose that
the density estimator f̂n satisfies the following conditions:

There exists a sequence ε+n such that log(n)ε+n → 0 and for all x ∈ S,
(

f(x)

f̂n(x)

)1/d
≥ 1−

ε+n . If we consider the decision problem (10), based on the test statistic Ṽn = δ̂d
(

H(ℵn)\
ℵn

)

with the critical region RC = {Ṽn ≥ Cn,γ}, where

Cn,γ =
1

n

(

− log(− log(1− γ)) + log(n) + (d− 1) log(log(n)) + log(α)
)

,

the level is asymptotically smaller than γ.

Proof. By (11), we have

P(Ṽn ≥ Cn,γ) ≤ P
(

V (ℵn) ≥ (1− ε+n )Cn,γ

)

.

Then, by Corollary 1, it follows that P(Ṽn ≥ Cn,γ) is bounded from above by

P

(

U ≥ −(1−ε+n )
d log

(

− log(1−γ)
)

+
(

(1−ε+n )
d−1

)(

log(n)+(d−1) log(log(n))+log(α)
)

)

.

Finally, because log(n)ε+n → 0, we obtain:

P(Ṽn ≥ Cn,γ) ≤ P
(

U ≥ − log(− log(1− γ)) + o(1)
)

→ γ.

10



Proposition 5. Assume that the unknown density f fulfills condition (B). Suppose that
the density estimator f̂n satisfies that there exist a sequence ε−n → 0 and a constant
λ0 > 0 such that, for all x ∈ H(ℵn), (f̂n(x))

1/d ≥ λ0 − ε−n .
If we consider the decision problem (10), along with the test statistic Ṽn = δ̂d

(

H(ℵn)\ℵn

)

with critical region RC = {Ṽn ≥ Cn,γ} where :

Cn,γ =
1

n

(

− log(− log(1− γ)) + log(n) + (d− 1) log(log(n)) + log(α)
)

,

if S is not convex, the power of the test is 1 for sufficiently large n.

Proof. It is clear that for γ = γ0, Cn,γ = O(log n/n). However, (12) entails that Ṽn ≥
λd
0δ

d(H(S) \ S) + o(1) (with δd(H(S) \ S) > 0) eventually almost surely.

An appropriate density estimator To prove Theorem 4, we have to show that the
density estimator introduced in Definition 3 fulfills conditions (i) and (ii) of Proposition
3. We show in the next Proposition 6 that these conditions hold.

Proposition 6. Assume that the unknown density f fulfills condition (B). We suppose
that K ∈ K and that hn satisfies:

a) hn log(n) → 0, nhd
n

(

log(n)
)2
∣

∣ log(hn)
∣

∣

→ ∞, log(hn)
log(log(n)) → ∞, and

b) there exists a constant c > 0 such that hdn ≤ chd2n.

(Note that for all β ∈ (0, 1/d), hn = h0n
−β fulfills all these conditions).

Let f̂n(x) be the density estimator introduced in Definition 3. Then,

(i) there exists a sequence ε+n → 0 such that for all x ∈ S,
(

f(x)

f̂n(x)

)1/d
≥ 1− ε+n , and

(ii) there exist a sequence ε−n → 0 and a constant λ0 > 0 such that for all x ∈ H(ℵn),
(f̂n(x))

1/d ≥ λ0 − ε−n .

Proof. We start the proof of (i). We first write that:

max
x∈S

(

f̂n(x)− f(x)
)

≤ max
x∈S

∣

∣f̂n(x)− Ef̂n(x)
∣

∣+max
x∈S

(

Ef̂n(x)− f(x)
)

.

By Theorem 2.3 in Giné, E. and Guillou, A. (2002), there exists a constant C1 such
that:

√

nhdn
− log(hn)

sup
x∈Rd

∣

∣f̃n(x)− Ef̃n(x)
∣

∣ ≤ C1 a.s.

Thus
√

nhdn
− log(hn)

sup
x∈ℵn

∣

∣f̃n(x)− Ef̃n(x)
∣

∣ ≤ C1 a.s.,

11



and therefore,
√

nhdn
− log(hn)

sup
x∈ℵn

∣

∣f̂n(x)− Ef̂n(x)
∣

∣ ≤ C1 a.s. (13)

The proof of (i) will be complete if we find a proper bound for maxx∈S(Ef̂n(x)−f(x)).
We first note that the standardness assumption (with respect to the Lebesgue measure)
ensures that there exists a constant rS such that for all Xi ∈ ℵn, for all x ∈ Vor(Xi)∩S,
‖x −Xi‖ ≤ dH(S,ℵn) = rS(log(n)/n)

1/d, where for the last equality, we used Theorem
4 in Cuevas, A. and Rodriguez-Casal, A. (2004) and the fact that S is standard. We
denote ρn = rS(log(n)/n)

1/d. Then, we have, for sufficiently large n,

max
x∈S

(

Ef̂n(x)− f(x)
)

≤ max
(x,y)∈S2,‖x−y‖≤ρn

(

Ef̃n(y)− f(x)
)

a.s.

For all (x, y) ∈ S2 with ‖x− y‖ ≤ ρn, we have

Ef̃n(y) =

∫

{u:y+uhn∈S}
K(u)f(y + uhn)du.

Because f is Lipschitz, we derive that

Ef̃n(y) ≤
∫

{u:y+uhn∈S}
K(u)

(

f(y) + kf‖u‖hn
)

du

≤
∫

Rd

K(u)
(

f(y) + kf‖u‖hn
)

du = f(y) + kfhn

∫

Rd

‖u‖K(u)du.

Now, again using the Lipschitz condition, we have

Ef̃n(y) ≤ f(x) + kfρn + kfhn

∫

Rd

‖u‖K(u)du.

Because nhdn
(

log(n)
)−2∣
∣ log(hn)

∣

∣

−1 → ∞, we have hn ≫ ρn. Then, there exists a
constant C2 such that:

h−1
n max

x∈S

(

Ef̂(x)− f(x)
)

≤ C2 a.s. (14)

The first two conditions on hn, together with equations (13) and (14), imply that there
exists a sequence εn such that εn log(n) → 0 fulfilling

max
x∈S

(

f̂n(x)− f(x)
)

≤ εn.

Then, for all x ∈ S, f̂n(x) − f(x) ≤ f(x)εn/f0, and thus, f̂n(x)
f(x) ≤ 1 + f(x)εn

f0
, or equiva-

lently,
(

f(x)

f̂n(x)

)1/d

≥
(

1 +
εn
f0

)−1/d

.

12



Finally, if we take ε+n = (1− (1 + εn/f0)
−1/d) ∼ εn/(df0) (thus, we have ε+n log(n) → 0)

then maxx∈S
(

f(x)

f̂n(x)

)1/d
≥ 1− ε+n eventually almost surely, which concludes the proof of

(i).

