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 for data uniformly distributed on the unit cube. Later on, Janson, S. (1987) extended the results to bounded sets, and obtained a very fine result, namely, he derived the exact asymptotic distribution of the maximal spacing. These results have been very useful in many statistical applications.

We extend Janson's result to the case where the data are generated from a positive, bounded support Lipchitz continuous density function, and develop a convexity test for the support of a distribution.

Introduction

The notion of spacings, which for one dimensional data are just the differences between two consecutive order statistics, have been extensively studied in the one dimensional setting; see e.g., the review papers by [START_REF] Pyke | Spacings[END_REF][START_REF] Pyke | Spacings revisited[END_REF]. Many important applications for testing and estimation problems, are derived from the study of the asymptotic behavior of the spacings. Applications for testing problems dates back to [START_REF] Proschan | Tests for monotone failure rate[END_REF] who address the asymptotic theory of a class of tests for Increasing Failure Rate. For estimation problems, [START_REF] Ranneby | The maximal spacing method. An estimation method related to maximum likelihood method[END_REF] propose the maximum spacing estimation method to estimate the parameters of a univariate statistical model.

Particular attention has been devoted to the behavior of the maximal (largest) spacing (see for instance [START_REF] Stevens | Solution to a geometrical problem in probability[END_REF], [START_REF] Devroye | Laws of the iterated logarithm for order statistics of uniform spacings[END_REF] and [START_REF] Deheuvels | Strong Bounds for Multidimensional Spacings[END_REF]).

For points that are uniformly distributed in the unit cube K = [0, 1] d , [START_REF] Deheuvels | Strong Bounds for Multidimensional Spacings[END_REF] introduced the notion of maximal spacing for the multivariate setting as the volume of the largest cube C, parallel to the unit cube, that is contained in [0, 1] d and do not contain any of the n sample points. [START_REF] Janson | Maximal spacings in several dimensions[END_REF] extended these results for a sample of random vectors uniformly distributed on a bounded set S ⊂ R d such that |S| = 1 (where |.| denotes the Lebesgue measure on R d ), and the cube C is replaced by any fixed bounded convex set with a nonempty interior. In addition to extending results on strong bounds, he derived the exact asymptotic distribution of the maximal spacing (see Theorems 1 and Corollary 1). The notion of maximal multivariate spacing and, in particular, Janson's result, have been used to solve different statistical problems. In set estimation (see, for instance, [START_REF] Cuevas | A plug-in approach to support estimation[END_REF] and [START_REF] Cuevas | On boundary estimation[END_REF] ), it is used to prove the optimality of the rates of convergence.

We seek to achieve the following: i) We extend Janson's result to the case where the data are generated by a Lipchitz continuous density function with bounded support S, which is bounded from below by a positive constant on S. This will require us to extend the notion of maximal spacing to the case of non-uniform data.

ii) Based on the previous result, we develop a convexity test for the support S and compare it with some recent results presented by [START_REF] Delicado | Data-based decision rules about the convexity of the support of a distribution[END_REF][START_REF] Delicado | Data-based decision rules about the convexity of the support of a distribution[END_REF].

The paper is organized as follows. First, we introduce the new notion of maximal spacing and state the asymptotic results for the maximal spacing. Next, in Section 3, we address the convexity test problem for two different settings: the semi-parametric case (where the set is unknown, but the data are uniform) and the nonparametric case (where the data are generated by an unknown density f ). We study the asymptotic behavior of the tests for both settings and conduct a small simulation study. Finally, as we show in the Appendix, the asymptotic distribution of the maximal spacing is derived in three steps. We start with a density that is a mixture of uniform laws with disjoint supports, then consider a density that is a uniform mixture and finally consider a density that is Lipchitz continuous and bounded from below.

Main definitions and results

We first introduce notation that will be used throughout the manuscript. Given a set S, we denote by ∂S, S, and S the boundary, interior and closure of S, respectively. We denote by B(x, ε) the closed ball of radii ε centered at x and by ω d = |B(x, 1)| the Lebesgue measure of the unit ball in R d . Given λ ∈ R, A, C ⊂ R d we denote λA = {λa : a ∈ A}, A ⊕ C = {a + c : a ∈ A, c ∈ C}, and A ⊖ C = {x : {x} ⊕ C ⊂ A}. For the sake of simplicity, we use the notation x+C, instead of {x} ⊕ C. If λ ≥ 0 we denote A λ = A ⊕ λB(0, 1), and A -λ = A ⊖ λB(0, 1). Given A, C ⊂ R d two non-empty compact sets, the Hausdorff (or Pompeiu-Hausdorff) distance between them is given by

d H (A, C) = max max a∈A d(a, C), max c∈C d(c, A)
where d(a, C) = inf{ ac : c ∈ C}. Given a set S ⊂ R d , we denote by H(S) the convex hull of S (that is, the minimal convex set that contains S).

Let S ⊂ R d be a bounded set with Lebesgue measure 1, but with Lebesgue measure zero of its boundary ∂S. Let ℵ n = {X 1 , . . . , X n } be iid random vectors uniformly distributed on S, and A a bounded convex set. According to Janson [START_REF] Janson | Maximal spacings in several dimensions[END_REF]), the maximal spacing is defined as:

∆ * (ℵ n ) = sup r : ∃x such that x + rA ⊂ S \ ℵ n .
To generalize Janson's result to the non-uniform case, we need to extend the maximal spacing definition. When the sample is drawn according to a probability measure P X , we consider the probability measure of the largest empty λA set. When |A| = 1 P X (x + λA) ∼ f (x)λ d for sufficiently small λ. This leads us to define the maximal spacing extension as follows:

Definition 1. Let ℵ n = {X 1 , . . . , X n } be an iid random sample of points in R d , drawn according to a density f with bounded support S, and let A ⊂ R d be a convex and compact set such that |A| = 1 (where | • | denote the Lebesgue measure) and its barycentre is the origin of R d . We define:

∆(ℵ n ) = sup r : ∃x such that x + r f (x) 1/d A ⊂ S \ ℵ n , (1) 
V (ℵ n ) = ∆ d (ℵ n ), and 
U (ℵ n ) = n∆ d (ℵ n ) -log(n) -(d -1) log log(n) -log(α A ),
where α A > 0 is the constant defined in [START_REF] Janson | Random coverings in several dimensions[END_REF]. For instance, if A is a cube,

α A = 1; if A is a ball, then α A = 1 d! √ πΓ( d 2 +1) Γ( d+1 2 ) d-1
. Finally, we denote U , a random variable, such that P(U ≤ t) = expexp(-t) .

When |S| = 1 and the sample is uniformly drawn on S, the following result can be found in [START_REF] Janson | Maximal spacings in several dimensions[END_REF], Theorem 1: Theorem 1. Let S ⊂ R d be a bounded set such that |S| = 1 and |∂S| = 0. Let ℵ n = {X 1 , . . . , X n } and X be iid random vectors uniformly distributed on S: then,

U (ℵ n ) L -→ U when n → ∞.
A simple rescaling extends this result to the case where |S| = 1:

Corollary 1. Let S ⊂ R d be a bounded set such that |∂S| = 0 and |S| > 0. Let ℵ n = {X 1 , .
. . , X n } and X be iid random vectors uniformly distributed on S; then,

U (ℵ n ) L -→ U when n → ∞.
We are interested in the asymptotic behavior of U (ℵ n ) as n → ∞, when the density is not uniform. The main result (see Theorem 2 below) is presented for Lipschitz continuous densities.

Theorem 2. Let f be a density with compact support S ⊂ R d . Suppose that f is Lipschitz (with constant K) and that there exist positive constants f 0 , f 1 such that for all x ∈ S, 0 < f 0 ≤ f (x) ≤ f 1 . Then, we have the following:

U (ℵ n ) L -→ U when n → ∞. lim inf n→+∞ nV (ℵ n ) -log(n) log(log(n)) = d -1 a.s. lim sup n→+∞ nV (ℵ n ) -log(n) log(log(n)) = d + 1 a.s.
The proof is given in the Appendix.

