On the maximal multivariate spacing extension and convexity tests
 Catherine Aaron, Alejandro Cholaquidis, Ricardo Fraiman

To cite this version:

Catherine Aaron, Alejandro Cholaquidis, Ricardo Fraiman. On the maximal multivariate spacing extension and convexity tests. 2014. hal-00702275v2

HAL Id: hal-00702275
 https://hal.science/hal-00702275v2

Preprint submitted on 12 Nov 2014 (v2), last revised 19 Dec 2014 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the maximal multivariate spacing extension and convexity tests

Catherine Aaron
Université Blaise-Pascal Clermont II
e-mail: catherine.aaron@math.univ-bpclermont.fr

Alejandro Cholaquidis
Universidad de la República, e-mail: acholaquidis@cmat.edu.uy

Ricardo Fraiman
Universidad de la República, e-mail: rfraiman@cmat.edu.uy

Abstract

The notion of multivariate spacings was introduced and studied by Deheuvels, P. (1983) for data uniformly distributed on the unit cube. Later on, Janson, S. (1987) extended the results to bounded sets, and obtained a very fine result, namely, he derived the exact asymptotic distribution of the maximal spacing. These results have been very useful in many statistical applications.

We extend Janson's result to the case where the data are generated from a positive, bounded support Lipchitz continuous density function, and develop a convexity test for the support of a distribution.

MSC 2010 subject classifications: Primary 62G10; 62G20; secondary 62E20.
Keywords and phrases: maximal spacing, convexity test, non-parametric density estimation.

1. Introduction

The notion of spacings, which for one dimensional data are just the differences between two consecutive order statistics, have been extensively studied in the one dimensional setting; see e.g., the review papers by [10, 11]. Many important applications for testing and estimation problems, are derived from the study of the asymptotic behavior of the spacings. Applications for testing problems dates back to [12] who address the asymptotic theory of a class of tests for Increasing Failure Rate. For estimation problems, [13] propose the maximum spacing estimation method to estimate the parameters of a univariate statistical model.

Particular attention has been devoted to the behavior of the maximal (largest) spacing (see for instance [14], [6] and [5]).

For points that are uniformly distributed in the unit cube $K=[0,1]^{d}$, [5] introduced the notion of maximal spacing for the multivariate setting as the volume of the largest cube C, parallel to the unit cube, that is contained in $[0,1]^{d}$ and do not contain any of the n sample points.
[8] extended these results for a sample of random vectors uniformly distributed on a bounded set $S \subset \mathbb{R}^{d}$ such that $|S|=1$ (where $|$.$| denotes the Lebesgue measure on \mathbb{R}^{d}$), and the cube C is replaced by any fixed bounded convex set with a nonempty interior. In addition to extending
results on strong bounds, he derived the exact asymptotic distribution of the maximal spacing (see Theorems 1 and Corollary 1). The notion of maximal multivariate spacing and, in particular, Janson's result, have been used to solve different statistical problems. In set estimation (see, for instance, [1] and [2]), it is used to prove the optimality of the rates of convergence.

We seek to achieve the following:
i) We extend Janson's result to the case where the data are generated by a Lipchitz continuous density function with bounded support S, which is bounded from below by a positive constant on S. This will require us to extend the notion of maximal spacing to the case of non-uniform data.
ii) Based on the previous result, we develop a convexity test for the support S and compare it with some recent results presented by [4].
The paper is organized as follows. First, we introduce the new notion of maximal spacing and state the asymptotic results for the maximal spacing. Next, in Section 3, we address the convexity test problem for two different settings: the semi-parametric case (where the set is unknown, but the data are uniform) and the nonparametric case (where the data are generated by an unknown density f). We study the asymptotic behavior of the tests for both settings and conduct a small simulation study. Finally, as we show in the Appendix, the asymptotic distribution of the maximal spacing is derived in three steps. We start with a density that is a mixture of uniform laws with disjoint supports, then consider a density that is a uniform mixture and finally consider a density that is Lipchitz continuous and bounded from below.

2. Main definitions and results

We first introduce notation that will be used throughout the manuscript. Given a set S, we denote by $\partial S, \stackrel{\circ}{S}$, and \bar{S} the boundary, interior and closure of S, respectively. We denote by $\mathcal{B}(x, \varepsilon)$ the closed ball of radii ε centered at x and by $\omega_{d}=|\mathcal{B}(x, 1)|$ the Lebesgue measure of the unit ball in \mathbb{R}^{d}. Given $\lambda \in \mathbb{R}, A, C \subset \mathbb{R}^{d}$ we denote $\lambda A=\{\lambda a: a \in A\}, A \oplus C=\{a+c: a \in A, c \in C\}$, and $A \ominus C=\{x:\{x\} \oplus C \subset A\}$. For the sake of simplicity, we use the notation x +C , instead of $\{x\} \oplus C$. If $\lambda \geq 0$ we denote $A^{\lambda}=A \oplus \lambda \mathcal{B}(0,1)$, and $A^{-\lambda}=A \ominus \lambda \mathcal{B}(0,1)$. Given $A, C \subset \mathbb{R}^{d}$ two non-empty compact sets, the Hausdorff (or Pompeiu-Hausdorff) distance between them is given by

$$
d_{H}(A, C)=\max \left\{\max _{a \in A} d(a, C), \max _{c \in C} d(c, A)\right\}
$$

where $d(a, C)=\inf \{\|a-c\|: c \in C\}$. Given a set $S \subset \mathbb{R}^{d}$, we denote by $\mathcal{H}(S)$ the convex hull of S (that is, the minimal convex set that contains S).

Let $S \subset \mathbb{R}^{d}$ be a bounded set with Lebesgue measure 1 , but with Lebesgue measure zero of its boundary ∂S. Let $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be iid random vectors uniformly distributed on S, and A a bounded convex set. According to Janson ([8]), the maximal spacing is defined as:

$$
\Delta^{*}\left(\aleph_{n}\right)=\sup \left\{r: \exists x \text { such that } x+r A \subset S \backslash \aleph_{n}\right\}
$$

To generalize Janson's result to the non-uniform case, we need to extend the maximal spacing definition. When the sample is drawn according to a probability measure P_{X}, we consider the probability measure of the largest empty λA set. When $|A|=1 P_{X}(x+\lambda A) \sim f(x) \lambda^{d}$ for sufficiently small λ. This leads us to define the maximal spacing extension as follows:

Definition 1. Let $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be an iid random sample of points in \mathbb{R}^{d}, drawn according to a density f with bounded support S, and let $A \subset \mathbb{R}^{d}$ be a convex and compact set such that $|A|=1$ (where $|\cdot|$ denote the Lebesgue measure) and its barycentre is the origin of \mathbb{R}^{d}. We define:

$$
\begin{gathered}
\Delta\left(\aleph_{n}\right)=\sup \left\{r: \exists x \text { such that } x+\frac{r}{f(x)^{1 / d}} A \subset S \backslash \aleph_{n}\right\}, \\
V\left(\aleph_{n}\right)=\Delta^{d}\left(\aleph_{n}\right)
\end{gathered}
$$

and

$$
U\left(\aleph_{n}\right)=n \Delta^{d}\left(\aleph_{n}\right)-\log (n)-(d-1) \log (\log (n))-\log \left(\alpha_{A}\right)
$$

where $\alpha_{A}>0$ is the constant defined in [9]. For instance, if A is a cube, $\alpha_{A}=1$; if A is a ball, then $\alpha_{A}=\frac{1}{d!}\left(\frac{\sqrt{\pi} \Gamma\left(\frac{d}{2}+1\right)}{\Gamma\left(\frac{d+1}{2}\right)}\right)^{d-1}$.

Finally, we denote U, a random variable, such that $\mathbb{P}(U \leq t)=\exp (-\exp (-t))$.
When $|S|=1$ and the sample is uniformly drawn on S, the following result can be found in [8], Theorem 1:
Theorem 1. Let $S \subset \mathbb{R}^{d}$ be a bounded set such that $|S|=1$ and $|\partial S|=0$. Let $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ and X be iid random vectors uniformly distributed on $S:$ then,

$$
U\left(\aleph_{n}\right) \xrightarrow{\mathcal{L}} U \quad \text { when } n \rightarrow \infty
$$

A simple rescaling extends this result to the case where $|S| \neq 1$:
Corollary 1. Let $S \subset \mathbb{R}^{d}$ be a bounded set such that $|\partial S|=0$ and $|S|>0$. Let $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ and X be iid random vectors uniformly distributed on S; then,

$$
U\left(\aleph_{n}\right) \xrightarrow{\mathcal{L}} U \quad \text { when } n \rightarrow \infty
$$

We are interested in the asymptotic behavior of $U\left(\aleph_{n}\right)$ as $n \rightarrow \infty$, when the density is not uniform. The main result (see Theorem 2 below) is presented for Lipschitz continuous densities.
Theorem 2. Let f be a density with compact support $S \subset \mathbb{R}^{d}$. Suppose that f is Lipschitz (with constant K) and that there exist positive constants f_{0}, f_{1} such that for all $x \in S, 0<f_{0} \leq f(x) \leq f_{1}$. Then, we have the following:

$$
\begin{gathered}
U\left(\aleph_{n}\right) \stackrel{\mathcal{L}}{\longrightarrow} U \quad \text { when } n \rightarrow \infty \\
\liminf _{n \rightarrow+\infty} \frac{n V\left(\aleph_{n}\right)-\log (n)}{\log (\log (n))}=d-1 \text { a.s. } \\
\limsup _{n \rightarrow+\infty} \frac{n V\left(\aleph_{n}\right)-\log (n)}{\log (\log (n))}=d+1 \text { a.s. }
\end{gathered}
$$

The proof is given in the Appendix.

3. A new test for convexity

3.1. The semi-parametric case

In this section, we propose, using the concept of maximal spacing defined in Section 2, a consistent hypothesis test, based on an iid sample $\left\{X_{1}, \ldots, X_{n}\right\}$ uniformly distributed on a compact set S, to decide whether S is convex or not. The main idea is that, if the set is not convex the maximal spacing between the convex hull of the set and the sample will not converge to zero. Because the set is unknown, instead of the convex hull of the set, we consider the convex hull of the sample. To change the set by its convex hull, we prove some previous results which guarantee that the maximal spacings will be close.
Definition 2. Let $S \subset \mathbb{R}^{d}$ be a bounded set satisfying $\stackrel{\circ}{S} \neq \emptyset$. We define the maximal spacing of S (denoted $\Delta(S)$) as

$$
\Delta(S)=\sup \{r: \exists x \in S \text { such that } \mathcal{B}(x, r) \subset S\}
$$

Although there is an abuse of notation here, it is important to note that to define $\Delta(S)$, we do not need a sample or density. In that sense, it is different from the one defined in 1. Moreover, although the set \aleph_{n} is bounded, the condition $\aleph_{n} \neq \emptyset$ is not satisfied.
Proposition 1. Let A and B be bounded and nonempty subsets of \mathbb{R}^{d}. If for some $\varepsilon>0$, $d_{H}(A, B) \leq \varepsilon$ and $d_{H}(\partial A, \partial B) \leq \varepsilon$, then

$$
|\Delta(A)-\Delta(B)| \leq 2 \varepsilon
$$

Proof. It is enough to prove that:

1. $\{x \in A: d(x, \partial A)>2 \varepsilon\} \subset B$
2. $\{x \in B: d(x, \partial B)>2 \varepsilon\} \subset A$

From the first inclusion, we obtain that $\Delta(B) \geq \Delta(A)-2 \varepsilon$, while from the second, we obtain that $\Delta(A) \geq \Delta(B)-2 \varepsilon$. Then, $|\Delta(A)-\Delta(B)| \leq 2 \varepsilon$. To obtain the first inclusion (the second one is analogous), we suppose that there exists $x \in A$ such that $d(x, \partial A)>2 \varepsilon$ but $x \notin B$. Because $A \subset B^{\varepsilon}$, we have $x \in B^{\varepsilon} \backslash B$. Then $d(x, \partial B) \leq \varepsilon$, which implies that

$$
d(x, \partial A)=d_{H}(\{x\}, \partial A) \leq d_{H}(\{x\}, \partial B)+d_{H}(\partial B, \partial A) \leq 2 \varepsilon
$$

The following proposition shows that if the set S is not convex, then the maximal spacing of the set $\mathcal{H}(S) \backslash S$ is strictly positive.