We now prove (ii). It is clear that

min
x∈Rd

f̂n(x) ≥ min
x∈Rd

Ef̂n(x)−max
x∈Rd

∣

∣Ef̂n(x)− f̂n(x)
∣

∣.

We have already proven maxx∈Rd

∣

∣Ef̂n(x)− f̂n(x)
∣

∣→ 0 a.s. using Theorem 2.3 in Giné,

E. and Guillou, A. (2002). We now show that minx∈Rd Ef̂n(x) is bounded from below

by a positive constant. Observe that minx∈Rd Ef̂n(x) = minx∈ℵn Ef̃n(x); thus

min
x∈Rd

Ef̂n(x) ≥ min
x∈S

Ef̃n(x) = min
x∈S

∫

{u:x+uhn∈S}
K(u)f(x+ uhn)du.

Using that f is Lipchitz continuous, we obtain:

Ef̃n(x) ≥
∫

{u:x+uhn∈S}
K(u)

(

f(x)− kf‖u‖hn
)

du.

Because f is bounded from below and the support is standard with respect to K, we
have, for sufficiently large n,

Ef̃n(x) ≥ f0cK − kfhn

∫

Rd

‖u‖K(u)du.

Therefore, minx∈Rd f̂n(x) ≥ f0cK − ε′n with ε′n → 0, thus minx∈Rd f̂n(x) ≥ λ − ε−n with
ε−n → 0 and λ0 = f0cK .

3.3 Simulations

We have performed two simulation studies to asses the behavior of our test in the sce-
narios described in Sections 3.1 and 3.2. For the first study, the data will be drawn
uniformly on sets S ⊂ R

2, and we will perform the test defined in Section 3.1 to obtain
estimations of the power and the level. In the second study, the nonparametric case, the
data will be drawn according to an unknown density, and we will estimate the density
using the estimator given by (8). In this case, we consider the same sets as in Delicado,
P.; Hernández, A. and Lugosi, G. (2014).

3.3.1 Semi-Parametric case

The data are generated uniformly on the sets Sϕ = [0, 1]2 \ Tϕ, where Tϕ is the isosceles
triangle with height 1/2 (see Figure 1), whose angle at the vertex (1/2, 1/2) is equal to
ϕ. If we have a random sample in Sϕ, it is clear that as ϕ increases, it should be easer
to detect (with our test 3) the non-convexity of the set. The results of the simulations
are summarized in Table 1.
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ϕ = π/4 ϕ = π/6 ϕ = π/8

n β̂ n β̂ n β̂

100 .4 200 .565 300 .543

130 .636 250 .787 350 .679

160 .835 300 .926 400 .846

200 .946 400 .996 500 .976

300 .997 500 1 600 .997

Table 1: Power estimated over 1000 repetitions, for different values of ϕ, when the sample
is uniformly distributed on [0, 1]2 \ Tϕ, where Tϕ is an isosceles triangle, (see Figure 1)

φ

Figure 1: [0, 1]2 \ Tϕ where Tϕ is an isosceles triangle with height 1/2.

3.3.2 Non-parametric case

We will perform a simulation study for the same sets used in Delicado, P.; Hernández,
A. and Lugosi, G. (2014). Consider the curves γR,θ = R(cos(θ), sin(θ)) with θ ∈
[3π(R−1)

2R , 32π] and the reflections of those curves along the y axe (which will be denoted

by ζR,θ). We consider ΓR = T(0,R)(γR,θ) ∪ T(0,−R)(ζR,θ) with θ ∈ [3π(R−1)
2R , 32π], where Tv

is the translation along the vector v. It is easy to see that the length of every ΓR is 3
2π.

We will consider, for different values of R, the S-shaped sets (see first row in Figure 2).

SR = T(0,R)

(

⋃

R−0.6≤r≤R+0.6

γr,θ

)

∪ T(0,−R)

(

⋃

R−0.6≤r≤R+0.6

ζr,θ

)

Observe that when R approaches to infinity, the sets S converge to the rectangle (which
corresponds to the convex case). We have generated the data according to two different
densities. The first one is the same as that considered in Delicado, P.; Hernández, A.
and Lugosi, G. (2014): that is, along the orthogonal direction of ΓR, we choose a random
variable with normal density (with zero mean and standard deviation σ = .15) truncated
to .6 (the truncation is performed to ensure that we obtain a point in the set SR). In
the second case, we consider a random variable along the orthogonal direction of ΓR but
uniformly distributed on [−.6, .6]. In Tables 2 and 3, we have summarized the results of
the simulations, for different sample sizes (we performed the test B = 100 times).
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R N=100 N=250 N=500 N=1000

np unif np unif np unif np unif

1 .13 .44 .55 .99 1 1 1 1

1.5 .98 1 1 1 1 1 1 1

3 .38 .24 1 1 1 1 1 1

6 .08 .09 .41 .66 1 1 1 1

12 .01 .05 .02 .08 .39 .68 .98 1

24 0 .07 .01 .05 0 .09 .07 .48

∞ 0 .04 0 .09 0 .04 .01 .05

Table 2: Power estimated over B repetitions, for different values of R, when the sample
is uniformly distributed along the orthogonal direction of ΓR

R N=100 N=250 N=500 N=1000

np unif np unif np unif np unif

1 1 1 1 1 1 1 1 1

1.5 1 1 1 1 1 1 1 1

3 1 .99 1 1 1 1 1 1

6 .67 .41 .99 1 1 1 1 1

12 .25 .19 .62 .98 .85 1 .94 1

24 .1 .30 .30 .92 .38 1 .48 1

∞ 0 .33 .04 .92 .06 1 .04 1

Table 3: Power estimated over B repetitions, for different values of R, when the sample
is drawn according to a truncated normal distribution (to .6) normal distribution, along
the orthogonal direction of ΓR

Figure 2: SR for different values of R. sample is also presented, drawn with a uniform
radial noise (top) and with a truncated Gaussian noise (bottom)

4 Appendix

The aim of this Appendix is to prove the main result on the generalization of the maximal
spacing, that is, Theorem 2. It is organized as follows: first we settle some preliminary
lemmas, then we prove a weaker version of Theorem 2, for the case of piecewise constant
densities on disjoint sets. We continue by considering piecewise constant densities, and
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finally we derive the proof of Theorem 2.

4.1 Preliminary Lemmas

4.1.1 Lemma 1

First we prove, following the ideas in Janson, S. (1987), three technical lemmas from
which Corollary 1 is a direct consequence. The first one is useful to control the conver-
gence rates, and it is used all along this section.