3 A new test for convexity

The semi-parametric case

In this section, we propose, using the concept of maximal spacing defined in Section 2, a consistent hypothesis test, based on an iid sample {X 1 , . . . , X n } uniformly distributed on a compact set S, to decide whether S is convex or not. The main idea is that, if the set is not convex the maximal spacing between the convex hull of the set and the sample will not converge to zero. Because the set is unknown, instead of the convex hull of the set, we consider the convex hull of the sample. To change the set by its convex hull, we prove some previous results which guarantee that the maximal spacings will be close.

Definition 2. Let S ⊂ R d be a bounded set satisfying S = ∅. We define the maximal spacing of S (denoted ∆(S)) as

∆(S) = sup r : ∃x ∈ S such that B(x, r) ⊂ S .
Although there is an abuse of notation here, it is important to note that to define ∆(S), we do not need a sample or density. In that sense, it is different from the one defined in 1. Moreover, although the set ℵ n is bounded, the condition אn = ∅ is not satisfied.

Proposition 1. Let A and B be bounded and nonempty subsets of

R d . If for some ε > 0, d H (A, B) ≤ ε and d H (∂A, ∂B) ≤ ε, then ∆(A) -∆(B) ≤ 2ε.
Proof. It is enough to prove that:

1. x ∈ A : d(x, ∂A) > 2ε ⊂ B 2. x ∈ B : d(x, ∂B) > 2ε ⊂ A
From the first inclusion, we obtain that ∆(B) ≥ ∆(A) -2ε, while from the second, we obtain that ∆(A) ≥ ∆(B) -2ε. Then, ∆(A) -∆(B) ≤ 2ε. To obtain the first inclusion (the second one is analogous), we suppose that there exists

x ∈ A such that d(x, ∂A) > 2ε but x / ∈ B. Because A ⊂ B ε , we have x ∈ B ε \ B. Then d(x, ∂B) ≤ ε, which implies that d(x, ∂A) = d H ({x}, ∂A) ≤ d H ({x}, ∂B) + d H (∂B, ∂A) ≤ 2ε.
The following proposition shows that if the set S is not convex, then the maximal spacing of the set H(S) \ S is strictly positive.

Proposition 2. Let S ⊂ R d be a non-convex, compact non-empty set, such that S = S. Then, 0 < ∆ H(S) \ S .

Proof. We first prove that:

H(S) = H (S). ( 2 
)
The fact that H(S) is a closed set implies that H (S) ⊂ H(S). Thus, (2) will hold if we prove that H(S) ⊂ H (S). However, S = S ⊂ H(S) and S ⊂ H (S) entail that (2)

follows from H (S) being a convex set. Because S is not convex, there exist x, y ∈ S such that the segment [x, y] joining them is not contained in S. However, H(S) is convex, and therefore the segment is contained in H(S). Because S is compact, there exist δ > 0 and t ∈ [x, y] such that B(t, δ) ∩ S = ∅. By (2), we have that B(t, δ) ∩ H (S) ⊂ H(S) \ S, and therefore, ∆ H(S) \ S ≥ ∆ B(t, δ ∩ H (S) \ S > 0.

If S ⊂ R d is convex and ℵ n = {X 1 , . . . , X n } is an iid random sample, uniformly drawn on S, Walther, G. (1996) proved that

d H S, H(ℵ n ) = O log(n)/n 1/d .
Moreover, under an additional regularity condition on ∂S, it has also been proven in Walther, G. (1996) that the previous order can be improved. More specifically, the following results holds

d H S, H(ℵ n ) = O log(n)/n 2/(d+1) .
The regularity condition is the following:

Condition (P): For all x ∈ ∂S there exists a unique vector ξ = ξ(x) with ξ = 1, such that y, ξ ≤ x, ξ for all y ∈ S, and

ξ(x) -ξ(y) ≤ l x -y ∀ x, y ∈ ∂S,
where l is a constant. We will denote by A P the class of convex subsets that satisfy condition (P).

Theorem 3. Let S ⊂ R d be a compact subset such that S = S. For the following decision problem H 0 : the set S is convex

H 1 : the set S is not convex, (3) 
the test based on the statistic Ṽn = ω d ∆ d H(ℵ n ) \ ℵ n with the critical region given by

RC = Ṽn > c n,γ ,
where

c n,γ = |H(ℵ n )| n -log -log(1-γ) +log(n)+(d-1) log log(n) +log(α) = O log(n)/n ,
and α is the constant defined in (1), is asymptotically of level smaller or equal to γ. Moreover if S ∈ A P the asymptotic level equals γ. If S is not convex, the test has power one for n sufficiently large n.

Proof. First observe that, if S is convex (not necessarily in A P ) from Theorem 1 and the following inequality

∆ H(ℵ n ) \ ℵ n ≤ ∆ S \ ℵ n , we obtain that P ∆ H(ℵ n ) \ ℵ n > c n,γ ≤ γ.
We now prove that for the case S ∈ A P , P H 0 Ṽn > c n,γ → γ and, for n sufficiently large n, P H 1 Ṽn > c n,γ = 1. First observe that under H 0 , ℵ n ⊂ H(ℵ n ) ⊂ S for all n > 0. As condition (P) is satisfied we know that

d H H(ℵ n ), S = O log(n)/n 2/(d+1) , (4) 
which implies that

d H ∂H(ℵ n ), ∂S = O log(n)/n 2/(d+1) . (5) 
We assume that |S| is known. Indeed, by (4) and ( 5 

: ∆ H(ℵ n ) \ ℵ n -∆ S \ ℵ n = O log(n)/n 2/(d+1) . If we denote ε n = ∆ H(ℵ n ) \ ℵ n -∆ S \ ℵ n we can derive that ∆ d H(ℵ n ) \ ℵ n = ∆ d (S \ ℵ n ) + dε n ∆ d-1 (S \ ℵ n ) + o ε n ∆ d-1 (S \ ℵ n ) .
Applying Lemma 5 given in Subsection 4.1.2, we consider a > 0 such that

V n -Ṽn = O (log(n)/n) 1+a , where V n = ω d ∆ d (S \ ℵ n ),
and

γ n = P H 0 Ṽn > c ′ n,γ = P H 0 ( Ṽn -V n ) + V n > c ′ n,γ = P H 0 V n > c ′ n,γ + o(c ′ n,γ ) .
Therefore, by Theorem 1, γ n → γ.

To prove that for sufficiently large n the power is 1 if S is not convex, we use Proposition 2, but instead of S, we use ℵ n and instead of H(ℵ n ), we use H(S). To do so, we first observe the following

H(S) -2εn ⊂ H(ℵ n ) ⊂ H(S) a.s., (6) 
where

ε n = d H (S, ℵ n ).
The second inclusion is immediate. To prove the first one, we proceed by contradiction: suppose that there exists x ∈ H(S)

-εn but x / ∈ H(ℵ n ). Because x / ∈ H(ℵ n ), there exists a halfspace H x such that x ∈ H x and H x ∩ℵ n = ∅. Now, we take z ∈ B(x, 2ε n ) ∩ H x such that B(z, ε n ) ⊂ H x . Because z ∈ B(x, ε n ) ⊂ H(S), the halfspace H z parallel to H x such that z ∈ ∂H z meets S at some point s. Then B(s, ε n ) ⊂ H x , while ε n = d H (S, ℵ n ), which implies that there exists X i ∈ B(s, ε n ), contradicting H x ∩ ℵ n = ∅. Then, we have the following: ∆ H(S) \ S -2ε n ≤ ∆ H(S) -2εn \ S ≤ ∆ S -2εn \ ℵ n ≤ ∆ H(ℵ n ) \ ℵ n . (7) 
Because H(S) < ∞, we have that by ( 6), c ′ n,γ → 0. Then P H 1 ( Ṽn > c n,γ ) = 1 a.s. for sufficiently large n.