Proposition 2. Let $S \subset \mathbb{R}^{d}$ be a non-convex, compact non-empty set, such that $S=\overline{\breve{S}}$. Then,

$$
0<\Delta(\mathcal{H}(S) \backslash S)
$$

Proof. We first prove that:

$$
\begin{equation*}
\mathcal{H}(S)=\overline{\mathcal{H}(S)} \tag{3.1}
\end{equation*}
$$

The fact that $\mathcal{H}(S)$ is a closed set implies that $\overline{\mathcal{H}(S)} \subset \mathcal{H}(S)$. Thus, (3.1) will hold if we prove that $\mathcal{H}(S) \subset \overline{\mathcal{H}(i)}$. However, $S=\overline{\bar{S}} \subset \mathcal{H}(S)$ and $\overline{\stackrel{S}{S}} \subset \overline{\mathcal{H}(i)}$ entail that (3.1) follows from $\overline{\mathcal{H}(i)}$
being a convex set. Because S is not convex, there exist $x, y \in S$ such that the segment $[x, y]$ joining them is not contained in S. However, $\mathcal{H}(S)$ is convex, and therefore the segment is contained in $\mathcal{H}(S)$. Because S is compact, there exist $\delta>0$ and $t \in[x, y]$ such that $\mathcal{B}(t, \delta) \cap S=\emptyset$. By (3.1), we have that $\mathcal{B}(t, \delta) \cap \mathcal{H}(S) \subset \mathcal{H}(S) \backslash S$, and therefore, $\Delta(\mathcal{H}(S) \backslash S) \geq \Delta(\mathcal{B}(t, \delta) \cap \mathcal{H}(S) \backslash S)>0$.

If $S \subset \mathbb{R}^{d}$ is convex and $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ is an iid random sample, uniformly drawn on $S,[15]$ proved that

$$
d_{H}\left(S, \mathcal{H}\left(\aleph_{n}\right)\right)=\mathcal{O}\left((\log (n) / n)^{1 / d}\right)
$$

Moreover, under an additional regularity condition on ∂S, it has also been proven in [15] that the previous order can be improved. More specifically, the following results holds

$$
d_{H}\left(S, \mathcal{H}\left(\aleph_{n}\right)\right)=\mathcal{O}\left((\log (n) / n)^{2 /(d+1)}\right)
$$

The regularity condition is the following:
Condition (P): For all $x \in \partial S$ there exists a unique vector $\xi=\xi(x)$ with $\|\xi\|=1$, such that $\langle y, \xi\rangle \leq\langle x, \xi\rangle$ for all $y \in S$, and

$$
\|\xi(x)-\xi(y)\| \leq l\|x-y\| \quad \forall x, y \in \partial S
$$

where l is a constant. We will denote by \mathcal{A}_{P} the class of convex subsets that satisfy condition (P).
Theorem 3. Let $S \subset \mathbb{R}^{d}$ be a compact subset such that $S=\bar{S}$. For the following decision problem

$$
\begin{cases}H_{0}: & \text { the set } S \text { is convex } \tag{3.2}\\ H_{1}: & \text { the set } S \text { is not convex }\end{cases}
$$

the test based on the statistic $\tilde{V}_{n}=\omega_{d} \Delta^{d}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)$ with the critical region given by

$$
R C=\left\{\tilde{V}_{n}>c_{n, \gamma}\right\}
$$

where

$$
c_{n, \gamma}=\frac{\left|\mathcal{H}\left(\aleph_{n}\right)\right|}{n}(-\log (-\log (1-\gamma))+\log (n)+(d-1) \log (\log (n))+\log (\alpha))=\mathcal{O}(\log (n) / n)
$$

and α is the constant defined in (1), is asymptotically of level smaller or equal to γ. Moreover if $S \in \mathcal{A}_{P}$ the asymptotic level equals γ. If S is not convex, the test has power one for n sufficiently large n.
Proof. First observe that, if S is convex (not necessarily in \mathcal{A}_{P}) from Theorem 1 and the following inequality

$$
\Delta\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right) \leq \Delta\left(S \backslash \aleph_{n}\right)
$$

we obtain that $\mathbb{P}\left(\Delta\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)>c_{n, \gamma}\right) \leq \gamma$.
We now prove that for the case $S \in \mathcal{A}_{P}, \mathbb{P}_{H_{0}}\left(\tilde{V}_{n}>c_{n, \gamma}\right) \rightarrow \gamma$ and, for n sufficiently large n, $\mathbb{P}_{H_{1}}\left(\tilde{V}_{n}>c_{n, \gamma}\right)=1$. First observe that under $H_{0}, \aleph_{n} \subset \mathcal{H}\left(\aleph_{n}\right) \subset S$ for all $n>0$. As condition (P) is satisfied we know that

$$
\begin{equation*}
d_{H}\left(\mathcal{H}\left(\aleph_{n}\right), S\right)=\mathcal{O}\left((\log (n) / n)^{2 /(d+1)}\right), \tag{3.3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
d_{H}\left(\partial \mathcal{H}\left(\aleph_{n}\right), \partial S\right)=\mathcal{O}\left((\log (n) / n)^{2 /(d+1)}\right) \tag{3.4}
\end{equation*}
$$

We assume that $|S|$ is known. Indeed, by (3.3) and (3.4) together with Theorem 2 in [3], we have that $\left|\mathcal{H}\left(\aleph_{n}\right)\right| \rightarrow|S|$. Thus, we use $c_{n, \gamma}^{\prime}=\frac{|S|}{\mathcal{H}\left(\aleph_{n}\right)} c_{n, \gamma}$ instead of $c_{n, \gamma}$.

By Proposition 1, we have that under H_{0} :

$$
\left|\Delta\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)-\Delta\left(S \backslash \aleph_{n}\right)\right|=\mathcal{O}\left((\log (n) / n)^{2 /(d+1)}\right)
$$

If we denote $\varepsilon_{n}=\left|\Delta\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)-\Delta\left(S \backslash \aleph_{n}\right)\right|$ we can derive that

$$
\Delta^{d}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)=\Delta^{d}\left(S \backslash \aleph_{n}\right)+d \varepsilon_{n} \Delta^{d-1}\left(S \backslash \aleph_{n}\right)+o\left(\varepsilon_{n} \Delta^{d-1}\left(S \backslash \aleph_{n}\right)\right)
$$

Applying Lemma 5 given in Subsection 4.1.2, we consider $a>0$ such that

$$
V_{n}-\tilde{V}_{n}=\mathcal{O}\left((\log (n) / n)^{1+a}\right)
$$

where $V_{n}=\omega_{d} \Delta^{d}\left(S \backslash \aleph_{n}\right)$, and

$$
\gamma_{n}=\mathbb{P}_{H_{0}}\left(\tilde{V}_{n}>c_{n, \gamma}^{\prime}\right)=\mathbb{P}_{H_{0}}\left(\left(\tilde{V}_{n}-V_{n}\right)+V_{n}>c_{n, \gamma}^{\prime}\right)=\mathbb{P}_{H_{0}}\left(V_{n}>c_{n, \gamma}^{\prime}+o\left(c_{n, \gamma}^{\prime}\right)\right)
$$

Therefore, by Theorem 1, $\gamma_{n} \rightarrow \gamma$.
To prove that for sufficiently large n the power is 1 if S is not convex, we use Proposition 2 , but instead of S, we use \aleph_{n} and instead of $\mathcal{H}\left(\aleph_{n}\right)$, we use $\mathcal{H}(S)$. To do so, we first observe the following

$$
\begin{equation*}
\mathcal{H}(S)^{-2 \varepsilon_{n}} \subset \mathcal{H}\left(\aleph_{n}\right) \subset \mathcal{H}(S) \quad \text { a.s. } \tag{3.5}
\end{equation*}
$$

where $\varepsilon_{n}=d_{H}\left(S, \aleph_{n}\right)$. The second inclusion is immediate. To prove the first one, we proceed by contradiction: suppose that there exists $x \in \mathcal{H}(S)^{-\varepsilon_{n}}$ but $x \notin \mathcal{H}\left(\aleph_{n}\right)$. Because $x \notin \mathcal{H}\left(\aleph_{n}\right)$, there exists a halfspace H_{x} such that $x \in H_{x}$ and $H_{x} \cap \aleph_{n}=\emptyset$. Now, we take $z \in \mathcal{B}\left(x, 2 \varepsilon_{n}\right) \cap H_{x}$ such that $\mathcal{B}\left(z, \varepsilon_{n}\right) \subset H_{x}$. Because $z \in \mathcal{B}\left(x, \varepsilon_{n}\right) \subset \mathcal{H}(S)$, the halfspace H_{z} parallel to H_{x} such that $z \in \partial H_{z}$ meets S at some point s. Then $\mathcal{B}\left(s, \varepsilon_{n}\right) \subset H_{x}$, while $\varepsilon_{n}=d_{H}\left(S, \aleph_{n}\right)$, which implies that there exists $X_{i} \in \mathcal{B}\left(s, \varepsilon_{n}\right)$, contradicting $H_{x} \cap \aleph_{n}=\emptyset$. Then, we have the following:

$$
\begin{align*}
\Delta(\mathcal{H}(S) \backslash S)-2 \varepsilon_{n} & \leq \Delta\left(\mathcal{H}(S)^{-2 \varepsilon_{n}} \backslash S\right) \\
& \leq \Delta\left(S^{-2 \varepsilon_{n}} \backslash \aleph_{n}\right) \\
& \leq \Delta\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right) \tag{3.6}
\end{align*}
$$

Because $\mathcal{H}(S)<\infty$, we have that by (3.5), $c_{n, \gamma}^{\prime} \rightarrow 0$. Then $\mathbb{P}_{H_{1}}\left(\tilde{V}_{n}>c_{n, \gamma}\right)=1$ a.s. for sufficiently large n.

3.2. The non-parametric case

We now assume that we have a sample $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ of iid random vectors in \mathbb{R}^{d} drawn according to an unknown density f. We propose to plug in a density estimator \hat{f}_{n} on (2.1), compute

$$
\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)=\sup \left\{r: \exists x \text { such that } x+\frac{r}{\hat{f}_{n}(x)^{1 / d}} A \subset \mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right\}
$$

and reject H_{0} (the support is convex) if $\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)$ is sufficiently large. To increase the power of our test we need to find a density estimator that over-estimates the density when the support is not convex. To do so, we propose the following density estimator.

Definition 3. Let $\operatorname{Vor}\left(X_{i}\right)$ be the Voronoi cell of the point X_{i} i.e. $\operatorname{Vor}\left(X_{i}\right)=\left\{x:\left\|x-X_{i}\right\|=\right.$ $\left.\min _{y \in \aleph_{n}}\|x-y\|\right\}$. If K is a kernel function and $\tilde{f}_{h_{n}}(x)=\frac{1}{n h_{n}^{d}} \sum K\left(\left(x-X_{i}\right) / h_{n}\right)$ denotes the usual kernel density estimator, we define:

$$
\begin{equation*}
\hat{f}_{n}(x)=\max _{i, x \in \operatorname{Vor}\left(X_{i}\right)} \tilde{f}\left(X_{i}\right) \tag{3.7}
\end{equation*}
$$

For the uniform case, we require that the boundary of the support be smooth enough to derive the asymptotic behavior. In this more general setup, we will not have a convergent level estimation and will only have a level majorization (the price to pay to estimate the density).