Lemma 1. Let us consider S ⊂ R
d with |S| > 0, |∂S| = 0, and ℵn = {X1, . . . , Xn} iid

random vectors with uniform distribution on S. Then, there exists aS− = aS−(w, n) and
aS+ = aS+(w, n) such that aS− → α and aS+ → α if w → ∞ and w/n → 0, and such that,

exp(−γaS+|S|) ≤ P
(

nV (ℵn) < w
)

≤ exp(−γaS−|S|), (15)

where γ = n
|S|w

d−1e−w.

Observe that the functions aS+ and aS− only depend on the “shape” of S (i.e. are
invariant by similarity transformations).

Notation and previous definitions. Let us denote by ℵn = {X1, . . . , Xn} a sample
of iid random vectors uniformly distributed on S ⊂ R

d. We assume that S is compact
set. Let {Nt}t≥0 be a Poisson process with intensity 1, independent of ℵn. Let us denote,

∆t = ∆(ℵNt) and V (t) = ∆d
t ,

where ∆(ℵNt) is given in Definition 1. The following characterization is easily derived,

∆(ℵn) ≥ r ⇔ ∃x such that x+ rA ⊂ S \ ℵn

⇔ ∃x such that x+ rA ⊂ S and x /∈
n
⋃

i=1

(

Xi − rA
)

.

Therefore, if we define Sr = {x : x+ rA ⊂ S}, then ∆(ℵn) < r if and only if Sr can be
covered by the sets Xi − rA. The random set {Xi}Nt

1 can be considered as a Poisson
process with intensity t/|S| in S.
Let us denote by Fs the grid

{
∏d

1[nis, (ni + 1)s] : (n1, . . . , nd) ∈ Z
d
}

and define the
following quantities

ns = #
{

Q ∈ Fs : Q ⊂ Sr

}

, ms = #
{

Q ∈ Fs : Q ∩ ∂Sr 6= ∅
}

,

and

γ = γ
(

r,
t

|S|
)

=
td

|S|d |rA|
d−1 exp

(

− t|rA|
|S|

)

=
td

|S|d r
d(d−1) exp

(−trd

|S|
)

.
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Some previous results

Lemma 2. There exist a+ = a+(tr
d) and a− = a−(trd) such that a+ → α and a− → α

if trd → ∞, and for all s > 3r,

exp
(

− γa+(s+ 3r)d(ns +ms)
)

≤ P (∆t < r) ≤ exp
(

− γa−(s− 3r)dns

)

. (16)

Proof. The proof of (16) follows from Lemma 7.2 in Janson, S. (1986) (let us observe that
in Lemma 7.2 it is not used that |S| = 1). Replace A and S by rA and Sr respectively.
Here a− = a−(−rA, v, t/|S|, 3r), a+ = a+(−rA, v, t/|S|, 3r) and v is a vector taken
conveniently. The fact that a+ → α and a− → α follows directly from Lemma 7.3 in
Janson, S. (1986).

Lemma 3. Let s =
√
r. Then, if r → 0, we have mss

d → 0 and nss
d → |S|.

Proof. Let us denote ∂aS = ∂S ⊕ B(0, a). It is easy to see that ∂Sr ⊂ ∂3rS. If Q ∈ Fs

and Q ∩ ∂Sr 6= ∅ then Q ⊂ ∂3r+dsS. Thus mss
d ≤ |∂3r+dsS|. On the other hand

|S| − |∂3r+dsS| ≤ |S \ ∂3r+dsS| ≤ nss
d ≤ |S|. Taking s = r1/2, we obtain |∂3r+dsS| →

|∂S| = 0 if r → 0. Finally mss
d → 0 and nss

d → |S|.

As a consequence we obtain the following result.

Lemma 4. There exist a− = a−(r, t) and a+ = a+(r, t) fulfilling a− → α and a+ → α
if r → 0 and trd → ∞, such that

e−γ|S|a+ ≤ P (∆t < r) ≤ e−γ|S|a− .

Now 15) is a direct consequence of the previous Lemma, taking w = t
|S|r

d, so that

∆t ≤ r ⇔ t
|S|V (t) ≤ w.

4.1.2 Lemmas 5, 6 and 7

In this section we settle three lemmas whose proofs are quite similar. The first one
(Lemma 5), bounds the size of the maximal spacing. It is used in the proofs of Proposi-
tion 8 and Theorem 2. Lemmas 6 and 7 controls the speed of the maximal spacing when
we constraint the center of the empty set to be localized on a “vanishing” set, under
different assumptions on the density. Because A is convex with non-empty interior there
exists ε0 > 0 such that for all ε ≤ ε0, A

−ε 6= ∅ and |A−ε| = |A| − ε|∂A|d−1 + o(ε). It can
also be proved easily that,

for all r > 0, and for all x ∈ B(0, ε0/r), x+ (rA)−‖x‖ ⊂ rA. (17)

Lemma 5. Let ℵn = {X1, . . . , Xn} be a random sample of points in R
d, drawn according

to a density f with bounded support S. Suppose that f fulfills condition B. Then, there
exist a constant rf such that:

∆(ℵn) ≤ rf

(

log(n)

n

)1/d

eventually almost surely.
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Proof. Let us first cover S with νn ≤ CSn
−1 balls of radii n−1/d centered at {x1, . . . , xνn},

and let wn =
(

rf log(n)
n

)1/d
with rf > 2f1/f0. We are going to prove that ∆(ℵn) ≤ wn,

eventually almost surely. Because ∆(ℵn) ≥ wn ⇔ ∃x ∈ S, such that x+wnf(x)
−1/dA ⊂

S \ ℵn, then ∆(ℵn) ≥ wn ⇒ ∃x ∈ S, such that x + wnf
−1/d
1 A ⊂ S \ ℵn. There exists

a point xi such that ‖x − xi‖ ≤ n−1/d and, for sufficiently large n, by (17) (because

n−1/d ≪ wn) we have that xi + (wnf
−1/d
1 A)−1/n1/d ⊂ S \ ℵn. Thus,

∆(ℵn) ≥ wn ⇒ ∃xi ∃x ∈ B(xi, n
−1/d), such that xi+(wnf

−1/d
1 A)−1/n1/d ⊂ S\ℵn. (18)

Now notice that,

P

(

xi +
(

wnf
−1/d
1 A

)−1/n1/d

⊂ S \ ℵn

)

=

(

1− P

(

xi +
(

wnf
−1/d
1 A

)−1/n1/d)
)n

≤
(

1− f0

∣

∣

∣

(

wnf
−1/d
1 A

)−1/n1/d ∣
∣

∣

)n

≤
(

1−
(f0
f1

wd
n − f0

f
d−1

d
1

wd−1
n n−1/d(1 + o(1))

)

)n

.