The non-parametric case

We now assume that we have a sample ℵ n = {X 1 , . . . , X n } of iid random vectors in R d drawn according to an unknown density f . We propose to plug in a density estimator fn on (1), compute

δ H(ℵ n ) \ ℵ n = sup r : ∃x such that x + r fn (x) 1/d A ⊂ H(ℵ n ) \ ℵ n ,
and reject

H 0 (the support is convex) if δ(H(ℵ n ) \ ℵ n ) is sufficiently large.
To increase the power of our test we need to find a density estimator that overestimates the density when the support is not convex. To do so, we propose the following density estimator. Definition 3. Let Vor(X i ) be the Voronoi cell of the point

X i i.e. Vor(X i ) = x : x - X i = min y∈ℵn x -y . If K is a kernel function and fhn (x) = 1 nh d n K((x -X i )/h n )
denotes the usual kernel density estimator, we define:

fn (x) = max i,x∈Vor(X i ) f (X i ). ( 8 
)
For the uniform case, we require that the boundary of the support be smooth enough to derive the asymptotic behavior. In this more general setup, we will not have a convergent level estimation and will only have a level majorization (the price to pay to estimate the density).

Condition (P'): For a given kernel function K, we say that S is standard with respect to K and with respect to the Lebsegue measure if there exist positive constants r 0 , c S and c K such that for all x ∈ S, u∈S K((ux)/r)du ≥ c K r d and |B(x, r) ∩ S| ≥ c S r d . We denote C K as the class of convex sets that satisfy condition (P') and A K as the class of all the sets that satisfy condition (P').

We require the following assumptions on the kernel:

Definition 4. Let K be the set of positive kernel functions such that u K(u)du < ∞ and K(u) = φ(p(u))
, where p is a polynomial and φ a is bounded real function of bounded variation.

Notice that all the usual kernels are in K. Sometimes, we require the following condition on the underlying density f .

Condition (B):

A density f with support S fulfills condition B if it is Lipschitz continuous and if there exists f 0 > 0 such that f (x) ≥ f 0 for all x ∈ S.

Theorem 4. Let K ∈ K and fn be defined as in Definition 3. Assume that h n = O(n -β ) for some 0 < β < 1/d. We also assume that the unknown density fulfills condition B. For the following decision problem,

H 0 : S ∈ C K H 1 : S / ∈ C K , (9) 
the test based on the statistic

Ṽn = δ H(ℵ n )\ℵ n with critical region RC = { Ṽn ≥ C n,γ }, where 
C n,γ = 1 n -log(-log(1 -γ)) + log(n) + (d -1) log(log(n)) + log(α) ,
has an asymptotical level smaller than γ. Moreover, if S ∈ A K is not convex, the power is 1 for sufficiently large n.

Remark 1. Condition B seems to be restrictive, however is unavoidable. Indeed, we quote from [START_REF] Delicado | Data-based decision rules about the convexity of the support of a distribution[END_REF][START_REF] Delicado | Data-based decision rules about the convexity of the support of a distribution[END_REF]: "...it is impossible (in a well-defined sense described below) to design a decision rule that behaves asymptotically correctly for all bounded densities of bounded support. This shows that an assumption like the density being bounded away from zero on its support is necessary for consistent decision rules." (see Theorem 2). However, condition P' is satisfied for a large class of kernel functions, because convex sets are standard.

The proof of this theorem is given in the next subsection. To do so, we prove Propositions 3, 4, 5 and 6.

More results on the test and proofs

In the first subsection, we assume that the proposed density estimator fulfills some "good conditions", and in the second we prove that the density defined in (8) fulfills those conditions when the support belongs to A K .

Asymptotic properties of the test Proposition 3. Assume that the unknown density f fulfils condition (B). We suppose that fn is a density estimator that fulfills the following:

(i) There exists a sequence ε + n → 0 such that for all x ∈ S, f (x) fn(x) 1/d ≥ 1 -ε + n .
(ii) There exists a sequence ε - n → 0 and a constant λ 0 > 0 such that for all

x ∈ H(ℵ n ), ( fn (x)) 1/d ≥ λ 0 -ε - n .

If we consider the following decision problem

H 0 : S is convex H 1 : S is not convex (10)
the test based on the statistic δ H(ℵ n ) \ ℵ n with critical region

RC = δ H(ℵ n ) \ ℵ n > λ log(n) n 1/d
is asymptotically consistent if λ sufficiently large.

Proof. When the support is convex: We prove the following:

∆(ℵ n ) ≥ (1 -ε + n ) δ H(ℵ n ) \ ℵ n . ( 11 
) Observe that δ(H(ℵ n ) \ ℵ n ) = t ⇒ ∃x such that B x, t/( fn (x)) 1/d ⊂ H(ℵ n ) \ ℵ n . Be- cause S is convex, H(ℵ n ) ⊂ S. Then, δ(H(ℵ n )\ℵ n ) = t ⇒ ∃x such that B x, t/( fn (x)) 1/d ⊂ S \ ℵ n . From the equality f (x) fn (x) 1/d B x, t f (x) 1/d = B x, t fn (x) 1/d , we derive the following: if δ(H(ℵ n ) \ ℵ n ) = t, then there exists x such that , (1 - ε + n ) B x, t/(f (x)) 1/d ⊂ S \ ℵ n . Therefore, we have δ(H(ℵ n ) \ ℵ n ) = t ⇒ ∆(ℵ n ) ≥ (1 -ε + n )t. According to Lemma 5 we have δ(H(ℵ n ) \ ℵ n ) ≤ r f 1-ε + n log(n) n 1/d eventually almost surely.
When the support is not convex: By assumption (ii), we know that

δ H(ℵ n ) \ ℵ n ≥ (λ 0 -ε - n )∆ H(ℵ n ) \ ℵ n ,
and from (7), we obtain

δ H(ℵ n ) \ ℵ n ≥ (λ 0 -ε - n ) r 0 -2d H (S, ℵ n ) ,
where r 0 = ∆ H(S) \ S . Because we are assuming that S is not convex we have, by Proposition 2, that r 0 > 0. Applying Lemma 5, we have

d H (S, ℵ n ) ≤ r f (log(n)/n) 1/d
eventually almost surely. Thus, when the support is not convex

δ H(ℵ n ) \ ℵ n ≥ r 0 λ 0 + o(1) (eventually almost surely). ( 12 
)
Proposition 4. Assume that the unknown density f fulfills condition (B). Suppose that the density estimator fn satisfies the following conditions:

There exists a sequence ε + n such that log(n)ε + n → 0 and for all x ∈ S, f (x) fn(x)

1/d ≥ 1- ε + n .
If we consider the decision problem (10), based on the test statistic Ṽn = δd H(ℵ n ) \ ℵ n with the critical region RC = { Ṽn ≥ C n,γ }, where

C n,γ = 1 n -log(-log(1 -γ)) + log(n) + (d -1) log(log(n)) + log(α) ,
the level is asymptotically smaller than γ.

Proof. By (11), we have

P( Ṽn ≥ C n,γ ) ≤ P V (ℵ n ) ≥ (1 -ε + n )C n,γ .
Then, by Corollary 1, it follows that P( Ṽn ≥ C n,γ ) is bounded from above by

P U ≥ -(1 -ε + n ) d log -log(1 -γ) + (1 -ε + n ) d -1 log(n) + (d -1) log(log(n)) + log(α) .
Finally, because log(n)ε + n → 0, we obtain:

P( Ṽn ≥ C n,γ ) ≤ P U ≥ -log(-log(1 -γ)) + o(1) → γ.
Proposition 5. Assume that the unknown density f fulfills condition (B). Suppose that the density estimator fn satisfies that there exist a sequence ε - n → 0 and a constant λ 0 > 0 such that, for all x ∈ H(ℵ n ), ( fn (x)) 1/d ≥ λ 0ε - n . If we consider the decision problem (10), along with the test statistic Ṽn = δd H(ℵ n )\ℵ n with critical region RC = { Ṽn ≥ C n,γ } where :

C n,γ = 1 n -log(-log(1 -γ)) + log(n) + (d -1) log(log(n)) + log(α) ,
if S is not convex, the power of the test is 1 for sufficiently large n.

Proof. It is clear that for γ = γ 0 , C n,γ = O(log n/n). However, (12) entails that Ṽn ≥ λ d 0 δ d (H(S) \ S) + o(1) (with δ d (H(S) \ S) > 0) eventually almost surely.
An appropriate density estimator To prove Theorem 4, we have to show that the density estimator introduced in Definition 3 fulfills conditions (i) and (ii) of Proposition 3. We show in the next Proposition 6 that these conditions hold.