Condition (\mathbf{P}^{\prime}): For a given kernel function K, we say that S is standard with respect to K and with respect to the Lebsegue measure if there exist positive constants r_{0}, c_{S} and c_{K} such that for all $x \in S, \int_{u \in S} K((u-x) / r) d u \geq c_{K} r^{d}$ and $|\mathcal{B}(x, r) \cap S| \geq c_{S} r^{d}$. We denote \mathcal{C}_{K} as the class of convex sets that satisfy condition (\mathbf{P}^{\prime}) and \mathcal{A}_{K} as the class of all the sets that satisfy condition (\mathbf{P}^{\prime}).

We require the following assumptions on the kernel:
Definition 4. Let \mathcal{K} be the set of positive kernel functions such that $\int\|u\| K(u) d u<\infty$ and $K(u)=\phi(p(u))$, where p is a polynomial and ϕ a is bounded real function of bounded variation.

Notice that all the usual kernels are in \mathcal{K}. Sometimes, we require the following condition on the underlying density f.

Condition (B): A density f with support S fulfills condition B if it is Lipschitz continuous and if there exists $f_{0}>0$ such that $f(x) \geq f_{0}$ for all $x \in S$.

Theorem 4. Let $K \in \mathcal{K}$ and \hat{f}_{n} be defined as in Definition 3. Assume that $h_{n}=O\left(n^{-\beta}\right)$ for some $0<\beta<1 / d$. We also assume that the unknown density fulfills condition B. For the following decision problem,

$$
\begin{cases}H_{0}: & S \in \mathcal{C}_{K} \tag{3.8}\\ H_{1}: & S \notin \mathcal{C}_{K}\end{cases}
$$

the test based on the statistic $\tilde{V}_{n}=\delta\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)$ with critical region $R C=\left\{\tilde{V}_{n} \geq C_{n, \gamma}\right\}$, where

$$
C_{n, \gamma}=\frac{1}{n}(-\log (-\log (1-\gamma))+\log (n)+(d-1) \log (\log (n))+\log (\alpha))
$$

has an asymptotical level smaller than γ. Moreover, if $S \in \mathcal{A}_{K}$ is not convex, the power is 1 for sufficiently large n.
Remark 1. Condition B seems to be restrictive, however is unavoidable. Indeed, we quote from [4]: "...it is impossible (in a well-defined sense described below) to design a decision rule that behaves asymptotically correctly for all bounded densities of bounded support. This shows that an assumption like the density being bounded away from zero on its support is necessary for consistent decision rules." (see Theorem 2).

However, condition P^{\prime} is satisfied for a large class of kernel functions, because convex sets are standard.

The proof of this theorem is given in the next subsection. To do so, we prove Propositions 3, 4, 5 and 6.

3.2.1. More results on the test and proofs

In the first subsection, we assume that the proposed density estimator fulfills some "good conditions", and in the second we prove that the density defined in (3.7) fulfills those conditions when the support belongs to $\mathcal{A}_{\mathcal{K}}$.

Asymptotic properties of the test

Proposition 3. Assume that the unknown density f fulfils condition (B). We suppose that \hat{f}_{n} is a density estimator that fulfills the following:
(i) There exists a sequence $\varepsilon_{n}^{+} \rightarrow 0$ such that for all $x \in S,\left(\frac{f(x)}{\hat{f}_{n}(x)}\right)^{1 / d} \geq 1-\varepsilon_{n}^{+}$.
(ii) There exists a sequence $\varepsilon_{n}^{-} \rightarrow 0$ and a constant $\lambda_{0}>0$ such that for all $x \in \mathcal{H}\left(\aleph_{n}\right)$, $\left(\hat{f}_{n}(x)\right)^{1 / d} \geq \lambda_{0}-\varepsilon_{n}^{-}$.
If we consider the following decision problem

$$
\begin{cases}H_{0}: & S \text { is convex } \tag{3.9}\\ H_{1}: & S \text { is not convex }\end{cases}
$$

the test based on the statistic $\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)$ with critical region

$$
R C=\left\{\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)>\left(\lambda \frac{\log (n)}{n}\right)^{1 / d}\right\}
$$

is asymptotically consistent if λ sufficiently large.
Proof. When the support is convex: We prove the following:

$$
\begin{equation*}
\Delta\left(\aleph_{n}\right) \geq\left(1-\varepsilon_{n}^{+}\right) \hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right) \tag{3.10}
\end{equation*}
$$

Observe that $\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)=t \Rightarrow \exists x$ such that $\mathcal{B}\left(x, t /\left(\hat{f}_{n}(x)\right)^{1 / d}\right) \subset \mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}$. Because S is convex, $\mathcal{H}\left(\aleph_{n}\right) \subset S$. Then, $\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)=t \Rightarrow \exists x$ such that $\mathcal{B}\left(x, t /\left(\hat{f}_{n}(x)\right)^{1 / d}\right) \subset S \backslash \aleph_{n}$. From the equality

$$
\left(\frac{f(x)}{\hat{f}_{n}(x)}\right)^{1 / d} \dot{\mathcal{B}}\left(x, \frac{t}{f(x)^{1 / d}}\right)=\dot{\mathcal{B}}\left(x, \frac{t}{\hat{f}_{n}(x)^{1 / d}}\right)
$$

we derive the following: if $\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)=t$, then there exists x such that , $\left(1-\varepsilon_{n}^{+}\right) \dot{\mathcal{B}}\left(x, t /(f(x))^{1 / d}\right) \subset$ $S \backslash \aleph_{n}$. Therefore, we have $\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)=t \Rightarrow \Delta\left(\aleph_{n}\right) \geq\left(1-\varepsilon_{n}^{+}\right) t$. According to Lemma 5 we have $\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right) \leq \frac{r_{f}}{1-\varepsilon_{n}^{+}}\left(\frac{\log (n)}{n}\right)^{1 / d}$ eventually almost surely.

When the support is not convex:

By assumption (ii), we know that

$$
\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right) \geq\left(\lambda_{0}-\varepsilon_{n}^{-}\right) \Delta\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)
$$

and from (3.6), we obtain

$$
\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right) \geq\left(\lambda_{0}-\varepsilon_{n}^{-}\right)\left(r_{0}-2 d_{H}\left(S, \aleph_{n}\right)\right)
$$

where $r_{0}=\Delta(\mathcal{H}(S) \backslash S)$. Because we are assuming that S is not convex we have, by Proposition 2, that $r_{0}>0$. Applying Lemma 5 , we have $d_{H}\left(S, \aleph_{n}\right) \leq r_{f}(\log (n) / n)^{1 / d}$ eventually almost surely. Thus, when the support is not convex

$$
\begin{equation*}
\hat{\delta}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right) \geq r_{0} \lambda_{0}+o(1) \text { (eventually almost surely) } \tag{3.11}
\end{equation*}
$$

Proposition 4. Assume that the unknown density f fulfills condition (B). Suppose that the density estimator \hat{f}_{n} satisfies the following conditions:

There exists a sequence ε_{n}^{+}such that $\log (n) \varepsilon_{n}^{+} \rightarrow 0$ and for all $x \in S,\left(\frac{f(x)}{\hat{f}_{n}(x)}\right)^{1 / d} \geq 1-\varepsilon_{n}^{+}$. If we consider the decision problem (3.9), based on the test statistic $\tilde{V}_{n}=\hat{\delta}^{d}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)$ with the critical region $R C=\left\{\tilde{V}_{n} \geq C_{n, \gamma}\right\}$, where

$$
C_{n, \gamma}=\frac{1}{n}(-\log (-\log (1-\gamma))+\log (n)+(d-1) \log (\log (n))+\log (\alpha))
$$

the level is asymptotically smaller than γ.
Proof. By (3.10), we have

$$
\mathbb{P}\left(\tilde{V}_{n} \geq C_{n, \gamma}\right) \leq \mathbb{P}\left(V\left(\aleph_{n}\right) \geq\left(1-\varepsilon_{n}^{+}\right) C_{n, \gamma}\right)
$$

Then, by Corollary 1 , it follows that $\mathbb{P}\left(\tilde{V}_{n} \geq C_{n, \gamma}\right)$ is bounded from above by

$$
\mathbb{P}\left(U \geq-\left(1-\varepsilon_{n}^{+}\right)^{d} \log (-\log (1-\gamma))+\left(\left(1-\varepsilon_{n}^{+}\right)^{d}-1\right)(\log (n)+(d-1) \log (\log (n))+\log (\alpha))\right)
$$

Finally, because $\log (n) \varepsilon_{n}^{+} \rightarrow 0$, we obtain:

$$
\mathbb{P}\left(\tilde{V}_{n} \geq C_{n, \gamma}\right) \leq \mathbb{P}(U \geq-\log (-\log (1-\gamma))+o(1)) \rightarrow \gamma
$$

Proposition 5. Assume that the unknown density f fulfills condition (B). Suppose that the density estimator \hat{f}_{n} satisfies that there exist a sequence $\varepsilon_{n}^{-} \rightarrow 0$ and a constant $\lambda_{0}>0$ such that, for all $x \in \mathcal{H}\left(\aleph_{n}\right),\left(\hat{f}_{n}(x)\right)^{1 / d} \geq \lambda_{0}-\varepsilon_{n}^{-}$.
If we consider the decision problem (3.9), along with the test statistic $\tilde{V}_{n}=\hat{\delta}^{d}\left(\mathcal{H}\left(\aleph_{n}\right) \backslash \aleph_{n}\right)$ with critical region $R C=\left\{\tilde{V}_{n} \geq C_{n, \gamma}\right\}$ where :

$$
C_{n, \gamma}=\frac{1}{n}(-\log (-\log (1-\gamma))+\log (n)+(d-1) \log (\log (n))+\log (\alpha))
$$

if S is not convex, the power of the test is 1 for sufficiently large n.

Proof. It is clear that for $\gamma=\gamma_{0}, C_{n, \gamma}=O(\log n / n)$. However, (3.11) entails that $\tilde{V}_{n} \geq \lambda_{0}^{d} \delta^{d}(\mathcal{H}(S) \backslash$ $S)+o(1)\left(\right.$ with $\left.\delta^{d}(\mathcal{H}(S) \backslash S)>0\right)$ eventually almost surely.