In the last inequality we used that |A−ε| = |A| − ε|∂A|d−1+ o(ε). Because n−1/d ≪ wn,
we have that,

P

(

xi +
(

wnf
−1/d
1 A

)−1/n1/d

⊂ S \ ℵn

)

≤
(

1− f0
f1

wd
n(1 + o(1))

)n

.

From this inequality and (18) we obtain that,

P

(

∆(ℵn) ≥ rf
(

log(n)n/n
)1/d

)

≤ νn

(

1− f0
f1

wd
n(1 + o(1))

)n

≤ νn exp
(

− cnwd
n(1 + o(1))

)

,

and therefore,

P

(

∆(ℵn) ≥ rf (log(n)/n)
1/d
)

≤ CSn
1−rff0/f1+o(1).

Finally, because rf > 2f1/f0 we have
∑

P
(

∆(ℵn) ≥ rf (log(n)/n)
1/d
)

< ∞. Thus, the

Borel-Cantelli Lemma ensures that ∆(ℵn) ≤ rf (log(n)/n)
1/d eventually almost surely

Lemma 6. Let ℵn = {X1, . . . , Xn} be a random sample of points in R
d, drawn according

to a density f , which is assumed to fulfill condition (B). Suppose also that there exist
constants r0 and c > 1− 1/d such that for all r ≤ r0 and for all x ∈ S:

mint∈S∩B(x,r) f(t)

maxt∈S∩B(x,r) f(t)
≥ c.
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Let Gn be a sequence of sets with the following property: the number of balls of radius
n−1/d, necessary to cover Gn (which we will denote νn), satisfies νn ≤ n1−d−1

(log(n))β

for some β. Let A be a compact and convex set with |A| = 1 such that its barycenter is
the origin of Rd. Let us denote

∆(ℵn, Gn) = sup
{

r : ∃x ∈ Gn such that x+
r

f(x)1/d
A ⊂ S \ ℵn

}

,

V (ℵn, Gn) = ∆d(ℵn, Gn),

U(ℵn, Gn) = nV (ℵn, Gn)− log(n)− (d− 1) log(log(n))− log(α).

Then, for all x ∈ R we have that

P
(

U(ℵn, Gn) ≥ x
)

→ 0.

Proof. Let us first cover Gn with νn balls of radius n−1/d, centered at some points
{x1, . . . , xνn}, and choose

wn =
(x+ log(n) + (d− 1) log(log(n)) + log(α)

n

)1/d
,

then ∆(ℵn) ≥ wn ⇔ U(ℵn) ≥ x. Then, it also holds that

∆(ℵn) ≥ wn ⇔ ∃x ∈ Gn, such that x+ wnf(x)
−1/dA ⊂ S \ ℵn.

On the other hand, because n−1/d ≪ wn and f(x)−1/d ≤ f
−1/d
0 , there exists a point xi

such that ‖x − xi‖ ≤ n−1/d and, for sufficiently large n, xi + (wnf(x)
−1/dA)−1/n1/d ⊂

S \ ℵn. And then,

∆(ℵn) ≥ wn ⇒ ∃xi ∃x ∈ B(xi, n
−1/d), such that

xi + (wnf(x)
−1/dA)−1/n1/d ⊂ S \ ℵn. (19)

Now observe that

P

(

xi + (wnf(x)
−1/dA)−1/n1/d ⊂ S \ ℵn

)

=

(

1− P

(

xi +
(

wnf(x)
−1/dA

)−1/n1/d)
)n

≤
(

1−
min

t∈xi+wnf
−1/d
0

A
f(t)

maxt∈B(xi,n−1/d) f(t)
wd

n(1 + o(1))

)n

,

which implies that, for sufficiently large n,

P

(

xi + (wnf(x)
−1/dA)−1/n1/d ⊂ S \ ℵn

)

≤
(

1− cwd
n(1 + o(1))

)n
. (20)

From this inequality, together with (19) we derive that,

P
(

U(ℵn, Gn) ≥ x
)

≤ νn(1− cwd
n(1 + o(1)))n

≤ νn exp
(

− cnwd
n(1 + o(1))

)

≤ νnn
−c(1+o(1)).

Finally, P(U(ℵn, Gn) ≥ x) → 0 because c > 1− 1/d and νn ≤ n1−1/d(log(n))a.
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Lemma 7. Let ℵn = {X1, . . . , Xn} be a random sample of points in R
d, drawn according

to a density f , and assume that condition B holds. Let Gn be a sequence of sets with the
following property: the number of balls of radius n−1/d, necessary to cover Gn (which we
will denote νn), satisfies νn ≤ n1−a for some a > 0. Let A be a compact and convex set
with |A| = 1, whose barycentre is the origin of Rd. If we denote

∆(ℵn, Gn) = sup
{

r : ∃x ∈ Gn such that x+
r

f(x)1/d
A ⊂ S \ ℵn

}

,

V (ℵn, Gn) = ∆d(ℵn, Gn)

U(ℵn, Gn) = nV (ℵn, Gn)− log(n)− (d− 1) log(log(n))− log(α),

then, for all x ∈ R:
P
(

U(ℵn, Gn) ≥ x
)

→ 0.

Proof. The proof is similar to the proof of Lemma 6. Equation (19) also holds, but
now(20) becomes:

P

(

xi + (wnf(x)
−1/dA)−1/n1/d ⊂ S \ ℵn

)

≤
(

1− wd
n(1 + o(1))

)n
.

So P
(

U(ℵn, Gn) ≥ x
)

≤ νnn
−1+o(1). Because νn ≤ n1−a, we have P

(

U(ℵn, Gn) ≥ x
)

→
0

4.1.3 Lemma 8

This last preliminary relates the behavior of the maximal spacing for a bounded density
with the maximal spacing of the uniform density, and it is only used in the proof of the
last theorem.

Lemma 8. Let us consider a density f with compact support S such that, for all x ∈ S
1 − ε ≤ f(x)|S| ≤ 1 + ε for a given ε ∈ (0, 1/2). Denote by n0 = ⌊n(1 − 2ε)⌋ and
n1 = ⌈n(1 + 2ε)⌉ the floor and ceiling of n(1 − 2ε) and n(1 + 2ε) respectively. Fixed

w ∈ R, let w0 =
w(1−2ε−n−1)

(1+ε) and w1 =
w(1−ε)
1+2ε then,

P
(

n0V (Yn0
) ≤ w0

)

(

1− 1− ε

nε

)

≤ P
(

nV (ℵn) ≤ w
)

(21)

and

P
(

nV (ℵn) ≤ w
)

≤ P
(

n1V (Yn1
) ≤ w1

)

(

1− 1 + 2ε+ n−1

(nε+ 1)(1 + ε)

)−1
, (22)

where Yn1
= {Y1, . . . , Yn1

} and Yn0
= {Y1, . . . , Yn0

} are iid random vectors with uniform
distribution on S and ℵn = {X1, . . . , Xn} are iid random vectors with density f .