Proposition 6. Assume that the unknown density f fulfills condition (B). We suppose that K ∈ K and that h n satisfies: (Note that for all β ∈ (0, 1/d), h n = h 0 n -β fulfills all these conditions).

a) h n log(n) → 0, nh d n log(n) 2 log(hn) → ∞, log (hn 
Let fn (x) be the density estimator introduced in Definition 3. Then, (i) there exists a sequence ε + n → 0 such that for all x ∈ S, f (x) fn(x)

1/d ≥ 1 -ε + n , and
(ii) there exist a sequence ε - n → 0 and a constant λ 0 > 0 such that for all x ∈ H(ℵ n ), ( fn (x)) 1/d ≥ λ 0ε - n .

Proof. We start the proof of (i). We first write that:

max x∈S fn (x) -f (x) ≤ max x∈S fn (x) -E fn (x) + max x∈S E fn (x) -f (x) .
By Theorem 2.3 in [START_REF] Giné | Rates of strong uniform consistency for multivariate kernel density estimators[END_REF], there exists a constant C 1 such that:

nh d n -log(h n ) sup x∈R d fn (x) -E fn (x) ≤ C 1 a.s. Thus nh d n -log(h n ) sup x∈ℵn fn (x) -E fn (x) ≤ C 1 a.s.,
and therefore,

nh d n -log(h n ) sup x∈ℵn fn (x) -E fn (x) ≤ C 1 a.s. ( 13 
)
The proof of (i) will be complete if we find a proper bound for max x∈S (E fn (x)-f (x)). We first note that the standardness assumption (with respect to the Lebesgue measure) ensures that there exists a constant r S such that for all

X i ∈ ℵ n , for all x ∈ Vor(X i ) ∩ S, x -X i ≤ d H (S, ℵ n ) = r S (log(n)/n) 1/d
, where for the last equality, we used Theorem 4 in [START_REF] Cuevas | On boundary estimation[END_REF] and the fact that S is standard. We denote ρ n = r S (log(n)/n) 1/d . Then, we have, for sufficiently large n,

max x∈S E fn (x) -f (x) ≤ max (x,y)∈S 2 , x-y ≤ρn E fn (y) -f (x) a.s.
For all (x, y) ∈ S 2 with xy ≤ ρ n , we have

E fn (y) = {u:y+uhn∈S} K(u)f (y + uh n )du.
Because f is Lipschitz, we derive that

E fn (y) ≤ {u:y+uhn∈S} K(u) f (y) + k f u h n du ≤ R d K(u) f (y) + k f u h n du = f (y) + k f h n R d u K(u)du.
Now, again using the Lipschitz condition, we have

E fn (y) ≤ f (x) + k f ρ n + k f h n R d u K(u)du. Because nh d n log(n) -2 log(h n ) -1 → ∞, we have h n ≫ ρ n .
Then, there exists a constant C 2 such that:

h -1 n max x∈S E f (x) -f (x) ≤ C 2 a.s. ( 14 
)
The first two conditions on h n , together with equations ( 13) and ( 14), imply that there exists a sequence

ε n such that ε n log(n) → 0 fulfilling max x∈S fn (x) -f (x) ≤ ε n .
Then, for all x ∈ S, fn (x)f (x) ≤ f (x)ε n /f 0 , and thus, fn(x)

f (x) ≤ 1 + f (x)εn f 0 , or equiva- lently, f (x) fn (x) 1/d ≥ 1 + ε n f 0 -1/d
.

Finally, if we take ε

+ n = (1 -(1 + ε n /f 0 ) -1/d ) ∼ ε n /(df 0 ) (thus, we have ε + n log(n) → 0) then max x∈S f (x) fn(x) 1/d ≥ 1 -ε +
n eventually almost surely, which concludes the proof of (i).

We now prove (ii). It is clear that

min x∈R d fn (x) ≥ min x∈R d E fn (x) -max x∈R d E fn (x) -fn (x) .
We have already proven max x∈R d E fn (x) -fn (x) → 0 a.s. using Theorem 2.3 in [START_REF] Giné | Rates of strong uniform consistency for multivariate kernel density estimators[END_REF]. We now show that min x∈R d E fn (x) is bounded from below by a positive constant. Observe that min x∈R d E fn (x) = min x∈ℵn E fn (x); thus min

x∈R d E fn (x) ≥ min x∈S E fn (x) = min x∈S {u:x+uhn∈S} K(u)f (x + uh n )du.
Using that f is Lipchitz continuous, we obtain:

E fn (x) ≥ {u:x+uhn∈S} K(u) f (x) -k f u h n du.
Because f is bounded from below and the support is standard with respect to K, we have, for sufficiently large n,

E fn (x) ≥ f 0 c K -k f h n R d u K(u)du. Therefore, min x∈R d fn (x) ≥ f 0 c K -ε ′ n with ε ′ n → 0, thus min x∈R d fn (x) ≥ λ -ε - n with ε - n → 0 and λ 0 = f 0 c K .

Simulations

We have performed two simulation studies to asses the behavior of our test in the scenarios described in Sections 3.1 and 3.2. For the first study, the data will be drawn uniformly on sets S ⊂ R 2 , and we will perform the test defined in Section 3.1 to obtain estimations of the power and the level. In the second study, the nonparametric case, the data will be drawn according to an unknown density, and we will estimate the density using the estimator given by (8). In this case, we consider the same sets as in Delicado, P.; Hernández, A. and Lugosi, G. (2014).

Semi-Parametric case

The data are generated uniformly on the sets S ϕ = [0, 1] 2 \ T ϕ , where T ϕ is the isosceles triangle with height 1/2 (see Figure 1), whose angle at the vertex (1/2, 1/2) is equal to ϕ. If we have a random sample in S ϕ , it is clear that as ϕ increases, it should be easer to detect (with our test 3) the non-convexity of the set. The results of the simulations are summarized in Table 1. 

ϕ = π/4 ϕ = π/6 ϕ = π/
[0, 1] 2 \ T ϕ ,
where T is an isosceles triangle, (see Figure 1)

φ Figure 1: [0, 1] 2 \ T ϕ
where T ϕ is an isosceles triangle with height 1/2.

Non-parametric case

We will perform a simulation study for the same sets used in Delicado, P.; Hernández, A. and Lugosi, G. (2014). Consider the curves γ R,θ = R(cos(θ), sin(θ)) with θ ∈ [ 3π(R-1)

2R

, 3 2 π] and the reflections of those curves along the y axe (which will be denoted by ζ R,θ ). We consider Γ

R = T (0,R) (γ R,θ ) ∪ T (0,-R) (ζ R,θ ) with θ ∈ [ 3π(R-1) 2R , 3 2 π],
where T v is the translation along the vector v. It is easy to see that the length of every Γ R is 3 2 π. We will consider, for different values of R, the S-shaped sets (see first row in Figure 2).

S R = T (0,R) R-0.6≤r≤R+0.6 γ r,θ ∪ T (0,-R) R-0.6≤r≤R+0.6 ζ r,θ
Observe that when R approaches to infinity, the sets S converge to the rectangle (which corresponds to the convex case). We have generated the data according to two different densities. The first one is the same as that considered in Delicado, P.; Hernández, A. and Lugosi, G. (2014): that is, along the orthogonal direction of Γ R , we choose a random variable with normal density (with zero mean and standard deviation σ = .15) truncated to .6 (the truncation is performed to ensure that we obtain a point in the set S R ). In the second case, we consider a random variable along the orthogonal direction of Γ R but uniformly distributed on [-.6, .6]. In Tables 2 and3, we have summarized the results of the simulations, for different sample sizes (we performed the test B = 100 times). 

distributed along the orthogonal direction of Γ R R N=100 N=250 N=500 N=1000 np unif np unif np unif np unif 1 1 1 1 1 1 1 1 1 1.5 1 1 1 1 1 1 1 1 3 1 .99 1 1

Appendix

The aim of this Appendix is to prove the main result on the generalization of the maximal spacing, that is, Theorem 2. It is organized as follows: first we settle some preliminary lemmas, then we prove a weaker version of Theorem 2, for the case of piecewise constant densities on disjoint sets. We continue by considering piecewise constant densities, and finally we derive the proof of Theorem 2.