An appropriate density estimator To prove Theorem 4, we have to show that the density estimator introduced in Definition 3 fulfills conditions (i) and (ii) of Proposition 3. We show in the next Proposition 6 that these conditions hold.
Proposition 6. Assume that the unknown density f fulfills condition (B). We suppose that $K \in \mathcal{K}$ and that h_{n} satisfies:
a) $h_{n} \log (n) \rightarrow 0, \quad \frac{n h_{n}^{d}}{(\log (n))^{2}\left|\log \left(h_{n}\right)\right|} \rightarrow \infty, \quad \frac{\log \left(h_{n}\right)}{\log (\log (n))} \rightarrow \infty$, and
b) there exists a constant $c>0$ such that $h_{n}^{d} \leq c h_{2 n}^{d}$.
(Note that for all $\beta \in(0,1 / d), h_{n}=h_{0} n^{-\beta}$ fulfills all these conditions).
Let $\hat{f}_{n}(x)$ be the density estimator introduced in Definition 3. Then,
(i) there exists a sequence $\varepsilon_{n}^{+} \rightarrow 0$ such that for all $x \in S$, $\left(\frac{f(x)}{f_{n}(x)}\right)^{1 / d} \geq 1-\varepsilon_{n}^{+}$, and
(ii) there exist a sequence $\varepsilon_{n}^{-} \rightarrow 0$ and a constant $\lambda_{0}>0$ such that for all $x \in \mathcal{H}\left(\aleph_{n}\right),\left(\hat{f}_{n}(x)\right)^{1 / d} \geq$ $\lambda_{0}-\varepsilon_{n}^{-}$.
Proof. We start the proof of (i). We first write that:

$$
\max _{x \in S}\left(\hat{f}_{n}(x)-f(x)\right) \leq \max _{x \in S}\left|\hat{f}_{n}(x)-\mathbb{E} \hat{f}_{n}(x)\right|+\max _{x \in S}\left(\mathbb{E} \hat{f}_{n}(x)-f(x)\right) .
$$

By Theorem 2.3 in [7], there exists a constant C_{1} such that:

$$
\sqrt{\frac{n h_{n}^{d}}{-\log \left(h_{n}\right)}} \sup _{x \in \mathbb{R}^{d}}\left|\tilde{f}_{n}(x)-\mathbb{E} \tilde{f}_{n}(x)\right| \leq C_{1} \text { a.s. }
$$

Thus

$$
\sqrt{\frac{n h_{n}^{d}}{-\log \left(h_{n}\right)}} \sup _{x \in \aleph_{n}}\left|\tilde{f}_{n}(x)-\mathbb{E} \tilde{f}_{n}(x)\right| \leq C_{1} \text { a.s. }
$$

and therefore,

$$
\begin{equation*}
\sqrt{\frac{n h_{n}^{d}}{-\log \left(h_{n}\right)}} \sup _{x \in \mathbb{\aleph}_{n}}\left|\hat{f}_{n}(x)-\mathbb{E} \hat{f}_{n}(x)\right| \leq C_{1} \text { a.s. } \tag{3.12}
\end{equation*}
$$

The proof of (i) will be complete if we find a proper bound for $\max _{x \in S}\left(\mathbb{E} \hat{f}_{n}(x)-f(x)\right)$. We first note that the standardness assumption (with respect to the Lebesgue measure) ensures that there exists a constant r_{S} such that for all $X_{i} \in \aleph_{n}$, for all $x \in \operatorname{Vor}\left(X_{i}\right) \cap S,\left\|x-X_{i}\right\| \leq d_{H}\left(S, \aleph_{n}\right)=$ $r_{S}(\log (n) / n)^{1 / d}$, where for the last equality, we used Theorem 4 in [2] and the fact that S is standard. We denote $\rho_{n}=r_{S}(\log (n) / n)^{1 / d}$. Then, we have, for sufficiently large n,

$$
\max _{x \in S}\left(\mathbb{E} \hat{f}_{n}(x)-f(x)\right) \leq \max _{(x, y) \in S^{2},\|x-y\| \leq \rho_{n}}\left(\mathbb{E} \tilde{f}_{n}(y)-f(x)\right) \text { a.s. }
$$

For all $(x, y) \in S^{2}$ with $\|x-y\| \leq \rho_{n}$, we have

$$
\mathbb{E} \tilde{f}_{n}(y)=\int_{\left\{u: y+u h_{n} \in S\right\}} K(u) f\left(y+u h_{n}\right) d u .
$$

Because f is Lipschitz, we derive that

$$
\begin{aligned}
\mathbb{E} \tilde{f}_{n}(y) & \leq \int_{\left\{u: y+u h_{n} \in S\right\}} K(u)\left(f(y)+k_{f}\|u\| h_{n}\right) d u \\
& \leq \int_{\mathbb{R}^{d}} K(u)\left(f(y)+k_{f}\|u\| h_{n}\right) d u=f(y)+k_{f} h_{n} \int_{\mathbb{R}^{d}}\|u\| K(u) d u .
\end{aligned}
$$

Now, again using the Lipschitz condition, we have

$$
\mathbb{E} \tilde{f}_{n}(y) \leq f(x)+k_{f} \rho_{n}+k_{f} h_{n} \int_{\mathbb{R}^{d}}\|u\| K(u) d u .
$$

Because $n h_{n}^{d}(\log (n))^{-2}\left|\log \left(h_{n}\right)\right|^{-1} \rightarrow \infty$, we have $h_{n} \gg \rho_{n}$. Then, there exists a constant C_{2} such that:

$$
\begin{equation*}
h_{n}^{-1} \max _{x \in S}(\mathbb{E} \hat{f}(x)-f(x)) \leq C_{2} \text { a.s. } \tag{3.13}
\end{equation*}
$$

The first two conditions on h_{n}, together with equations (3.12) and (3.13), imply that there exists a sequence ε_{n} such that $\varepsilon_{n} \log (n) \rightarrow 0$ fulfilling

$$
\max _{x \in S}\left(\hat{f}_{n}(x)-f(x)\right) \leq \varepsilon_{n} .
$$

Then, for all $x \in S, \hat{f}_{n}(x)-f(x) \leq f(x) \varepsilon_{n} / f_{0}$, and thus, $\frac{\hat{f}_{n}(x)}{f(x)} \leq 1+\frac{f(x) \varepsilon_{n}}{f_{0}}$, or equivalently,

$$
\left(\frac{f(x)}{\hat{f}_{n}(x)}\right)^{1 / d} \geq\left(1+\frac{\varepsilon_{n}}{f_{0}}\right)^{-1 / d}
$$

Finally, if we take $\varepsilon_{n}^{+}=\left(1-\left(1+\varepsilon_{n} / f_{0}\right)^{-1 / d}\right) \sim \varepsilon_{n} /\left(d f_{0}\right)$ (thus, we have $\left.\varepsilon_{n}^{+} \log (n) \rightarrow 0\right)$ then $\max _{x \in S}\left(\frac{f(x)}{f_{n}(x)}\right)^{1 / d} \geq 1-\varepsilon_{n}^{+}$eventually almost surely, which concludes the proof of (i).

We now prove (ii). It is clear that

$$
\min _{x \in \mathbb{R}^{d}} \hat{f}_{n}(x) \geq \min _{x \in \mathbb{R}^{d}} \mathbb{E} \hat{f}_{n}(x)-\max _{x \in \mathbb{R}^{d}}\left|\mathbb{E} \hat{f}_{n}(x)-\hat{f}_{n}(x)\right| .
$$

We have already proven $\max _{x \in \mathbb{R}^{d}}\left|\mathbb{E} \hat{f}_{n}(x)-\hat{f}_{n}(x)\right| \rightarrow 0$ a.s. using Theorem 2.3 in [7]. We now show that $\min _{x \in \mathbb{R}^{d}} \mathbb{E} \hat{f}_{n}(x)$ is bounded from below by a positive constant. Observe that $\min _{x \in \mathbb{R}^{d}} \mathbb{E} \hat{f}_{n}(x)=$ $\min _{x \in \aleph_{n}} \mathbb{E} f_{n}(x)$; thus

$$
\min _{x \in \mathbb{R}^{d}} \mathbb{E} \hat{f}_{n}(x) \geq \min _{x \in S} \mathbb{E} \tilde{f}_{n}(x)=\min _{x \in S} \int_{\left\{u: x+u h_{n} \in S\right\}} K(u) f\left(x+u h_{n}\right) d u .
$$

Using that f is Lipchitz continuous, we obtain:

$$
\mathbb{E} \tilde{f}_{n}(x) \geq \int_{\left\{u: x+u h_{n} \in S\right\}} K(u)\left(f(x)-k_{f}\|u\| h_{n}\right) d u
$$

Because f is bounded from below and the support is standard with respect to K, we have, for sufficiently large n,

$$
\mathbb{E} \tilde{f}_{n}(x) \geq f_{0} c_{K}-k_{f} h_{n} \int_{\mathbb{R}^{d}}\|u\| K(u) d u
$$

Therefore, $\min _{x \in \mathbb{R}^{d}} \hat{f}_{n}(x) \geq f_{0} c_{K}-\varepsilon_{n}^{\prime}$ with $\varepsilon_{n}^{\prime} \rightarrow 0$, thus $\min _{x \in \mathbb{R}^{d}} \hat{f}_{n}(x) \geq \lambda-\varepsilon_{n}^{-}$with $\varepsilon_{n}^{-} \rightarrow 0$ and $\lambda_{0}=f_{0} c_{K}$.

3.3. Simulations

We have performed two simulation studies to asses the behavior of our test in the scenarios described in Sections 3.1 and 3.2. For the first study, the data will be drawn uniformly on sets $S \subset \mathbb{R}^{2}$, and we will perform the test defined in Section 3.1 to obtain estimations of the power and the level. In the second study, the nonparametric case, the data will be drawn according to an unknown density, and we will estimate the density using the estimator given by (3.7). In this case, we consider the same sets as in [4].

3.3.1. Semi-Parametric case

The data are generated uniformly on the sets $S_{\varphi}=[0,1]^{2} \backslash T_{\varphi}$, where T_{φ} is the isosceles triangle with height $1 / 2$ (see Figure 1), whose angle at the vertex $(1 / 2,1 / 2)$ is equal to φ. If we have a random sample in S_{φ}, it is clear that as φ increases, it should be easer to detect (with our test 3.2) the non-convexity of the set. The results of the simulations are summarized in Table 1.

$\varphi=\pi / 4$		$\varphi=\pi / 6$		$\varphi=\pi / 8$	
n	$\hat{\beta}$	n	$\hat{\beta}$	n	$\hat{\beta}$
100	.4	200	.565	300	.543
130	.636	250	.787	350	.679
160	.835	300	.926	400	.846
200	.946	400	.996	500	.976
300	.997	500	1	600	.997

TABLE 1
Power estimated over 1000 repetitions, for different values of φ, when the sample is uniformly distributed on $[0,1]^{2} \backslash T_{\varphi}$, where T_{φ} is an isosceles triangle, (see Figure 1)

FIG 1. $[0,1]^{2} \backslash T_{\varphi}$ where T_{φ} is an isosceles triangle with height $1 / 2$.

3.3.2. Non-parametric case

We will perform a simulation study for the same sets used in [4]. Consider the curves $\gamma_{R, \theta}=$ $R(\cos (\theta), \sin (\theta))$ with $\theta \in\left[\frac{3 \pi(R-1)}{2 R}, \frac{3}{2} \pi\right]$ and the reflections of those curves along the y axe (which will be denoted by $\left.\zeta_{R, \theta}\right)$. We consider $\Gamma_{R}=T_{(0, R)}\left(\gamma_{R, \theta}\right) \cup T_{(0,-R)}\left(\zeta_{R, \theta}\right)$ with $\theta \in\left[\frac{3 \pi(R-1)}{2 R}, \frac{3}{2} \pi\right]$, where T_{v} is the translation along the vector v. It is easy to see that the length of every Γ_{R} is $\frac{3}{2} \pi$. We will consider, for different values of R, the S-shaped sets (see first row in Figure 2).

$$
S_{R}=T_{(0, R)}\left(\bigcup_{R-0.6 \leq r \leq R+0.6} \gamma_{r, \theta}\right) \cup T_{(0,-R)}\left(\bigcup_{R-0.6 \leq r \leq R+0.6} \zeta_{r, \theta}\right)
$$

Observe that when R approaches to infinity, the sets S converge to the rectangle (which corresponds to the convex case). We have generated the data according to two different densities. The first one is the same as that considered in [4]: that is, along the orthogonal direction of Γ_{R}, we choose a random variable with normal density (with zero mean and standard deviation $\sigma=.15$) truncated to .6 (the truncation is performed to ensure that we obtain a point in the set S_{R}). In the second case, we consider a random variable along the orthogonal direction of Γ_{R} but uniformly distributed on $[-.6, .6]$. In Tables 2 and 3 , we have summarized the results of the simulations, for different sample sizes (we performed the test $B=100$ times).