Proof. We first prove (21). To do so, observe that X can be generated from the following
mixture: with probability p = 1 − ε, X is drawn with uniform distribution on S, and,
with probability 1 − p = ε, X is drawn with the law given by the density g(x) =
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f(x)|S|−(1−ε)
ε|S| IS(x). Let us denoteN0 the number of points drawn according to the uniform

law on S and ℵ∗
N0

= {Y1, . . . , YN0
} the associated sample. Let us recall that

∆(ℵn) = sup
{

r : ∃x such that x+
r

f(x)1/d
A ⊂ S \ ℵn

}

.

Because f(x)|S| ≤ 1 + ε, if we multiply and divide by |S|1/d we have:

∆(ℵn) ≤ (1 + ε)1/d sup
{

r : ∃x such that x+
r

|S|1/dA ⊂ S \ ℵn

}

.

Then, ℵN0
⊂ ℵn implies that,

∆(ℵn) ≤ (1 + ε)1/d sup
{

r : ∃x such that x+
r

|S|1/dA ⊂ S \ ℵ∗
N0

}

,

and therefore ∆(ℵn) ≤ (1 + ε)1/d∆(ℵ∗
N0

), which entails that V (ℵn) ≤ (1 + ε)V (ℵ∗
N0

).
Then, for all w,

P
(

nV (ℵn) ≤ w
)

≥ P
(

(1 + ε)nV (ℵ∗
N0

) ≤ w
)

,

and in particular for any n0 we have that

P
(

nV (ℵn) ≤ w
)

≥ P

(

(

(1 + ε)nV (ℵ∗
N0

) ≤ w
)

∩
(

N0 ≥ n0

)

)

.

When N0 ≥ n0, let us denote Yn0
= {Y1, . . . , Yn0

} the n0 first values of ℵ∗
N0

. Clearly
we have V (ℵ∗

N0
) ≤ V (Yn0

) so,

P
N0≥n0

(

(1 + ε)nV (ℵ∗
N0

) ≤ w
)

≥ P

(

(1 + ε)nV (Yn0
) ≤ w

)

,

where P
N0≥n0 denotes the probability conditioned to N0 ≥ n0. Therefore,

P
(

nV (ℵn) ≤ w
)

≥ P

(

n0V (Yn0
) ≤ wn0

(1 + ε)n

)

P(N0 ≥ n0).

On the other hand, because N0 ∼ Bin((1− ε, n)), we obtain,

P(N0 < n0) = P

(

N0 − (1− ε)n < n0 − (1− ε)n
)

.

From n0 ≤ n(1− ε) it follows that n0 − n(1− ε) ≤ −εn, and by Tchebichev inequality,

P(N0 < n0) ≤
nε(1− ε)

n2ε2
=

(1− ε)

nε
,

and

P(N0 ≥ n0) ≥ 1− (1− ε)

nε
.

Let us denote w0 =
w(1−2ε−n−1)

(1+ε) . Because n(1− 2ε)− 1 ≤ n0 we have w0 ≤ wn0

(1+ε)n , from
where it follows that

P
(

nV (ℵn) ≤ w
)

≥ P

(

n0V (Yn0
) ≤ w0

)

(

1− 1− ε

nε

)

.
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Equation (22) is proved in the same way as (21). We provide a sketch of the proof.
First observe that a variable Y with uniform distribution can be seen as a mixture.
We take with probability p = 1

1+ε , Y as a random variable with the law given by
a density f , and, with probability 1 − p = ε

1+ε , Y is drawn with the law given by

g(x) = 1+ε−|S|f(x)
εS IS(x). Then, following the ideas used in the proof of equation (21) we

consider a sample Yn1
= {Y1, . . . , Yn1

} of iid copies of Y , (that follows an uniform law).
Denote by N the number of the points that had been drawn according to the density f
and Y∗

N = {X1, . . . XN} these points. The rest of the proof follow the same argument
used to prove ((21).

4.2 Uniform mixture on disjoint supports

Proposition 7. Let E1, . . . , Ek be disjoint subsets of Rd, (i.e: i 6= j ⇒ Ei ∩ Ej = ∅),
whose Lebesgue measure satisfies 0 < |Ei| < ∞. Let p1, . . . , pk be positive real numbers.
If ℵn = {X1, . . . , Xn} is a random sample of points in R

d, drawn according to the density:

f(x) =

k
∑

i=1

piIEi(x),

then:
U(ℵn)

L−→ U when n → ∞ where, for all i 0 < pi < ∞.

Proof. First let us introduce some notation:

• Ni = #{ℵn ∩ Ei}, the number of points in Ei, which has a Binomial distribution,
Ni ∼ Bin(n, pi|Ei|).

• ℵi
Ni

= {Xi1 , . . . , XiNi
}, the subsample of ℵn that belongs to Ei. Observe that Xij

for j = 1, . . . , Ni has uniform distribution on Ei with density |Ei|−1.

• ai = pi|Ei|, that fulfills
∑

ai = 1, a0 = mini ai, A0 = maxi ai and C =
∑ 1−ai

ai
.

• εi =
Ni−ain

nai
.

Because the support S of f is equal to ∪iEi, by assumption i 6= j ⇒ Ei ∩Ej = ∅, we
have

∆(ℵn) = sup
{

r : ∃x∃i such that x+
r

p
1/d
i

A ⊂ Ei \ ℵn

}

,

so

∆(ℵn) = max
i

sup
{

r : ∃x such that x+
r|Ei|1/d

(|Ei|pi)1/d
A ⊂ Ei \ ℵi

Ni

}

, (23)

while
∆(ℵi

Ni
) = sup

{

r′ : ∃x ∈ Ei such that x+ r′|Ei|1/dA ⊂ Ei \ ℵi
Ni

}

. (24)
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From (23) and (24) we derive that

∆(ℵn) = max
i

{

(|Ei|pi)1/d∆(ℵi
Ni
)
}

,

and
V (ℵn) = max

i

{

(|Ei|pi)V (ℵi
Ni
)
}

,

which entails that

P(V (ℵn) ≤ w) =
∏

i

P

(

NiV (ℵi
Ni
) ≤ wNi

ain

)

. (25)

Let us now condition to the number of points in each Ei. Denoting P
−→n (A) = P(A|N1 =

n1, . . . , Nk = nk), we have that,

P
−→n
(

nV (ℵn) ≤ w
)

=

k
∏

i=1

P
−→n
(

n(|Ei|pi)V (ℵi
ni
) ≤ w

)

=

k
∏

i=1

P
−→n

(

niV (ℵi
ni
) ≤ wni

n|Ei|pi

)

.