Preliminary Lemmas

Lemma 1

First we prove, following the ideas in [START_REF] Janson | Maximal spacings in several dimensions[END_REF], three technical lemmas from which Corollary 1 is a direct consequence. The first one is useful to control the convergence rates, and it is used all along this section.

Lemma 1. Let us consider S ⊂ R d with |S| > 0, |∂S| = 0, and ℵ n = {X 1 , . . . , X n } iid random vectors with uniform distribution on S. Then, there exists a S -= a S -(w, n) and a S + = a S + (w, n) such that a S -→ α and a S + → α if w → ∞ and w/n → 0, and such that,

exp(-γa S + |S|) ≤ P nV (ℵ n ) < w ≤ exp(-γa S -|S|), ( 15 
)
where γ = n |S| w d-1 e -w .
Observe that the functions a S + and a S -only depend on the "shape" of S (i.e. are invariant by similarity transformations).

Notation and previous definitions. Let us denote by ℵ n = {X 1 , . . . , X n } a sample of iid random vectors uniformly distributed on S ⊂ R d . We assume that S is compact set. Let {N t } t≥0 be a Poisson process with intensity 1, independent of ℵ n . Let us denote,

∆ t = ∆(ℵ Nt ) and V (t) = ∆ d t ,
where ∆(ℵ Nt ) is given in Definition 1. The following characterization is easily derived,

∆(ℵ n ) ≥ r ⇔ ∃x such that x + rA ⊂ S \ ℵ n ⇔ ∃x such that x + rA ⊂ S and x / ∈ n i=1 X i -rA .
Therefore, if we define S r = {x : x + rA ⊂ S}, then ∆(ℵ n ) < r if and only if S r can be covered by the sets X i -rA. 

n s = # Q ∈ F s : Q ⊂ S r , m s = # Q ∈ F s : Q ∩ ∂S r = ∅ , and γ = γ r, t |S| = t d |S| d |rA| d-1 exp - t|rA| |S| = t d |S| d r d(d-1) exp -tr d |S| .

Some previous results

Lemma 2. There exist a + = a + (tr d ) and a -= a -(tr d ) such that a + → α and a -→ α if tr d → ∞, and for all s > 3r,

exp -γa + (s + 3r) d (n s + m s ) ≤ P (∆ t < r) ≤ exp -γa -(s -3r) d n s . ( 16 
)
Proof. The proof of ( 16) follows from Lemma 7.2 in Janson, S. ( 1986) (let us observe that in Lemma 7.2 it is not used that |S| = 1). Replace A and S by rA and S r respectively.

Here a -= a -(-rA, v, t/|S|, 3r), a + = a + (-rA, v, t/|S|, 3r) and v is a vector taken conveniently. The fact that a + → α and a -→ α follows directly from Lemma 7.3 in [START_REF] Janson | Random coverings in several dimensions[END_REF].

Lemma 3. Let s = √ r. Then, if r → 0, we have m s s d → 0 and n s s d → |S|. Proof. Let us denote ∂ a S = ∂S ⊕ B(0, a). It is easy to see that ∂S r ⊂ ∂ 3r S. If Q ∈ F s and Q ∩ ∂S r = ∅ then Q ⊂ ∂ 3r+ds S. Thus m s s d ≤ |∂ 3r+ds S|. On the other hand |S| -|∂ 3r+ds S| ≤ |S \ ∂ 3r+ds S| ≤ n s s d ≤ |S|. Taking s = r 1/2 , we obtain |∂ 3r+ds S| → |∂S| = 0 if r → 0. Finally m s s d → 0 and n s s d → |S|.
As a consequence we obtain the following result.

Lemma 4. There exist a -= a -(r, t) and a + = a + (r, t) fulfilling a -→ α and a + → α if r → 0 and tr d → ∞, such that e -γ|S|a + ≤ P (∆ t < r) ≤ e -γ|S|a -. Now 15) is a direct consequence of the previous Lemma, taking w = t |S| r d , so that ∆ t ≤ r ⇔ t |S| V (t) ≤ w.

Lemmas 5, 6 and 7

In this section we settle three lemmas whose proofs are quite similar. The first one (Lemma 5), bounds the size of the maximal spacing. It is used in the proofs of Proposition 8 and Theorem 2. Lemmas 6 and 7 controls the speed of the maximal spacing when we constraint the center of the empty set to be localized on a "vanishing" set, under different assumptions on the density. Because A is convex with non-empty interior there exists ε 0 > 0 such that for all ε ≤ ε 0 ,

A -ε = ∅ and |A -ε | = |A| -ε|∂A| d-1 + o(ε)
. It can also be proved easily that, for all r > 0, and for all x ∈ B(0,

ε 0 /r), x + (rA) -x ⊂ rA. (17) 
Lemma 5. Let ℵ n = {X 1 , . . . , X n } be a random sample of points in R d , drawn according to a density f with bounded support S. Suppose that f fulfills condition B. Then, there exist a constant r f such that:

∆(ℵ n ) ≤ r f log(n) n 1/d
eventually almost surely.

Proof. Let us first cover S with ν n ≤ C S n -1 balls of radii n -1/d centered at {x 1 , . . . , x νn },

and let w n = r f log(n) n 1/d with r f > 2f 1 /f 0 . We are going to prove that ∆(ℵ n ) ≤ w n , eventually almost surely. Because ∆(ℵ n ) ≥ w n ⇔ ∃x ∈ S, such that x+w n f (x) -1/d A ⊂ S \ ℵ n , then ∆(ℵ n ) ≥ w n ⇒ ∃x ∈ S, such that x + w n f -1/d 1 A ⊂ S \ ℵ n .
There exists a point x i such that xx i ≤ n -1/d and, for sufficiently large n, by ( 17

) (because n -1/d ≪ w n ) we have that x i + (w n f -1/d 1 A) -1/n 1/d ⊂ S \ ℵ n . Thus, ∆(ℵ n ) ≥ w n ⇒ ∃x i ∃x ∈ B(x i , n -1/d ), such that x i +(w n f -1/d 1 A) -1/n 1/d ⊂ S \ℵ n . (18)
Now notice that,

P x i + w n f -1/d 1 A -1/n 1/d ⊂ S \ ℵ n = 1 -P x i + w n f -1/d 1 A -1/n 1/d n ≤ 1 -f 0 w n f -1/d 1 A -1/n 1/d n ≤ 1 - f 0 f 1 w d n - f 0 f d-1 d 1 w d-1 n n -1/d (1 + o(1)) n .
In the last inequality we used that

|A -ε | = |A| -ε|∂A| d-1 + o(ε). Because n -1/d ≪ w n ,
we have that,

P x i + w n f -1/d 1 A -1/n 1/d ⊂ S \ ℵ n ≤ 1 - f 0 f 1 w d n (1 + o(1)) n .
From this inequality and (18) we obtain that,

P ∆(ℵ n ) ≥ r f log(n)n/n 1/d ≤ ν n 1 - f 0 f 1 w d n (1 + o(1)) n ≤ ν n exp -cnw d n (1 + o(1)) ,
and therefore,

P ∆(ℵ n ) ≥ r f (log(n)/n) 1/d ≤ C S n 1-r f f 0 /f 1 +o(1) . Finally, because r f > 2f 1 /f 0 we have P ∆(ℵ n ) ≥ r f (log(n)/n) 1/d < ∞. Thus, the Borel-Cantelli Lemma ensures that ∆(ℵ n ) ≤ r f (log(n)/n) 1/d eventually almost surely Lemma 6. Let ℵ n = {X 1 , .
. . , X n } be a random sample of points in R d , drawn according to a density f , which is assumed to fulfill condition (B). Suppose also that there exist constants r 0 and c > 1 -1/d such that for all r ≤ r 0 and for all x ∈ S:

min t∈S∩B(x,r) f (t) max t∈S∩B(x,r) f (t) ≥ c.
Lemma 7. Let ℵ n = {X 1 , . . . , X n } be a random sample of points in R d , drawn according to a density f , and assume that condition B holds. Let G n be a sequence of sets with the following property: the number of balls of radius n -1/d , necessary to cover G n (which we will denote ν n ), satisfies ν n ≤ n 1-a for some a > 0. Let A be a compact and convex set with |A| = 1, whose barycentre is the origin of R d . If we denote