R	$\mathrm{N}=100$		$\mathrm{~N}=250$		$\mathrm{~N}=500$		$\mathrm{~N}=1000$	
	np	unif	np	unif	np	unif	np	unif
1	.13	.44	.55	.99	1	1	1	1
1.5	.98	1	1	1	1	1	1	1
3	.38	.24	1	1	1	1	1	1
6	.08	.09	.41	.66	1	1	1	1
12	.01	.05	.02	.08	.39	.68	.98	1
24	0	.07	.01	.05	0	.09	.07	.48
∞	0	.04	0	.09	0	.04	.01	.05

TABLE 2
Power estimated over B repetitions, for different values of R, when the sample is uniformly distributed along the orthogonal direction of Γ_{R}

R	$\mathrm{N}=100$		$\mathrm{~N}=250$		$\mathrm{~N}=500$		$\mathrm{~N}=1000$	
	np	unif	np	unif	np	unif	np	unif
1	1	1	1	1	1	1	1	1
1.5	1	1	1	1	1	1	1	1
3	1	.99	1	1	1	1	1	1
6	.67	.41	.99	1	1	1	1	1
12	.25	.19	.62	.98	.85	1	.94	1
24	.1	.30	.30	.92	.38	1	.48	1
∞	0	.33	.04	.92	.06	1	.04	1

Table 3
Power estimated over B repetitions, for different values of R, when the sample is drawn according to a truncated normal distribution (to .6) normal distribution, along the orthogonal direction of Γ_{R}

Fig 2. S_{R} for different values of R. sample is also presented, drawn with a uniform radial noise (top) and with a truncated Gaussian noise (bottom)

4. Appendix

The aim of this Appendix is to prove the main result on the generalization of the maximal spacing, that is, Theorem 2. It is organized as follows: first we settle some preliminary lemmas, then we prove a weaker version of Theorem 2, for the case of piecewise constant densities on disjoint sets. We continue by considering piecewise constant densities, and finally we derive the proof of Theorem 2.

4.1. Preliminary Lemmas

4.1.1. Lemma 1

First we prove, following the ideas in [8], three technical lemmas from which Corollary 1 is a direct consequence. The first one is useful to control the convergence rates, and it is used all along this section.

Lemma 1. Let us consider $S \subset \mathbb{R}^{d}$ with $|S|>0,|\partial S|=0$, and $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ iid random vectors with uniform distribution on S. Then, there exists $a_{-}^{S}=a_{-}^{S}(w, n)$ and $a_{+}^{S}=a_{+}^{S}(w, n)$ such that $a_{-}^{S} \rightarrow \alpha$ and $a_{+}^{S} \rightarrow \alpha$ if $w \rightarrow \infty$ and $w / n \rightarrow 0$, and such that,

$$
\begin{equation*}
\exp \left(-\gamma a_{+}^{S}|S|\right) \leq \mathbb{P}\left(n V\left(\aleph_{n}\right)<w\right) \leq \exp \left(-\gamma a_{-}^{S}|S|\right) \tag{4.1}
\end{equation*}
$$

where $\gamma=\frac{n}{|S|} w^{d-1} e^{-w}$.
Observe that the functions a_{+}^{S} and a_{-}^{S} only depend on the "shape" of S (i.e. are invariant by similarity transformations).

Notation and previous definitions. Let us denote by $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ a sample of iid random vectors uniformly distributed on $S \subset \mathbb{R}^{d}$. We assume that S is compact set. Let $\left\{N_{t}\right\}_{t \geq 0}$ be a Poisson process with intensity 1 , independent of \aleph_{n}. Let us denote,

$$
\Delta_{t}=\Delta\left(\aleph_{N_{t}}\right) \quad \text { and } \quad V(t)=\Delta_{t}^{d}
$$

where $\Delta\left(\aleph_{N_{t}}\right)$ is given in Definition 1 . The following characterization is easily derived,

$$
\begin{aligned}
\Delta\left(\aleph_{n}\right) \geq r & \Leftrightarrow \exists x \text { such that } x+r A \subset S \backslash \aleph_{n} \\
& \Leftrightarrow \exists x \text { such that } x+r A \subset S \text { and } x \notin \bigcup_{i=1}^{n}\left(X_{i}-r A\right) .
\end{aligned}
$$

Therefore, if we define $S_{r}=\{x: x+r A \subset S\}$, then $\Delta\left(\aleph_{n}\right)<r$ if and only if S_{r} can be covered by the sets $X_{i}-r A$. The random set $\left\{X_{i}\right\}_{1}^{N_{t}}$ can be considered as a Poisson process with intensity $t /|S|$ in S.
Let us denote by \mathfrak{F}_{s} the grid $\left\{\prod_{1}^{d}\left[n_{i} s,\left(n_{i}+1\right) s\right]:\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}\right\}$ and define the following quantities

$$
n_{s}=\#\left\{Q \in \mathfrak{F}_{s}: Q \subset S_{r}\right\}, \quad m_{s}=\#\left\{Q \in \mathfrak{F}_{s}: Q \cap \partial S_{r} \neq \emptyset\right\}
$$

and

$$
\gamma=\gamma\left(r, \frac{t}{|S|}\right)=\frac{t^{d}}{|S|^{d}}|r A|^{d-1} \exp \left(-\frac{t|r A|}{|S|}\right)=\frac{t^{d}}{|S|^{d}} r^{d(d-1)} \exp \left(\frac{-t r^{d}}{|S|}\right)
$$

Some previous results

Lemma 2. There exist $a_{+}=a_{+}\left(t r^{d}\right)$ and $a_{-}=a_{-}\left(t r^{d}\right)$ such that $a_{+} \rightarrow \alpha$ and $a_{-} \rightarrow \alpha$ iftr ${ }^{d} \rightarrow \infty$, and for all $s>3 r$,

$$
\begin{equation*}
\exp \left(-\gamma a_{+}(s+3 r)^{d}\left(n_{s}+m_{s}\right)\right) \leq P\left(\Delta_{t}<r\right) \leq \exp \left(-\gamma a_{-}(s-3 r)^{d} n_{s}\right) \tag{4.2}
\end{equation*}
$$

Proof. The proof of (4.2) follows from Lemma 7.2 in [9] (let us observe that in Lemma 7.2 it is not used that $|S|=1)$. Replace A and S by $r A$ and S_{r} respectively. Here $a_{-}=a_{-}(-r A, v, t /|S|, 3 r)$, $a_{+}=a_{+}(-r A, v, t /|S|, 3 r)$ and v is a vector taken conveniently. The fact that $a_{+} \rightarrow \alpha$ and $a_{-} \rightarrow \alpha$ follows directly from Lemma 7.3 in [9].
Lemma 3. Let $s=\sqrt{r}$. Then, if $r \rightarrow 0$, we have $m_{s} s^{d} \rightarrow 0$ and $n_{s} s^{d} \rightarrow|S|$.
Proof. Let us denote $\partial_{a} S=\partial S \oplus \mathcal{B}(0, a)$. It is easy to see that $\partial S_{r} \subset \partial_{3 r} S$. If $Q \in \mathfrak{F}_{s}$ and $Q \cap \partial S_{r} \neq \emptyset$ then $Q \subset \partial_{3 r+d s} S$. Thus $m_{s} s^{d} \leq\left|\partial_{3 r+d s} S\right|$. On the other hand $|S|-\left|\partial_{3 r+d s} S\right| \leq$ $\left|S \backslash \partial_{3 r+d s} S\right| \leq n_{s} s^{d} \leq|S|$. Taking $s=r^{1 / 2}$, we obtain $\left|\partial_{3 r+d s} S\right| \rightarrow|\partial S|=0$ if $r \rightarrow 0$. Finally $m_{s} s^{d} \rightarrow 0$ and $n_{s} s^{d} \rightarrow|S|$.

As a consequence we obtain the following result.
Lemma 4. There exist $a_{-}=a_{-}(r, t)$ and $a_{+}=a_{+}(r, t)$ fulfilling $a_{-} \rightarrow \alpha$ and $a_{+} \rightarrow \alpha$ if $r \rightarrow 0$ and $t r^{d} \rightarrow \infty$, such that

$$
e^{-\gamma|S| a_{+}} \leq P\left(\Delta_{t}<r\right) \leq e^{-\gamma|S| a_{-}}
$$

Now 4.1) is a direct consequence of the previous Lemma, taking $w=\frac{t}{|S|} r^{d}$, so that $\Delta_{t} \leq r \Leftrightarrow$ $\frac{t}{|S|} V(t) \leq w$.

4.1.2. Lemmas 5, 6 and 7

In this section we settle three lemmas whose proofs are quite similar. The first one (Lemma 5), bounds the size of the maximal spacing. It is used in the proofs of Proposition 8 and Theorem 2. Lemmas 6 and 7 controls the speed of the maximal spacing when we constraint the center of the empty set to be localized on a "vanishing" set, under different assumptions on the density. Because A is convex with non-empty interior there exists $\varepsilon_{0}>0$ such that for all $\varepsilon \leq \varepsilon_{0}, A^{-\varepsilon} \neq \emptyset$ and $\left|A^{-\varepsilon}\right|=|A|-\varepsilon|\partial A|_{d-1}+o(\varepsilon)$. It can also be proved easily that,

$$
\begin{equation*}
\text { for all } r>0 \text {, and for all } x \in \mathcal{B}\left(0, \varepsilon_{0} / r\right), x+(r A)^{-\|x\|} \subset r A \tag{4.3}
\end{equation*}
$$

Lemma 5. Let $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample of points in \mathbb{R}^{d}, drawn according to a density f with bounded support S. Suppose that f fulfills condition B. Then, there exist a constant r_{f} such that:

$$
\Delta\left(\aleph_{n}\right) \leq r_{f}\left(\frac{\log (n)}{n}\right)^{1 / d} \text { eventually almost surely. }
$$

Proof. Let us first cover S with $\nu_{n} \leq C_{S} n^{-1}$ balls of radii $n^{-1 / d}$ centered at $\left\{x_{1}, \ldots, x_{\nu_{n}}\right\}$, and let $w_{n}=\left(\frac{r_{f} \log (n)}{n}\right)^{1 / d}$ with $r_{f}>2 f_{1} / f_{0}$. We are going to prove that $\Delta\left(\aleph_{n}\right) \leq w_{n}$, eventually almost surely. Because $\Delta\left(\aleph_{n}\right) \geq w_{n} \Leftrightarrow \exists x \in S$, such that $x+w_{n} f(x)^{-1 / d} A \subset S \backslash \aleph_{n}$, then $\Delta\left(\aleph_{n}\right) \geq w_{n} \Rightarrow$ $\exists x \in S$, such that $x+w_{n} f_{1}^{-1 / d} A \subset S \backslash \aleph_{n}$. There exists a point x_{i} such that $\left\|x-x_{i}\right\| \leq n^{-1 / d}$ and, for sufficiently large n, by (4.3) (because $n^{-1 / d} \ll w_{n}$) we have that $x_{i}+\left(w_{n} f_{1}^{-1 / d} A\right)^{-1 / n^{1 / d}} \subset S \backslash \aleph_{n}$. Thus,

$$
\begin{equation*}
\Delta\left(\aleph_{n}\right) \geq w_{n} \Rightarrow \exists x_{i} \exists x \in \mathcal{B}\left(x_{i}, n^{-1 / d}\right), \text { such that } x_{i}+\left(w_{n} f_{1}^{-1 / d} A\right)^{-1 / n^{1 / d}} \subset S \backslash \aleph_{n} \tag{4.4}
\end{equation*}
$$