Now, taking wi =
wni

n|Ei|pi , γi =
niw

d−1

i e−wi

|Ei| and applying Lemma 1 we obtain,

exp

(

−
k
∑

i=1

γia
Ei
+ |Ei|

)

≤ P
−→n
(

nV (ℵn) ≤ w
)

≤ exp

(

−
k
∑

i=1

γia
Ei
− |Ei|

)

.

On the other hand,

k
∑

i=1

γia
Ei
+ |Ei| =

k
∑

i=1

ni

(

wni

n|Ei|pi

)d−1

exp

(

− wni

n|Ei|pi

)

aEi
−

=
k
∑

i=1

niw
d−1(1 + εi)

d−1 exp(−w(1 + εi))a
Ei
+ (wi, ni)

Let ε = maxi |εi| and εa+ = maxi
|aEi

+
(wi,ni)−α|

α , then we have

k
∑

i=1

γia
Ei
+ |Ei| ≤ nwd−1 exp(−w)α(1 + ε)d−1 exp(wε)(1 + εa+). (26)

Taking w = x+ log(n) + (d− 1) log(log(n)) + log(α), we obtain that nV ≤ w ⇔ U ≤ x,
which implies that

P
−→n (U(ℵn) ≤ x

)

≥ exp
(

−e−x(1 + ε)d−1 exp(log(n)ε)(1 + εa+)(1 + on(1))
)

. (27)

In the same way it can be proved that (denoting εa− = maxi
|aEi

−
(wi,ni)−α|

α ):

P
−→n (U(ℵn) ≤ x

)

≤ exp
(

−e−x(1− ε)d−1 exp(− log(n)ε)(1− εa−)(1 + on(1))
)

.
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If ε = max |εi| ≤ 1/ log(n)2, then, if n ≥ 5, a0n/2 ≤ Ni ≤ n for all i. So wi ≥
log(n)a0/(2A0) → ∞ and wi/n ≤

(

x+ log(n) + (d− 1) log(log(n)) + log(α)
)

/(na0) → 0.
This implies that εa− and εa+ converges to 0, according to Lemma 8. Then we have

P
ε≤1/ log(n)2

(

U(ℵn) ≤ x
)

→ exp(− exp(−x)) when n → ∞. (28)

Because

P

(

max
i

|εi| ≥
1

log(n)2

)

= P

(

⋃

i

|εi| ≥
1

log(n)2

)

≤
k
∑

i=1

P

(

|εi| ≥
1

log(n)2

)

, (29)

from Tchebychev inequality we obtain

P

(

|εi| ≥
1

log(n)2

)

≤ log(n)4V(ε2i ) where V(ε2i ) =
1− ai
nai

,

and therefore

P

(

ε ≥ 1

log(n)2

)

≤ C

(

log(n)
)4

n
. (30)

Finally, from equations (28) and (30) we obtain that

P
(

U(ℵn) ≤ x
)

→ exp(− exp(−x)) when n → ∞,

which concludes the proof.

4.3 Uniform mixture

Proposition 8. Let E1, . . . , Ek be subsets of Rd such that:

1) i 6= j ⇒ |Ei ∩ Ej | = 0.

2) 0 < |Ei| < ∞ for i = 1, . . . , k.

3) There exists 0 < K < ∞ such that, |∂Ei|d−1 ≤ K for i = 1, . . . , k, where |∂Ei|d−1

is the d− 1 measure of the boundary of Ei.

Suppose that ℵn = {X1, . . . , Xn} is a random sample of points in R
d, drawn according

to the density:

f(x) =
k
∑

i=1

piIE̊i

where p1, . . . , pk are real numbers satisfying 0 < pi < ∞ for i = 1, . . . , k. If there exists
constants r0 > 0 and c > 1− 1/d such that, for all r ≤ r0 and all x ∈ E̊i for some i,

mint∈S∩B(x,r) f(t)

maxt∈S∩B(x,r) f(t)
≥ c.

then:

U(ℵn)
L−→ U whenn → ∞.
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Proof. We start by introducing some definitions and notation. Let

∆̊(ℵn) = sup
{

r : ∃x∃i, such that x+
r

f(x)1/d
A ⊂ E̊i \ ℵn

}

,

V̊ (ℵn) = ∆̊d(ℵn),

Ů(ℵn) = nV̊ (ℵn)− log(n)− (d− 1) log
(

log(n)
)

− log(αA)

Clearly U(ℵn) ≥ Ů
(

ℵn

)

, and therefore P
(

U(ℵn) ≤ x
)

≤ P
(

Ů
(

ℵn

)

≤ x
)

.

It can be proved, following the same ideas used to prove Theorem 7 (and the fact

that |Ei| = |E̊i|) that Ů
(

ℵn

) L−→ U . We denote by Fn(x) = P
(

Ů
(

ℵn

)

≤ x
)

and by
G =

⋃

i,j

(

Ei ∩ Ej

)

, and define the following quantities:

• p0 = mini pi.

• ρA = maxx∈A ‖x‖.

• ρn = (rfρA/p
1/d
0 )

(

log(n)/n
)1/d

.

• ∆
(

ℵn, S \Gρn
)

= sup
{

r : ∃x ∈ S \Gρn such that x+
r

f(x)1/d
A ⊂ S \ ℵn

}

.

• ∆
(

ℵn, G
ρn
)

= sup
{

r : ∃x ∈ Gρn such that x+
r

f(x)1/d
A ⊂ S \ ℵn

}

.

It follows easily that

∆(ℵn) = max
{

∆
(

ℵn, S \Gρn
)

,∆
(

ℵn, G
ρn
)

}

. (31)

According to Lemma 5 there exists a constant rf such that ∆(ℵn) ≤ rf
(

log(n)/n
)1/d

eventually almost surely. For the chosen ρn, we claim that

∆
(

ℵn, S \Gρn
)

≤ ∆̊
(

ℵn

)

eventually almost surely. (32)

In order to prove (32) let us observe first that

for all ε > 0 there exists xε ∈ S \Gρn such that xε +
∆
(

ℵn, S \Gρn
)

− ε

f(xε)1/d
A ⊂ S \ ℵn.

If ∆
(

ℵn, S \Gρn
)

≤ rf (log(n)/n)
1/d then

xε +
∆
(

ℵn, S \Gρn
)

− ε

f(xε)1/d
A ⊂ B

(

xε, ρA
rf (log(n)/n)

1/d − ε

p
1/d
0

)

.