∆(ℵ n , G n ) = sup r : ∃x ∈ G n such that x + r f (x) 1/d A ⊂ S \ ℵ n , V (ℵ n , G n ) = ∆ d (ℵ n , G n ) U (ℵ n , G n ) = nV (ℵ n , G n ) -log(n) -(d -1) log(log(n)) -log(α), then, for all x ∈ R: P U (ℵ n , G n ) ≥ x → 0.
Proof. The proof is similar to the proof of Lemma 6. Equation ( 19) also holds, but now(20) becomes:

P x i + (w n f (x) -1/d A) -1/n 1/d ⊂ S \ ℵ n ≤ 1 -w d n (1 + o(1)) n . So P U (ℵ n , G n ) ≥ x ≤ ν n n -1+o(1) . Because ν n ≤ n 1-a , we have P U (ℵ n , G n ) ≥ x → 0 4.1.3 Lemma 8
This last preliminary relates the behavior of the maximal spacing for a bounded density with the maximal spacing of the uniform density, and it is only used in the proof of the last theorem.

Lemma 8. Let us consider a density f with compact support S such that, for all x ∈ S 1ε ≤ f (x)|S| ≤ 1 + ε for a given ε ∈ (0, 1/2). Denote by n 0 = ⌊n(1 -2ε)⌋ and n 1 = ⌈n(1 + 2ε)⌉ the floor and ceiling of n(1 -2ε) and n(1 + 2ε) respectively. Fixed

w ∈ R, let w 0 = w(1-2ε-n -1 ) (1+ε) 
and w 1 = w(1-ε) 1+2ε then,

P n 0 V (Y n 0 ) ≤ w 0 1 - 1 -ε nε ≤ P nV (ℵ n ) ≤ w (21) 
and

P nV (ℵ n ) ≤ w ≤ P n 1 V (Y n 1 ) ≤ w 1 1 - 1 + 2ε + n -1 (nε + 1)(1 + ε) -1 , ( 22 
)
where

Y n 1 = {Y 1 , . . . , Y n 1 } and Y n 0 = {Y 1 , .
. . , Y n 0 } are iid random vectors with uniform distribution on S and ℵ n = {X 1 , . . . , X n } are iid random vectors with density f .

Proof. We first prove (21). To do so, observe that X can be generated from the following mixture: with probability p = 1ε, X is drawn with uniform distribution on S, and, with probability 1p = ε, X is drawn with the law given by the density g(x) = 

∆(ℵ n ) = sup r : ∃x such that x + r f (x) 1/d A ⊂ S \ ℵ n .
Because f (x)|S| ≤ 1 + ε, if we multiply and divide by |S| 1/d we have:

∆(ℵ n ) ≤ (1 + ε) 1/d sup r : ∃x such that x + r |S| 1/d A ⊂ S \ ℵ n . Then, ℵ N 0 ⊂ ℵ n implies that, ∆(ℵ n ) ≤ (1 + ε) 1/d sup r : ∃x such that x + r |S| 1/d A ⊂ S \ ℵ * N 0 , and therefore ∆(ℵ n ) ≤ (1 + ε) 1/d ∆(ℵ * N 0 ), which entails that V (ℵ n ) ≤ (1 + ε)V (ℵ * N 0 ).
Then, for all w, P nV (ℵ n ) ≤ w ≥ P (1 + ε)nV (ℵ * N 0 ) ≤ w , and in particular for any n 0 we have that

P nV (ℵ n ) ≤ w ≥ P (1 + ε)nV (ℵ * N 0 ) ≤ w ∩ N 0 ≥ n 0 . When N 0 ≥ n 0 , let us denote Y n 0 = {Y 1 , . . . , Y n 0 } the n 0 first values of ℵ * N 0 . Clearly we have V (ℵ * N 0 ) ≤ V (Y n 0 ) so, P N 0 ≥n 0 (1 + ε)nV (ℵ * N 0 ) ≤ w ≥ P (1 + ε)nV (Y n 0 ) ≤ w ,
where P N 0 ≥n 0 denotes the probability conditioned to N 0 ≥ n 0 . Therefore,

P nV (ℵ n ) ≤ w ≥ P n 0 V (Y n 0 ) ≤ wn 0 (1 + ε)n P(N 0 ≥ n 0 ).
On the other hand, because N 0 ∼ Bin((1ε, n)), we obtain,

P(N 0 < n 0 ) = P N 0 -(1 -ε)n < n 0 -(1 -ε)n .
From n 0 ≤ n(1ε) it follows that n 0n(1ε) ≤ -εn, and by Tchebichev inequality,

P(N 0 < n 0 ) ≤ nε(1 -ε) n 2 ε 2 = (1 -ε) nε , and 
P(N 0 ≥ n 0 ) ≥ 1 - (1 -ε) nε .
Let us denote w 0 = w(1-2ε-n -1 ) (1+ε)

. Because n(1 -2ε) -1 ≤ n 0 we have w 0 ≤ wn 0 (1+ε)n , from where it follows that

P nV (ℵ n ) ≤ w ≥ P n 0 V (Y n 0 ) ≤ w 0 1 - 1 -ε nε .
Equation ( 22) is proved in the same way as (21). We provide a sketch of the proof. First observe that a variable Y with uniform distribution can be seen as a mixture. We take with probability p = 1 1+ε , Y as a random variable with the law given by a density f , and, with probability 1p = ε 1+ε , Y is drawn with the law given by g(x) = 1+ε-|S|f (x) εS I S (x). Then, following the ideas used in the proof of equation ( 21) we consider a sample Y n 1 = {Y 1 , . . . , Y n 1 } of iid copies of Y , (that follows an uniform law). Denote by N the number of the points that had been drawn according to the density f and Y * N = {X 1 , . . . X N } these points. The rest of the proof follow the same argument used to prove ((21).

Uniform mixture on disjoint supports

Proposition 7. Let E 1 , . . . , E k be disjoint subsets of R d , (i.e: i = j ⇒ E i ∩ E j = ∅), whose Lebesgue measure satisfies 0 < |E i | < ∞. Let p 1 , . . . , p k be positive real numbers. If ℵ n = {X 1 , . . . , X n } is a random sample of points in R d , drawn according to the density:

f (x) = k i=1 p i I E i (x), then: U (ℵ n ) L -→ U when n → ∞
where, for all i 0 < p i < ∞.

Proof. First let us introduce some notation:

• N i = #{ℵ n ∩ E i },
the number of points in E i , which has a Binomial distribution, N i ∼ Bin(n, p i |E i |).

• ℵ i N i = {X i 1 , . . . , X i N i }, the subsample of ℵ n that belongs to E i . Observe that X i j for j = 1, . . . , N i has uniform distribution on E i with density

|E i | -1 . • a i = p i |E i |, that fulfills a i = 1, a 0 = min i a i , A 0 = max i a i and C = 1-a i a i . • ε i = N i -a i n na i .
Because the support S of f is equal to

∪ i E i , by assumption i = j ⇒ E i ∩ E j = ∅, we have ∆(ℵ n ) = sup r : ∃x∃i such that x + r p 1/d i A ⊂ E i \ ℵ n , so ∆(ℵ n ) = max i sup r : ∃x such that x + r|E i | 1/d (|E i |p i ) 1/d A ⊂ E i \ ℵ i N i , (23) while 
∆(ℵ i N i ) = sup r ′ : ∃x ∈ E i such that x + r ′ |E i | 1/d A ⊂ E i \ ℵ i N i . (24) 
From ( 23) and ( 24) we derive that

∆(ℵ n ) = max i (|E i |p i ) 1/d ∆(ℵ i N i ) , and V (ℵ n ) = max i (|E i |p i )V (ℵ i N i ) ,
which entails that