Now notice that,

$$
\begin{aligned}
\mathbb{P}\left(x_{i}+\left(w_{n} f_{1}^{-1 / d} A\right)^{-1 / n^{1 / d}} \subset S \backslash \aleph_{n}\right) & =\left(1-\mathbb{P}\left(x_{i}+\left(w_{n} f_{1}^{-1 / d} A\right)^{-1 / n^{1 / d}}\right)\right)^{n} \\
& \leq\left(1-f_{0}\left|\left(w_{n} f_{1}^{-1 / d} A\right)^{-1 / n^{1 / d}}\right|\right)^{n} \\
& \leq\left(1-\left(\frac{f_{0}}{f_{1}} w_{n}^{d}-\frac{f_{0}}{f_{1}^{\frac{d-1}{d}}} w_{n}^{d-1} n^{-1 / d}(1+o(1))\right)\right)^{n}
\end{aligned}
$$

In the last inequality we used that $\left|A^{-\varepsilon}\right|=|A|-\varepsilon|\partial A|_{d-1}+o(\varepsilon)$. Because $n^{-1 / d} \ll w_{n}$, we have that,

$$
\mathbb{P}\left(x_{i}+\left(w_{n} f_{1}^{-1 / d} A\right)^{-1 / n^{1 / d}} \subset S \backslash \aleph_{n}\right) \leq\left(1-\frac{f_{0}}{f_{1}} w_{n}^{d}(1+o(1))\right)^{n}
$$

From this inequality and (4.4) we obtain that,

$$
\begin{aligned}
\mathbb{P}\left(\Delta\left(\aleph_{n}\right) \geq r_{f}(\log (n) n / n)^{1 / d}\right) & \leq \nu_{n}\left(1-\frac{f_{0}}{f_{1}} w_{n}^{d}(1+o(1))\right)^{n} \\
& \leq \nu_{n} \exp \left(-c n w_{n}^{d}(1+o(1))\right)
\end{aligned}
$$

and therefore,

$$
\mathbb{P}\left(\Delta\left(\aleph_{n}\right) \geq r_{f}(\log (n) / n)^{1 / d}\right) \leq C_{S} n^{1-r_{f} f_{0} / f_{1}+o(1)}
$$

Finally, because $r_{f}>2 f_{1} / f_{0}$ we have $\sum \mathbb{P}\left(\Delta\left(\aleph_{n}\right) \geq r_{f}(\log (n) / n)^{1 / d}\right)<\infty$. Thus, the Borel-Cantelli Lemma ensures that $\Delta\left(\aleph_{n}\right) \leq r_{f}(\log (n) / n)^{1 / d}$ eventually almost surely
Lemma 6. Let $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample of points in \mathbb{R}^{d}, drawn according to a density f, which is assumed to fulfill condition (B). Suppose also that there exist constants r_{0} and $c>1-1 / d$ such that for all $r \leq r_{0}$ and for all $x \in S$:

$$
\frac{\min _{t \in S \cap \mathcal{B}(x, r)} f(t)}{\max _{t \in S \cap \mathcal{B}(x, r)} f(t)} \geq c
$$

Let G_{n} be a sequence of sets with the following property: the number of balls of radius $n^{-1 / d}$, necessary to cover G_{n} (which we will denote ν_{n}), satisfies $\nu_{n} \leq n^{1-d^{-1}}(\log (n))^{\beta}$ for some β. Let A be a compact and convex set with $|A|=1$ such that its barycenter is the origin of \mathbb{R}^{d}. Let us denote

$$
\begin{aligned}
& \Delta\left(\aleph_{n}, G_{n}\right)=\sup \left\{r: \exists x \in G_{n} \text { such that } x+\frac{r}{f(x)^{1 / d}} A \subset S \backslash \aleph_{n}\right\}, \\
& V\left(\aleph_{n}, G_{n}\right)=\Delta^{d}\left(\aleph_{n}, G_{n}\right) \\
& U\left(\aleph_{n}, G_{n}\right)=n V\left(\aleph_{n}, G_{n}\right)-\log (n)-(d-1) \log (\log (n))-\log (\alpha)
\end{aligned}
$$

Then, for all $x \in \mathbb{R}$ we have that

$$
\mathbb{P}\left(U\left(\aleph_{n}, G_{n}\right) \geq x\right) \rightarrow 0
$$

Proof. Let us first cover G_{n} with ν_{n} balls of radius $n^{-1 / d}$, centered at some points $\left\{x_{1}, \ldots, x_{\nu_{n}}\right\}$, and choose

$$
w_{n}=\left(\frac{x+\log (n)+(d-1) \log (\log (n))+\log (\alpha)}{n}\right)^{1 / d}
$$

then $\Delta\left(\aleph_{n}\right) \geq w_{n} \Leftrightarrow U\left(\aleph_{n}\right) \geq x$. Then, it also holds that

$$
\Delta\left(\aleph_{n}\right) \geq w_{n} \Leftrightarrow \exists x \in G_{n}, \text { such that } x+w_{n} f(x)^{-1 / d} A \subset S \backslash \aleph_{n}
$$

On the other hand, because $n^{-1 / d} \ll w_{n}$ and $f(x)^{-1 / d} \leq f_{0}^{-1 / d}$, there exists a point x_{i} such that $\left\|x-x_{i}\right\| \leq n^{-1 / d}$ and, for sufficiently large $n, x_{i}+\left(w_{n} f(x)^{-1 / d} A\right)^{-1 / n^{1 / d}} \subset S \backslash \aleph_{n}$. And then,

$$
\Delta\left(\aleph_{n}\right) \geq w_{n} \Rightarrow \exists x_{i} \exists x \in \mathcal{B}\left(x_{i}, n^{-1 / d}\right), \text { such that }
$$

$$
\begin{equation*}
x_{i}+\left(w_{n} f(x)^{-1 / d} A\right)^{-1 / n^{1 / d}} \subset S \backslash \aleph_{n} \tag{4.5}
\end{equation*}
$$

Now observe that

$$
\begin{aligned}
\mathbb{P}\left(x_{i}+\left(w_{n} f(x)^{-1 / d} A\right)^{-1 / n^{1 / d}} \subset S \backslash \aleph_{n}\right) & =\left(1-\mathbb{P}\left(x_{i}+\left(w_{n} f(x)^{-1 / d} A\right)^{-1 / n^{1 / d}}\right)\right)^{n} \\
& \leq\left(1-\frac{\min _{t \in x_{i}+w_{n} f_{0}^{-1 / d} A} f(t)}{\max _{t \in \mathcal{B}\left(x_{i}, n^{-1 / d}\right)} f(t)} w_{n}^{d}(1+o(1))\right)^{n}
\end{aligned}
$$

which implies that, for sufficiently large n,

$$
\begin{equation*}
\mathbb{P}\left(x_{i}+\left(w_{n} f(x)^{-1 / d} A\right)^{-1 / n^{1 / d}} \subset S \backslash \aleph_{n}\right) \leq\left(1-c w_{n}^{d}(1+o(1))\right)^{n} \tag{4.6}
\end{equation*}
$$

From this inequality, together with (4.5) we derive that,

$$
\begin{aligned}
\mathbb{P}\left(U\left(\aleph_{n}, G_{n}\right) \geq x\right) & \leq \nu_{n}\left(1-c w_{n}^{d}(1+o(1))\right)^{n} \\
& \leq \nu_{n} \exp \left(-c n w_{n}^{d}(1+o(1))\right) \\
& \leq \nu_{n} n^{-c(1+o(1))}
\end{aligned}
$$

Finally, $\mathbb{P}\left(U\left(\aleph_{n}, G_{n}\right) \geq x\right) \rightarrow 0$ because $c>1-1 / d$ and $\nu_{n} \leq n^{1-1 / d}(\log (n))^{a}$.
Lemma 7. Let $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample of points in \mathbb{R}^{d}, drawn according to a density f, and assume that condition B holds. Let G_{n} be a sequence of sets with the following property: the number of balls of radius $n^{-1 / d}$, necessary to cover G_{n} (which we will denote ν_{n}), satisfies $\nu_{n} \leq n^{1-a}$ for some $a>0$. Let A be a compact and convex set with $|A|=1$, whose barycentre is the origin of \mathbb{R}^{d}. If we denote

$$
\begin{aligned}
\Delta\left(\aleph_{n}, G_{n}\right) & =\sup \left\{r: \exists x \in G_{n} \text { such that } x+\frac{r}{f(x)^{1 / d}} A \subset S \backslash \aleph_{n}\right\}, \\
V\left(\aleph_{n}, G_{n}\right) & =\Delta^{d}\left(\aleph_{n}, G_{n}\right) \\
U\left(\aleph_{n}, G_{n}\right) & =n V\left(\aleph_{n}, G_{n}\right)-\log (n)-(d-1) \log (\log (n))-\log (\alpha)
\end{aligned}
$$

then, for all $x \in \mathbb{R}$:

$$
\mathbb{P}\left(U\left(\aleph_{n}, G_{n}\right) \geq x\right) \rightarrow 0
$$

Proof. The proof is similar to the proof of Lemma 6. Equation (4.5) also holds, but now(4.6) becomes:

$$
\mathbb{P}\left(x_{i}+\left(w_{n} f(x)^{-1 / d} A\right)^{-1 / n^{1 / d}} \subset S \backslash \aleph_{n}\right) \leq\left(1-w_{n}^{d}(1+o(1))\right)^{n}
$$

So $\mathbb{P}\left(U\left(\aleph_{n}, G_{n}\right) \geq x\right) \leq \nu_{n} n^{-1+o(1)}$. Because $\nu_{n} \leq n^{1-a}$, we have $\mathbb{P}\left(U\left(\aleph_{n}, G_{n}\right) \geq x\right) \rightarrow 0$

4.1.3. Lemma 8

This last preliminary relates the behavior of the maximal spacing for a bounded density with the maximal spacing of the uniform density, and it is only used in the proof of the last theorem.

Lemma 8. Let us consider a density f with compact support S such that, for all $x \in S 1-\varepsilon \leq$ $f(x)|S| \leq 1+\varepsilon$ for a given $\varepsilon \in(0,1 / 2)$. Denote by $n_{0}=\lfloor n(1-2 \varepsilon)\rfloor$ and $n_{1}=\lceil n(1+2 \varepsilon)\rceil$ the floor and ceiling of $n(1-2 \varepsilon)$ and $n(1+2 \varepsilon)$ respectively. Fixed $w \in \mathbb{R}$, let $w_{0}=\frac{w\left(1-2 \varepsilon-n^{-1}\right)}{(1+\varepsilon)}$ and $w_{1}=\frac{w(1-\varepsilon)}{1+2 \varepsilon}$ then,

$$
\begin{equation*}
\mathbb{P}\left(n_{0} V\left(y_{n_{0}}\right) \leq w_{0}\right)\left(1-\frac{1-\varepsilon}{n \varepsilon}\right) \leq \mathbb{P}\left(n V\left(\aleph_{n}\right) \leq w\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left(n V\left(\aleph_{n}\right) \leq w\right) \leq \mathbb{P}\left(n_{1} V\left(y_{n_{1}}\right) \leq w_{1}\right)\left(1-\frac{1+2 \varepsilon+n^{-1}}{(n \varepsilon+1)(1+\varepsilon)}\right)^{-1} \tag{4.8}
\end{equation*}
$$

where $y_{n_{1}}=\left\{Y_{1}, \ldots, Y_{n_{1}}\right\}$ and $y_{n_{0}}=\left\{Y_{1}, \ldots, Y_{n_{0}}\right\}$ are iid random vectors with uniform distribution on S and $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ are iid random vectors with density f.