Because d(xε, G) ≥ rfρAp
−1/d
0 (log(n)/n)1/d we have

xε +
∆
(

ℵn, S \Gρn
)

− ε

f(xε)1/d
A ⊂

⋃

i

E̊i \ ℵn.
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Then, if ∆
(

ℵn, S\Gρn
)

≤ rf (log(n)/n)
1/d it follows that for all ε > 0, ∆̊

(

ℵn

)

≥ ∆
(

ℵn, S\
Gρn

)

− ε, and finally, (32) is a direct consequence from the fact that ∆
(

ℵn, S \Gρn
)

≤
∆(ℵn) ≤ rf (log(n)/n)

1/d eventually almost surely.
Using now (31) we obtain

P(U(ℵn) ≥ x) ≤
P
∆(ℵn,S\Gρn )≤∆̊(ℵn)

(

max
{

Ů(ℵn), U(ℵn, G
ρn)
}

≥ x
)

P

(

∆(ℵn, S \Gρn) ≤ ∆̊(ℵn)
)

+ P

(

∆(ℵn, S \Gρn) ≥ ∆̊(ℵn)
)

,

which entails

P
(

U(ℵn) ≥ x
)

≤ 1− Fn(x) + P
(

U(ℵn, G
ρn) ≥ x

)

+ P
(

∆(ℵn, S \Gρn) ≥ ∆̊(ℵn)
)

.

Because P
(

∆(ℵn, S \Gρn
)

≥ ∆̊(ℵn)) → 0 and Fn(x) → exp(− exp(−x)), it only remains
to prove that P

(

U(ℵn, G
ρn) ≥ x

)

→ 0. In order to do that, we will see that Gρn can be

covered by a suitable number of balls of radius 1/n1/d, and then we will apply Lemma
6.

Because |∂Ei| < K for i = 1, . . . , k, every ∂Ei can be covered by ν1 ≤ Kρ−d+1
n

balls of radius ρn centered at some points xi. Every ball B(xi, ρn) can be covered by
ν2 ≤ c∗ρdnn balls of radius (1/n)1/d. Finally, because Gρn ⊂ ⋃

i(∂Ei)
ρn , the set Gρn

can be covered by less than kKc∗ρnn = O(n1−1/d(log(n))1/d) balls of radius 1/n. That
conclude the proof.

4.4 Lipshitz continous density

Now we will prove a generalization of the Theorem 1 to the case of Lipschitz densities
with compact support. Let us recall here the theorem:

Theorem. Let f be a density with compact support S ⊂ R
d, let us assume that condition

B holds, then

U(ℵn)
L−→ U when n → ∞. (33)

lim inf
n→+∞

nV (ℵn)− log(n)

log(log(n))
= d− 1 a.s. (34)

lim sup
n→+∞

nV (ℵn)− log(n)

log(log(n))
= d+ 1 a.s. (35)

Proof. We will only prove (33), the proof of (34) and (35) are the same as the one in
Janson, S. (1987). What we will do is to combine all the methods used to prove the
previous theorems. Let us consider a “mesh” of Rd with small squares of side cn,

d
∏

i=1

[

kicn , (ki + 1)cn

]

with ki ∈ N.

We will suppose that cn = O
(

(log(n)/n)
1

3d

)

. Let us denote mn the number of this
squares that are included in S and C1, . . . , Cmn this squares.
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First inequality Like in the proof of Proposition 8 let us denote,

∆̊(ℵn) = sup
{

r : ∃x∃i, such that x+
r

f(x)1/d
A ⊂ C̊i \ ℵn

}

,

V̊ (ℵn) = ∆̊d(ℵn),

Ů(ℵn) = nV̊ (ℵn)− log(n)− (d− 1) log
(

log(n)
)

− log(αA).

Because
⋃mn

i=1 C̊i ⊂ S we have: P
(

U(ℵn) ≤ x
)

≤ P

(

Ů(ℵn) ≤ x
)

.

Also, like in the proof of Proposition 7 let us denote:

• Ni = #{ℵn ∩ Ci}.

• ai =
∫

Ci
f(t)dt; a0 = mini ai; A0 = maxi ai and C =

∑ 1−ai
ai

. Observe that
∑

ai = 1 and a0 ≥ f0c
d
n.

• ℵi
Ni

= {Xi1 , . . . , XiNi
} the subsample of ℵn that belongs to Ci. Observe that Xij

for j = 1, . . . , Ni has density fi(x) =
(

f(x)/ai
)

ICi(x).

• εi =
Ni−ain

nai

Proceeding exactly as in the proof of Proposition 7 we can derive that

∆̊(ℵn) = max
i

sup
{

r : ∃x such that x+
ra

1/d
i

(aifi(x))1/d
A ⊂ C̊i \ ℵi

Ni

}

,

and therefore

∆̊(ℵn) = max
i

{

a
1/d
i ∆(ℵi

Ni
)
}

and V (ℵn) = max
i

{

aiV (ℵi
Ni
)
}

.

Now, in order to use Proposition 7 we need to see that the density is close to the
uniform density on small squares and then apply Lemma 8. Let us observe that, for all
y ∈ Ci,

∣

∣

∣
fi(y)|Ci| − 1

∣

∣

∣
=
∣

∣

∣

f(y)

ai
|Ci| − 1

∣

∣

∣
=

1

ai

∣

∣

∣

∫

Ci

f(y)dt−
∫

Ci

f(t)dt
∣

∣

∣
≤ 1

ai
K

∫

Ci

|y − t|dt,

and as |y − t| ≤
√
dcn, we have that

∣

∣

∣
fi(y)|Ci| − 1

∣

∣

∣
≤ 1

ai
K
√
dcd+1

n ≤ K1cn ∀y ∈ Ci,

where K1 =
√
dK/f0. We will apply now Lemma 8, (with ε = K1cn). If we denote

N ′
i = ⌈Ni(1 + 2K1cn)⌉, w′ = w 1−2K1cn

1+K1cn
and YN ′

i
a sample of N ′

i variables uniformly
drawn on Ci it holds that

P

(

Ni∆
d(ℵNi

) ≤ wNi

ain

)

≤ P

(

N ′
i∆

d(YN ′

i
) ≤ w′N ′

i

ain

)(

1− 1 + 2K1cn + n−1

(nK1cn)(1 +K1cn)

)−1

.
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In order to prove that P(U(ℵn) < x) ≤ exp(− exp(−x)) asymptotically, we have to
prove that:

(

1− 1 + 2K1cn + n−1

(nK1cn)(1 +K1cn)

)−mn

→ 1, (36)

and
mn
∏

i=1

P

(

N ′
i∆

d(YN ′

i
) ≤ w′N ′

i

aiN

)

→ exp(− exp(−x)), (37)

being w = x+ log(n) + (d− 1) log(log(n)) + log(α)).