P(V (ℵ n ) ≤ w) = i P N i V (ℵ i N i ) ≤ wN i a i n . ( 25 
)
Let us now condition to the number of points in each E i . Denoting P -→ n (A) = P(A|N 1 = n 1 , . . . , N k = n k ), we have that,

P - → n nV (ℵ n ) ≤ w = k i=1 P - → n n(|E i |p i )V (ℵ i ni ) ≤ w = k i=1 P - → n n i V (ℵ i ni ) ≤ wn i n|E i |p i . Now, taking w i = wn i n|E i |p i , γ i = n i w d-1 i e -w i |E i | and applying Lemma 1 we obtain, exp - k i=1 γ i a Ei + |E i | ≤ P - → n nV (ℵ n ) ≤ w ≤ exp - k i=1 γ i a Ei -|E i | .
On the other hand,

k i=1 γ i a Ei + |E i | = k i=1 n i wn i n|E i |p i d-1 exp - wn i n|E i |p i a Ei - = k i=1 n i w d-1 (1 + ε i ) d-1 exp(-w(1 + ε i ))a Ei + (w i , n i ) Let ε = max i |ε i | and ε a + = max i |a E i + (w i ,n i )-α| α , then we have k i=1 γ i a E i + |E i | ≤ nw d-1 exp(-w)α(1 + ε) d-1 exp(wε)(1 + ε a + ). (26) 
Taking w = x + log(n) + (d -1) log(log(n)) + log(α), we obtain that nV ≤ w ⇔ U ≤ x, which implies that

P -→ n U (ℵ n ) ≤ x ≥ exp -e -x (1 + ε) d-1 exp(log(n)ε)(1 + ε a + )(1 + o n (1)) . (27) 
In the same way it can be proved that (denoting ε a

-= max i |a E i -(w i ,n i )-α| α 
):

P -→ n U (ℵ n ) ≤ x ≤ exp -e -x (1 -ε) d-1 exp(-log(n)ε)(1 -ε a -)(1 + o n (1)) . If ε = max |ε i | ≤ 1/ log(n) 2 , then, if n ≥ 5, a 0 n/2 ≤ N i ≤ n for all i. So w i ≥ log(n)a 0 /(2A 0 ) → ∞ and w i /n ≤ x + log(n) + (d -1) log(log(n)) + log(α) /(na 0 ) → 0.
This implies that ε a -and ε a + converges to 0, according to Lemma 8. Then we have

P ε≤1/ log(n) 2 U (ℵ n ) ≤ x → exp(-exp(-x)) when n → ∞. ( 28 
) Because P max i |ε i | ≥ 1 log(n) 2 = P i |ε i | ≥ 1 log(n) 2 ≤ k i=1 P |ε i | ≥ 1 log(n) 2 , (29) 
from Tchebychev inequality we obtain

P |ε i | ≥ 1 log(n) 2 ≤ log(n) 4 V(ε 2 i ) where V(ε 2 i ) = 1 -a i na i ,
and therefore

P ε ≥ 1 log(n) 2 ≤ C log(n) 4 n . (30) 
Finally, from equations ( 28) and ( 30) we obtain that

P U (ℵ n ) ≤ x → exp(-exp(-x)) when n → ∞,
which concludes the proof.

Uniform mixture

Proposition 8. Let E 1 , . . . , E k be subsets of R d such that:

1) i = j ⇒ |E i ∩ E j | = 0. 2) 0 < |E i | < ∞ for i = 1, . . . , k . 
3) There exists 0 < K < ∞ such that,

|∂E i | d-1 ≤ K for i = 1, . . . , k, where |∂E i | d-1 is the d -1 measure of the boundary of E i .
Suppose that ℵ n = {X 1 , . . . , X n } is a random sample of points in R d , drawn according to the density:

f (x) = k i=1 p i I Ei
where p 1 , . . . , p k are real numbers satisfying 0 < p i < ∞ for i = 1, . . . , k. If there exists constants r 0 > 0 and c > 1 -1/d such that, for all r ≤ r 0 and all x ∈ Ei for some i,

min t∈S∩B(x,r) f (t) max t∈S∩B(x,r) f (t) ≥ c. then: U (ℵ n ) L -→ U whenn → ∞.
Proof. We start by introducing some definitions and notation. Let

∆(ℵ n ) = sup r : ∃x∃i, such that x + r f (x) 1/d A ⊂ Ei \ ℵ n , V (ℵ n ) = ∆d (ℵ n ), Ů (ℵ n ) = n V (ℵ n ) -log(n) -(d -1) log log(n) -log(α A ) Clearly U (ℵ n ) ≥ Ů ℵ n , and therefore P U (ℵ n ) ≤ x ≤ P Ů ℵ n ≤ x .
It can be proved, following the same ideas used to prove Theorem 7 (and the fact

that |E i | = | Ei |) that Ů ℵ n L -→ U .
We denote by F n (x) = P Ů ℵ n ≤ x and by G = i,j E i ∩ E j , and define the following quantities: 

• p 0 = min i p i . • ρ A = max x∈A x . • ρ n = (r f ρ A /p 1/d 0 ) log(n)/n 1/d . • ∆ ℵ n , S \ G ρn = sup r : ∃x ∈ S \ G ρn such that x + r f (x) 1/d A ⊂ S \ ℵ n . • ∆ ℵ n , G ρn = sup r : ∃x ∈ G ρn such that x + r f (x) 1/d A ⊂ S \ ℵ n . It follows easily that ∆(ℵ n ) = max ∆ ℵ n , S \ G ρn , ∆ ℵ n , G ρn . ( 31 
In order to prove (32) let us observe first that for all ε > 0 there exists x ε ∈ S \ G ρn such that

x ε + ∆ ℵ n , S \ G ρn -ε f (x ε ) 1/d A ⊂ S \ ℵ n . If ∆ ℵ n , S \ G ρn ≤ r f (log(n)/n) 1/d then x ε + ∆ ℵ n , S \ G ρn -ε f (x ε ) 1/d A ⊂ B x ε , ρ A r f (log(n)/n) 1/d -ε p 1/d 0 . Because d(x ε , G) ≥ r f ρ A p -1/d 0
(log(n)/n) 1/d we have

x ε + ∆ ℵ n , S \ G ρn -ε f (x ε ) 1/d A ⊂ i Ei \ ℵ n .
First inequality Like in the proof of Proposition 8 let us denote, ∆(ℵ n ) = sup r : ∃x∃i, such that x + r f (x)

1/d A ⊂ Ci \ ℵ n , V (ℵ n ) = ∆d (ℵ n ), Ů (ℵ n ) = n V (ℵ n ) -log(n) -(d -1) log log(n) -log(α A ).
Because mn i=1 Ci ⊂ S we have: P U (ℵ n ) ≤ x ≤ P Ů (ℵ n ) ≤ x . Also, like in the proof of Proposition 7 let us denote:

• N i = #{ℵ n ∩ C i }.
• a i = C i f (t)dt; a 0 = min i a i ; A 0 = max i a i and C = 1-a i a i . Observe that a i = 1 and a 0 ≥ f 0 c d n .

• ℵ i N i = {X i 1 , . . . , X i N i } the subsample of ℵ n that belongs to C i . Observe that X i j for j = 1, . . . , N i has density f i (x) = f (x)/a i I C i (x).

• ε i = N i -a i n na i
Proceeding exactly as in the proof of Proposition 7 we can derive that ∆(ℵ n ) = max i sup r : ∃x such that x + ra

1/d i (a i f i (x)) 1/d A ⊂ Ci \ ℵ i N i ,
and therefore

∆(ℵ n ) = max i a 1/d i ∆(ℵ i N i ) and V (ℵ n ) = max i a i V (ℵ i N i ) .
Now, in order to use Proposition 7 we need to see that the density is close to the uniform density on small squares and then apply Lemma 8. Let us observe that, for all y ∈ C i ,

f i (y)|C i | -1 = f (y) a i |C i | -1 = 1 a i C i f (y)dt - C i f (t)dt ≤ 1 a i K C i |y -t|dt,
and as |y -t| ≤ √ dc n , we have that

f i (y)|C i | -1 ≤ 1 a i K √ dc d+1 n ≤ K 1 c n ∀y ∈ C i ,
where K 1 = √ dK/f 0 . We will apply now Lemma 8, (with ε = K 1 c n ). If we denote N ′ i = ⌈N i (1 + 2K 1 c n )⌉, w ′ = w 1-2K 1 cn 1+K 1 cn and Y N ′ i a sample of N ′ i variables uniformly drawn on C i it holds that

P N i ∆ d (ℵ Ni ) ≤ wN i a i n ≤ P N ′ i ∆ d (Y N ′ i ) ≤ w ′ N ′ i a i n 1 - 1 + 2K 1 c n + n -1 (nK 1 c n )(1 + K 1 c n ) -1
.