Proof. We first prove (4.7). To do so, observe that X can be generated from the following mixture: with probability $p=1-\varepsilon, X$ is drawn with uniform distribution on S, and, with probability $1-p=\varepsilon, X$ is drawn with the law given by the density $g(x)=\frac{f(x)|S|-(1-\varepsilon)}{\varepsilon|S|} \mathbb{I}_{S}(x)$. Let us denote N_{0} the number of points drawn according to the uniform law on S and $\aleph_{N_{0}}^{*}=\left\{Y_{1}, \ldots, Y_{N_{0}}\right\}$ the associated sample. Let us recall that

$$
\Delta\left(\aleph_{n}\right)=\sup \left\{r: \exists x \text { such that } x+\frac{r}{f(x)^{1 / d}} A \subset S \backslash \aleph_{n}\right\}
$$

Because $f(x)|S| \leq 1+\varepsilon$, if we multiply and divide by $|S|^{1 / d}$ we have:

$$
\Delta\left(\aleph_{n}\right) \leq(1+\varepsilon)^{1 / d} \sup \left\{r: \exists x \text { such that } x+\frac{r}{|S|^{1 / d}} A \subset S \backslash \aleph_{n}\right\}
$$

Then, $\aleph_{N_{0}} \subset \aleph_{n}$ implies that,

$$
\Delta\left(\aleph_{n}\right) \leq(1+\varepsilon)^{1 / d} \sup \left\{r: \exists x \text { such that } x+\frac{r}{|S|^{1 / d}} A \subset S \backslash \aleph_{N_{0}}^{*}\right\}
$$

and therefore $\Delta\left(\aleph_{n}\right) \leq(1+\varepsilon)^{1 / d} \Delta\left(\aleph_{N_{0}}^{*}\right)$, which entails that $V\left(\aleph_{n}\right) \leq(1+\varepsilon) V\left(\aleph_{N_{0}}^{*}\right)$. Then, for all w,

$$
\mathbb{P}\left(n V\left(\aleph_{n}\right) \leq w\right) \geq \mathbb{P}\left((1+\varepsilon) n V\left(\aleph_{N_{0}}^{*}\right) \leq w\right)
$$

and in particular for any n_{0} we have that

$$
\mathbb{P}\left(n V\left(\aleph_{n}\right) \leq w\right) \geq \mathbb{P}\left(\left((1+\varepsilon) n V\left(\aleph_{N_{0}}^{*}\right) \leq w\right) \cap\left(N_{0} \geq n_{0}\right)\right)
$$

When $N_{0} \geq n_{0}$, let us denote $y_{n_{0}}=\left\{Y_{1}, \ldots, Y_{n_{0}}\right\}$ the n_{0} first values of $\aleph_{N_{0}}^{*}$. Clearly we have $V\left(\aleph_{N_{0}}^{*}\right) \leq V\left(y_{n_{0}}\right)$ so,

$$
\mathbb{P}^{N_{0} \geq n_{0}}\left((1+\varepsilon) n V\left(\aleph_{N_{0}}^{*}\right) \leq w\right) \geq \mathbb{P}\left((1+\varepsilon) n V\left(y_{n_{0}}\right) \leq w\right)
$$

where $\mathbb{P}^{N_{0} \geq n_{0}}$ denotes the probability conditioned to $N_{0} \geq n_{0}$. Therefore,

$$
\mathbb{P}\left(n V\left(\aleph_{n}\right) \leq w\right) \geq \mathbb{P}\left(n_{0} V\left(y_{n_{0}}\right) \leq \frac{w n_{0}}{(1+\varepsilon) n}\right) \mathbb{P}\left(N_{0} \geq n_{0}\right)
$$

On the other hand, because $N_{0} \sim \operatorname{Bin}((1-\varepsilon, n))$, we obtain,

$$
\mathbb{P}\left(N_{0}<n_{0}\right)=\mathbb{P}\left(N_{0}-(1-\varepsilon) n<n_{0}-(1-\varepsilon) n\right)
$$

From $n_{0} \leq n(1-\varepsilon)$ it follows that $n_{0}-n(1-\varepsilon) \leq-\varepsilon n$, and by Tchebichev inequality,

$$
\mathbb{P}\left(N_{0}<n_{0}\right) \leq \frac{n \varepsilon(1-\varepsilon)}{n^{2} \varepsilon^{2}}=\frac{(1-\varepsilon)}{n \varepsilon}
$$

and

$$
\mathbb{P}\left(N_{0} \geq n_{0}\right) \geq 1-\frac{(1-\varepsilon)}{n \varepsilon}
$$

Let us denote $w_{0}=\frac{w\left(1-2 \varepsilon-n^{-1}\right)}{(1+\varepsilon)}$. Because $n(1-2 \varepsilon)-1 \leq n_{0}$ we have $w_{0} \leq \frac{w n_{0}}{(1+\varepsilon) n}$, from where it follows that

$$
\mathbb{P}\left(n V\left(\aleph_{n}\right) \leq w\right) \geq \mathbb{P}\left(n_{0} V\left(y_{n_{0}}\right) \leq w_{0}\right)\left(1-\frac{1-\varepsilon}{n \varepsilon}\right)
$$

Equation (4.8) is proved in the same way as (4.7). We provide a sketch of the proof. First observe that a variable Y with uniform distribution can be seen as a mixture. We take with probability $p=\frac{1}{1+\varepsilon}, Y$ as a random variable with the law given by a density f, and, with probability $1-p=\frac{\varepsilon}{1+\varepsilon}$, Y is drawn with the law given by $g(x)=\frac{1+\varepsilon-|S| f(x)}{\varepsilon S} \mathbb{I}_{S}(x)$. Then, following the ideas used in the proof of equation (4.7) we consider a sample $y_{n_{1}}=\left\{Y_{1}, \ldots, Y_{n_{1}}\right\}$ of iid copies of Y, (that follows an uniform law). Denote by N the number of the points that had been drawn according to the density f and $y_{N}^{*}=\left\{X_{1}, \ldots X_{N}\right\}$ these points. The rest of the proof follow the same argument used to prove ((4.7).

4.2. Uniform mixture on disjoint supports

Proposition 7. Let E_{1}, \ldots, E_{k} be disjoint subsets of \mathbb{R}^{d}, (i.e: $\left.i \neq j \Rightarrow \overline{E_{i}} \cap \overline{E_{j}}=\emptyset\right)$, whose Lebesgue measure satisfies $0<\left|E_{i}\right|<\infty$. Let p_{1}, \ldots, p_{k} be positive real numbers. If $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ is a random sample of points in \mathbb{R}^{d}, drawn according to the density:

$$
f(x)=\sum_{i=1}^{k} p_{i} \mathbb{I}_{E_{i}}(x)
$$

then:

$$
U\left(\aleph_{n}\right) \xrightarrow{\mathcal{L}} U \quad \text { when } n \rightarrow \infty \quad \text { where, for all } i 0<p_{i}<\infty .
$$

Proof. First let us introduce some notation:

- $N_{i}=\#\left\{\aleph_{n} \cap E_{i}\right\}$, the number of points in E_{i}, which has a Binomial distribution, $N_{i} \sim$ $\operatorname{Bin}\left(n, p_{i}\left|E_{i}\right|\right)$.
- $\aleph_{N_{i}}^{i}=\left\{X_{i_{1}}, \ldots, X_{i_{N_{i}}}\right\}$, the subsample of \aleph_{n} that belongs to E_{i}. Observe that $X_{i_{j}}$ for $j=$ $1, \ldots, N_{i}$ has uniform distribution on E_{i} with density $\left|E_{i}\right|^{-1}$.
- $a_{i}=p_{i}\left|E_{i}\right|$, that fulfills $\sum a_{i}=1, a_{0}=\min _{i} a_{i}, A_{0}=\max _{i} a_{i}$ and $C=\sum \frac{1-a_{i}}{a_{i}}$.
- $\varepsilon_{i}=\frac{N_{i}-a_{i} n}{n a_{i}}$.

Because the support S of f is equal to $\cup_{i} \overline{E_{i}}$, by assumption $i \neq j \Rightarrow \overline{E_{i}} \cap \overline{E_{j}}=\emptyset$, we have

$$
\Delta\left(\aleph_{n}\right)=\sup \left\{r: \exists x \exists i \text { such that } x+\frac{r}{p_{i}^{1 / d}} A \subset E_{i} \backslash \aleph_{n}\right\}
$$

So

$$
\begin{equation*}
\Delta\left(\aleph_{n}\right)=\max _{i} \sup \left\{r: \exists x \text { such that } x+\frac{r\left|E_{i}\right|^{1 / d}}{\left(\left|E_{i}\right| p_{i}\right)^{1 / d}} A \subset E_{i} \backslash \aleph_{N_{i}}^{i}\right\} \tag{4.9}
\end{equation*}
$$

while

$$
\begin{equation*}
\Delta\left(\aleph_{N_{i}}^{i}\right)=\sup \left\{r^{\prime}: \exists x \in E_{i} \text { such that } x+r^{\prime}\left|E_{i}\right|^{1 / d} A \subset E_{i} \backslash \aleph_{N_{i}}^{i}\right\} \tag{4.10}
\end{equation*}
$$

From (4.9) and (4.10) we derive that

$$
\Delta\left(\aleph_{n}\right)=\max _{i}\left\{\left(\left|E_{i}\right| p_{i}\right)^{1 / d} \Delta\left(\aleph_{N_{i}}^{i}\right)\right\}
$$

and

$$
V\left(\aleph_{n}\right)=\max _{i}\left\{\left(\left|E_{i}\right| p_{i}\right) V\left(\aleph_{N_{i}}^{i}\right)\right\}
$$

which entails that

$$
\begin{equation*}
\mathbb{P}\left(V\left(\aleph_{n}\right) \leq w\right)=\prod_{i} \mathbb{P}\left(N_{i} V\left(\aleph_{N_{i}}^{i}\right) \leq \frac{w N_{i}}{a_{i} n}\right) \tag{4.11}
\end{equation*}
$$

Let us now condition to the number of points in each E_{i}. Denoting $\mathbb{P}^{\vec{n}}(A)=\mathbb{P}\left(A \mid N_{1}=n_{1}, \ldots, N_{k}=\right.$ n_{k}), we have that,

$$
\mathbb{P}^{\vec{n}}\left(n V\left(\aleph_{n}\right) \leq w\right)=\prod_{i=1}^{k} \mathbb{P}^{\vec{n}}\left(n\left(\left|E_{i}\right| p_{i}\right) V\left(\aleph_{n_{i}}^{i}\right) \leq w\right)=\prod_{i=1}^{k} \mathbb{P}^{\vec{n}}\left(n_{i} V\left(\aleph_{n_{i}}^{i}\right) \leq \frac{w n_{i}}{n\left|E_{i}\right| p_{i}}\right)
$$

Now, taking $w_{i}=\frac{w n_{i}}{n\left|E_{i}\right| p_{i}}, \gamma_{i}=\frac{n_{i} w_{i}^{d-1} e^{-w_{i}}}{\left|E_{i}\right|}$ and applying Lemma 1 we obtain,

$$
\exp \left(-\sum_{i=1}^{k} \gamma_{i} a_{+}^{E_{i}}\left|E_{i}\right|\right) \leq \mathbb{P}^{\vec{n}}\left(n V\left(\aleph_{n}\right) \leq w\right) \leq \exp \left(-\sum_{i=1}^{k} \gamma_{i} a_{-}^{E_{i}}\left|E_{i}\right|\right)
$$