To see (36) observe that

(

1− 1 + 2K1cn + n−1

(nK1cn)(1 +K1cn)

)−mn

= exp
( mn

nK1cn

)

(1 + o(1)), (38)

where mn ≤ Mc−d
n . Because ncd+1

n → ∞, the right hand side of (38) converge to 1, as
desired.

Let us prove now (37). Observe that the product is similar to the one in equation
(25) with N ′

i instead of Ni and w′ instead of w. Because w′ = w(1 + O(cn)), we have
w′d−1 exp(−w′) ∼ wd−1 exp(−w).

Then, if we denote by ε′ = maxi
|N ′

i−ain|
nai

, equation (27) imply that to prove (37) it
suffices to prove that there exist δn → 0 such that P(log(n)ε′ ≥ δn) → 0.

First, let us introduce εi =
|Ni−ain|

ain
, and ε = max |εi|, then, proceeding in (29) we

obtain

P

(

ε log(n) ≥ log(n)−1
)

≤(log(n))4

n

mn
∑

i=1

1− ai
ai

≤(log(n))4

n

mn
∑

i=1

1

a0

≤(log(n))4

n

Mc−d
n

cdnf0
.

Now, because ε′ ≤ maxi
|N ′

i−Ni|
nai

+maxi
|Ni−ain|

nai
= maxi

|N ′

i−Ni|
nai

+ ε and N ′
i ≤ Ni(1 +

2K1cnNi) + 1, it holds that ε′ ≤ maxi
2K1cnNi+1

nai
+ ε. Because 1 + ε = Ni/(nai) we have

that ε′ ≤ 2K1cn(1 + ε) + 1
f0ncdn

+ ε. Therefore, for ε ≤ (log(n))−2

ε′ ≤ 2K1cn(1 + log(n)−2) +
1

f0ncdn
+ (log(n))−2.

Thus,

P

(

log(n)ε′ ≥ 2K1cn log(n)(1 + log(n)−1) +
log(n)

f0ncdn
+ (log(n))−1

)

≤ (log(n))4M

nc2dn f0
.
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Finally, because, log(n)cn → 0, log(n)
ncdn

→ 0 and (log(n))4

nc2dn
→ 0, we obtain δn =

2K1cn log(n)(1 + log(n)−1) + log(n)
f0ncdn

+ (log(n))−1 → 0.

Second inequality We will do a sketch of the proof, the arguments are similar to
those in the proof of Proposition 8 using Lemma 8 like in the first inequality.

As in Proposition 8 let us denote:

• ρn =
rfρA

f
1/d
0

( log(n)
n

)1/d
with ρA = maxx∈A ‖x‖.

• G = ∪mn
i 6=j(Ci ∩ Cj)

• H = S \ (∪mn
i Ci), notice that H ⊂ ∂Scn .

Exactly as in the proof of Proposition 8 we have that

U(ℵn) ≤ max
{

Ů
(

ℵn

)

, U(ℵn, G
ρn), U(ℵn, H)

}

eventually almost surely.

The proof that P(Ů
(

ℵn

)

≤ x) → exp(− exp(−x)) is obtained exactly as we did to
obtain the first inequality, but using equation ( 21). We will bound the covering numbers
of Gρn and H to apply Lemma 7, to conclude the proof of the second inequality.

G is the union of less than mn2
d squares of size cn let us call them Di. Each of this

squares Di can be cover by less than acd−1
n ρ−d+1

n balls of radius ρn, centered at some
points xij . We have that Gρn ⊂ ⋃i,j B(xij , 2ρn) and each of this balls can be covered by

c∗ρdnn balls of radius n−1/d. So G can be covered by less than mn2
dacd−1

n ρ−d+1
n c∗ρdnn

balls, that is 2dac∗Mc−1
n ρnn, which satisfies the conditions to apply Lemma 7 because

cn = O
(

log(n)/n)1/3d.
In the same way it can be proved that H can be covered with O(ncn) balls of radius

n−1/d, which satisfies the hypothesis to apply Lemma 7 for the proposed value of cn.

References

Cuevas, A. and Fraiman, R. (1997) A plug–in approach to support estimation Ann.
Statist. 25, 2300-2312.

Cuevas, A. and Rodriguez-Casal, A.(2004) On boundary estimation. Adv. in Appl.
Probab. 36, 340–354.

Cuevas, A., Fraiman, R. and Pateiro-Lopez, B.(2012) On statistical properties of sets
fulfilling rolling-type conditions. Adv. in Appl. Probab. 44, 311–239.

Delicado, P., Hernández, A. and Lugosi, G. (2014) Data-based decision rules about the
convexity of the support of a distribution. Electron. J. Statist. 8, 96–129.

29



Deheuvels, P. (1983). Strong Bounds for Multidimensional Spacings. Probab. Theory
Related Fields 64 (4) 411–424

Devroye, L. (1981). Laws of the iterated logarithm for order statistics of uniform spacings.
Ann. Probab. 9 860–867.

Giné, E. and Guillou, A. (2002). Rates of strong uniform consistency for multivariate
kernel density estimators. Annales de l’Institut Henri Poincare (B). Probability and
Statistics 38(6) 907–921.

Janson, S. (1987). Maximal spacings in several dimensions. Ann. Prob. 15 274–280.

Janson, S. (1986). Random coverings in several dimensions. Acta Math. 156 82–118.

Pyke, R. (1965). Spacings. J. Roy. Statist. Soc. Ser. B 27 395–449.

Pyke, R. (1972). Spacings revisited. Proc. Sixth Berkeley SYmp. Math. Sgatist. Probab.
1 417–427.

Proschan, F. and Pyke, R. (1967). Tests for monotone failure rate. Berkeley Symp. on
Math. Statist. and Prob. Proc. Fifth Berkeley Symp. on Math. Statist. and Prob. 3
293–312.

Ranneby, B. (1984). The maximal spacing method. An estimation method related to
maximum likelihood method. Scand. J. Statist. 11 93–112.

Stevens, W. L. (1939) Solution to a geometrical problem in probability. Ann. Eugenics
9 315–320

Walther, G. (1997) Granulometric smoothing. Ann. Statist. 25 2273–2299

30


	Introduction
	Main definitions and results
	A new test for convexity
	The semi-parametric case
	The non-parametric case
	More results on the test and proofs

	Simulations
	Semi-Parametric case
	Non-parametric case


	Appendix
	Preliminary Lemmas
	Lemma 1
	Lemmas 5, 6 and 7
	Lemma 8

	Uniform mixture on disjoint supports
	Uniform mixture
	Lipshitz continous density

	References