In order to prove that P(U (ℵ n ) < x) ≤ exp(-exp(-x)) asymptotically, we have to prove that:

1 - 1 + 2K 1 c n + n -1 (nK 1 c n )(1 + K 1 c n ) -mn → 1, (36) 
and

mn i=1 P N ′ i ∆ d (Y N ′ i ) ≤ w ′ N ′ i a i N → exp(-exp(-x)), (37) 
being w = x + log(n) + (d -1) log(log(n)) + log(α)).

To see (36) observe that

1 - 1 + 2K 1 c n + n -1 (nK 1 c n )(1 + K 1 c n ) -mn = exp m n nK 1 c n (1 + o(1)), (38) 
where m n ≤ M c -d n . Because nc d+1 n → ∞, the right hand side of (38) converge to 1, as desired.

Let us prove now (37). Observe that the product is similar to the one in equation ( 25) with N ′ i instead of N i and w ′ instead of w. Because w ′ = w(1 + O(c n )), we have w ′d-1 exp(-w ′ ) ∼ w d-1 exp(-w).

Then, if we denote by ε ′ = max i

|N ′ i -a i n| na i
, equation ( 27) imply that to prove (37) it suffices to prove that there exist δ n → 0 such that P(log(n)ε ′ ≥ δ n ) → 0.

First, let us introduce ε i = |N i -a i n| a i n , and ε = max |ε i |, then, proceeding in (29) we obtain

P ε log(n) ≥ log(n) -1 ≤ (log(n)) 4 n mn i=1 1 -a i a i ≤ (log(n)) 4 n mn i=1 1 a 0 ≤ (log(n)) 4 n M c -d n c d n f 0 . Now, because ε ′ ≤ max i |N ′ i -N i | na i + max i |N i -a i n| na i = max i |N ′ i -N i | na i + ε and N ′ i ≤ N i (1 + 2K 1 c n N i ) + 1, it holds that ε ′ ≤ max i 2K 1 cnN i +1 na i + ε. Because 1 + ε = N i /(na i ) we have that ε ′ ≤ 2K 1 c n (1 + ε) + 1 f 0 nc d n + ε. Therefore, for ε ≤ (log(n)) -2 ε ′ ≤ 2K 1 c n (1 + log(n) -2 ) + 1 f 0 nc d n + (log(n)) -2 .
Thus,

P log(n)ε ′ ≥ 2K 1 c n log(n)(1 + log(n) -1 ) + log(n) f 0 nc d n + (log(n)) -1 ≤ (log(n)) 4 M nc 2d n f 0 .

  ) log(log(n)) → ∞, and b) there exists a constant c > 0 such that h d n ≤ ch d 2n .

Table 3 :

 3 Figure 2: S R for different values of R. sample is also presented, drawn with a uniform radial noise (top) and with a truncated Gaussian noise (bottom)

f

  (x)|S|-(1-ε) ε|S| I S (x). Let us denote N 0 the number of points drawn according to the uniform law on S and ℵ * N 0 = {Y 1 , . . . , Y N 0 } the associated sample. Let us recall that

)

  According to Lemma 5 there exists a constant r f such that ∆(ℵ n ) ≤ r f log(n)/n 1/d eventually almost surely. For the chosen ρ n , we claim that ∆ ℵ n , S \ G ρn ≤ ∆ ℵ n eventually almost surely.

Table 1 :

 1 Power estimated over 1000 repetitions, for different values of ϕ, when the sample is uniformly distributed on

	8

Table 2 :

 2 Power estimated over B repetitions, for different values of R, when the sample is uniformly

	R	N=100	N=250	N=500	N=1000
		np unif np unif np unif np unif
	1	.13	.44	.55	.99	1	1	1	1
	1.5 .98	1	1	1	1	1	1	1
	3	.38	.24	1	1	1	1	1	1
	6	.08	.09	.41	.66	1	1	1	1
	12	.01	.05	.02	.08	.39	.68	.98	1
	24	0	.07	.01	.05	0	.09	.07	.48
	∞	0	.04	0	.09	0	.04	.01	.05

  The random set {X i } Nt 1 can be considered as a Poisson process with intensity t/|S| in S. Let us denote by F s the grid d 1 [n i s, (n i + 1)s] : (n 1 , . . . , n d ) ∈ Z d and define the following quantities

 

Let G n be a sequence of sets with the following property: the number of balls of radius n -1/d , necessary to cover G n (which we will denote ν n ), satisfies ν n ≤ n 1-d -1 (log(n)) β for some β. Let A be a compact and convex set with |A| = 1 such that its barycenter is the origin of R d . Let us denote

Then, for all x ∈ R we have that

Proof. Let us first cover G n with ν n balls of radius n -1/d , centered at some points {x 1 , . . . , x νn }, and choose

On the other hand, because n -1/d ≪ w n and f (x

, there exists a point x i such that xx i ≤ n -1/d and, for sufficiently large n,

Now observe that

which implies that, for sufficiently large n,

From this inequality, together with (19) we derive that,

Using now (31) we obtain exp(-x)), it only remains to prove that P U (ℵ n , G ρn ) ≥ x → 0. In order to do that, we will see that G ρn can be covered by a suitable number of balls of radius 1/n 1/d , and then we will apply Lemma 6.

Because |∂E i | < K for i = 1, . . . , k, every ∂E i can be covered by ν 1 ≤ Kρ -d+1 n balls of radius ρ n centered at some points x i . Every ball B(x i , ρ n ) can be covered by

, the set G ρn can be covered by less than kKc * ρ n n = O(n 1-1/d (log(n)) 1/d ) balls of radius 1/n. That conclude the proof.

Lipshitz continous density

Now we will prove a generalization of the Theorem 1 to the case of Lipschitz densities with compact support. Let us recall here the theorem:

Theorem. Let f be a density with compact support S ⊂ R d , let us assume that condition B holds, then

Proof. We will only prove (33), the proof of ( 34) and ( 35) are the same as the one in [START_REF] Janson | Maximal spacings in several dimensions[END_REF]. What we will do is to combine all the methods used to prove the previous theorems. Let us consider a "mesh" of R d with small squares of side c n ,

We will suppose that

. Let us denote m n the number of this squares that are included in S and C 1 , . . . , C mn this squares.

Second inequality We will do a sketch of the proof, the arguments are similar to those in the proof of Proposition 8 using Lemma 8 like in the first inequality.

As in Proposition 8 let us denote:

Exactly as in the proof of Proposition 8 we have that

The proof that P( Ů ℵ n ≤ x) → exp(-exp(-x)) is obtained exactly as we did to obtain the first inequality, but using equation ( 21). We will bound the covering numbers of G ρn and H to apply Lemma 7, to conclude the proof of the second inequality.

G is the union of less than m n 2 d squares of size c n let us call them D i . Each of this squares D i can be cover by less than ac d-1 n ρ -d+1 n balls of radius ρ n , centered at some points x i j . We have that G ρn ⊂ i,j B(x i j , 2ρ n ) and each of this balls can be covered by c * ρ d n n balls of radius n -1/d . So G can be covered by less than m n 2 d ac d-1 n ρ -d+1 n c * ρ d n n balls, that is 2 d ac * M c -1 n ρ n n, which satisfies the conditions to apply Lemma 7 because c n = O log(n)/n) 1/3d .

In the same way it can be proved that H can be covered with O(nc n ) balls of radius n -1/d , which satisfies the hypothesis to apply Lemma 7 for the proposed value of c n .