On the other hand,

$$
\begin{aligned}
\sum_{i=1}^{k} \gamma_{i} a_{+}^{E_{i}}\left|E_{i}\right| & =\sum_{i=1}^{k} n_{i}\left(\frac{w n_{i}}{n\left|E_{i}\right| p_{i}}\right)^{d-1} \exp \left(-\frac{w n_{i}}{n\left|E_{i}\right| p_{i}}\right) a_{-}^{E_{i}} \\
& =\sum_{i=1}^{k} n_{i} w^{d-1}\left(1+\varepsilon_{i}\right)^{d-1} \exp \left(-w\left(1+\varepsilon_{i}\right)\right) a_{+}^{E_{i}}\left(w_{i}, n_{i}\right)
\end{aligned}
$$

Let $\varepsilon=\max _{i}\left|\varepsilon_{i}\right|$ and $\varepsilon_{a_{+}}=\max _{i} \frac{\left|a_{+}^{E_{i}}\left(w_{i}, n_{i}\right)-\alpha\right|}{\alpha}$, then we have

$$
\begin{equation*}
\sum_{i=1}^{k} \gamma_{i} a_{+}^{E_{i}}\left|E_{i}\right| \leq n w^{d-1} \exp (-w) \alpha(1+\varepsilon)^{d-1} \exp (w \varepsilon)\left(1+\varepsilon_{a_{+}}\right) \tag{4.12}
\end{equation*}
$$

Taking $w=x+\log (n)+(d-1) \log (\log (n))+\log (\alpha)$, we obtain that $n V \leq w \Leftrightarrow U \leq x$, which implies that

$$
\begin{equation*}
\mathbb{P}^{\vec{n}}\left(U\left(\aleph_{n}\right) \leq x\right) \geq \exp \left(-e^{-x}(1+\varepsilon)^{d-1} \exp (\log (n) \varepsilon)\left(1+\varepsilon_{a_{+}}\right)\left(1+o_{n}(1)\right)\right) \tag{4.13}
\end{equation*}
$$

In the same way it can be proved that (denoting $\varepsilon_{a_{-}}=\max _{i} \frac{\left|a_{-}^{E_{i}}\left(w_{i}, n_{i}\right)-\alpha\right|}{\alpha}$):

$$
\mathbb{P}^{\vec{n}}\left(U\left(\aleph_{n}\right) \leq x\right) \leq \exp \left(-e^{-x}(1-\varepsilon)^{d-1} \exp (-\log (n) \varepsilon)\left(1-\varepsilon_{a_{-}}\right)\left(1+o_{n}(1)\right)\right)
$$

If $\varepsilon=\max \left|\varepsilon_{i}\right| \leq 1 / \log (n)^{2}$, then, if $n \geq 5, a_{0} n / 2 \leq N_{i} \leq n$ for all i. So $w_{i} \geq \log (n) a_{0} /\left(2 A_{0}\right) \rightarrow$ ∞ and $w_{i} / n \leq(x+\log (n)+(d-1) \log (\log (n))+\log (\alpha)) /\left(n a_{0}\right) \rightarrow 0$. This implies that $\varepsilon_{a_{-}}$and $\varepsilon_{a_{+}}$converges to 0 , according to Lemma 8 . Then we have

$$
\begin{gather*}
\mathbb{P}^{\varepsilon \leq 1 / \log (n)^{2}}\left(U\left(\aleph_{n}\right) \leq x\right) \rightarrow \exp (-\exp (-x)) \quad \text { when } n \rightarrow \infty \tag{4.14}\\
21
\end{gather*}
$$

Because

$$
\begin{equation*}
\mathbb{P}\left(\max _{i}\left|\varepsilon_{i}\right| \geq \frac{1}{\log (n)^{2}}\right)=\mathbb{P}\left(\bigcup_{i}\left|\varepsilon_{i}\right| \geq \frac{1}{\log (n)^{2}}\right) \leq \sum_{i=1}^{k} \mathbb{P}\left(\left|\varepsilon_{i}\right| \geq \frac{1}{\log (n)^{2}}\right) \tag{4.15}
\end{equation*}
$$

from Tchebychev inequality we obtain

$$
\mathbb{P}\left(\left|\varepsilon_{i}\right| \geq \frac{1}{\log (n)^{2}}\right) \leq \log (n)^{4} \mathbb{V}\left(\varepsilon_{i}^{2}\right) \quad \text { where } \quad \mathbb{V}\left(\varepsilon_{i}^{2}\right)=\frac{1-a_{i}}{n a_{i}}
$$

and therefore

$$
\begin{equation*}
\mathbb{P}\left(\varepsilon \geq \frac{1}{\log (n)^{2}}\right) \leq C \frac{(\log (n))^{4}}{n} \tag{4.16}
\end{equation*}
$$

Finally, from equations (4.14) and (4.16) we obtain that

$$
\mathbb{P}\left(U\left(\aleph_{n}\right) \leq x\right) \rightarrow \exp (-\exp (-x)) \text { when } n \rightarrow \infty
$$

which concludes the proof.

4.3. Uniform mixture

Proposition 8. Let E_{1}, \ldots, E_{k} be subsets of \mathbb{R}^{d} such that:

1) $i \neq j \Rightarrow\left|\overline{E_{i}} \cap \overline{E_{j}}\right|=0$.
2) $0<\left|E_{i}\right|<\infty$ for $i=1, \ldots, k$.
3) There exists $0<K<\infty$ such that, $\left|\partial E_{i}\right|_{d-1} \leq K$ for $i=1, \ldots, k$, where $\left|\partial E_{i}\right|_{d-1}$ is the $d-1$ measure of the boundary of E_{i}.
Suppose that $\aleph_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ is a random sample of points in \mathbb{R}^{d}, drawn according to the density:

$$
f(x)=\sum_{i=1}^{k} p_{i} \mathbb{I}_{\stackrel{\circ}{E}_{i}}
$$

where p_{1}, \ldots, p_{k} are real numbers satisfying $0<p_{i}<\infty$ for $i=1, \ldots, k$. If there exists constants $r_{0}>0$ and $c>1-1 / d$ such that, for all $r \leq r_{0}$ and all $x \in \stackrel{\circ}{E}_{i}$ for some i,

$$
\frac{\min _{t \in S \cap B(x, r)} f(t)}{\max _{t \in S \cap B(x, r)} f(t)} \geq c
$$

then:

$$
U\left(\aleph_{n}\right) \xrightarrow{\mathcal{L}} U \quad \text { whenn } \rightarrow \infty
$$

Proof. We start by introducing some definitions and notation. Let

$$
\begin{aligned}
& \stackrel{\circ}{\Delta}\left(\aleph_{n}\right)=\sup \left\{r: \exists x \exists i, \text { such that } x+\frac{r}{f(x)^{1 / d}} A \subset \stackrel{\circ}{E}_{i} \backslash \aleph_{n}\right\} \\
& \stackrel{\circ}{V}\left(\aleph_{n}\right)=\circ^{d}\left(\aleph_{n}\right), \\
& \stackrel{\circ}{U}\left(\aleph_{n}\right)=n \stackrel{\circ}{V}\left(\aleph_{n}\right)-\log (n)-(d-1) \log (\log (n))-\log \left(\alpha_{A}\right)
\end{aligned}
$$

Clearly $U\left(\aleph_{n}\right) \geq \stackrel{\circ}{U}\left(\aleph_{n}\right)$, and therefore $\mathbb{P}\left(U\left(\aleph_{n}\right) \leq x\right) \leq \mathbb{P}\left(\stackrel{\circ}{U}\left(\aleph_{n}\right) \leq x\right)$.
It can be proved, following the same ideas used to prove Theorem 7 (and the fact that $\left|E_{i}\right|=\left|{ }_{\circ}{ }_{i}\right|$) that $\stackrel{\circ}{U}\left(\aleph_{n}\right) \xrightarrow{\mathcal{L}} U$. We denote by $F_{n}(x)=\mathbb{P}\left(\stackrel{\circ}{U}\left(\aleph_{n}\right) \leq x\right)$ and by $G=\bigcup_{i, j}\left(\overline{E_{i}} \cap \overline{E_{j}}\right)$, and define the following quantities:

- $p_{0}=\min _{i} p_{i}$.
- $\rho_{A}=\max _{x \in A}\|x\|$.
- $\rho_{n}=\left(r_{f} \rho_{A} / p_{0}^{1 / d}\right)(\log (n) / n)^{1 / d}$.
- $\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right)=\sup \left\{r: \exists x \in S \backslash G^{\rho_{n}}\right.$ such that $\left.x+\frac{r}{f(x)^{1 / d}} A \subset S \backslash \aleph_{n}\right\}$.
- $\Delta\left(\aleph_{n}, G^{\rho_{n}}\right)=\sup \left\{r: \exists x \in G^{\rho_{n}}\right.$ such that $\left.x+\frac{r}{f(x)^{1 / d}} A \subset S \backslash \aleph_{n}\right\}$.

It follows easily that

$$
\begin{equation*}
\Delta\left(\aleph_{n}\right)=\max \left\{\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right), \Delta\left(\aleph_{n}, G^{\rho_{n}}\right)\right\} \tag{4.17}
\end{equation*}
$$

According to Lemma 5 there exists a constant r_{f} such that $\Delta\left(\aleph_{n}\right) \leq r_{f}(\log (n) / n)^{1 / d}$ eventually almost surely. For the chosen ρ_{n}, we claim that

$$
\begin{equation*}
\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right) \leq \grave{\Delta}\left(\aleph_{n}\right) \text { eventually almost surely. } \tag{4.18}
\end{equation*}
$$

In order to prove (4.18) let us observe first that

$$
\text { for all } \varepsilon>0 \text { there exists } x_{\varepsilon} \in S \backslash G^{\rho_{n}} \text { such that } x_{\varepsilon}+\frac{\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right)-\varepsilon}{f\left(x_{\varepsilon}\right)^{1 / d}} A \subset S \backslash \aleph_{n} \text {. }
$$

If $\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right) \leq r_{f}(\log (n) / n)^{1 / d}$ then

$$
x_{\varepsilon}+\frac{\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right)-\varepsilon}{f\left(x_{\varepsilon}\right)^{1 / d}} A \subset \mathcal{B}\left(x_{\varepsilon}, \rho_{A} \frac{r_{f}(\log (n) / n)^{1 / d}-\varepsilon}{p_{0}^{1 / d}}\right)
$$

Because $d\left(x_{\varepsilon}, G\right) \geq r_{f} \rho_{A} p_{0}^{-1 / d}(\log (n) / n)^{1 / d}$ we have

$$
x_{\varepsilon}+\frac{\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right)-\varepsilon}{f\left(x_{\varepsilon}\right)^{1 / d}} A \subset \bigcup_{i} \stackrel{\circ}{E}_{i} \backslash \aleph_{n}
$$

Then, if $\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right) \leq r_{f}(\log (n) / n)^{1 / d}$ it follows that for all $\varepsilon>0, \Delta\left(\aleph_{n}\right) \geq \Delta\left(\aleph_{n}, S \backslash\right.$ $\left.G^{\rho_{n}}\right)-\varepsilon$, and finally, (4.18) is a direct consequence from the fact that $\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right) \leq \Delta\left(\aleph_{n}\right) \leq$ $r_{f}(\log (n) / n)^{1 / d}$ eventually almost surely.
Using now (4.17) we obtain

$$
\begin{aligned}
& \mathbb{P}\left(U\left(\aleph_{n}\right) \geq x\right) \leq \\
& \begin{aligned}
& \mathbb{P}^{\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right) \leq \Delta\left(\aleph_{n}\right)}\left(\max \left\{\dot{U}\left(\aleph_{n}\right), U\left(\aleph_{n}, G^{\rho_{n}}\right)\right\} \geq x\right) \mathbb{P}\left(\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right) \leq \stackrel{\circ}{\Delta}\left(\aleph_{n}\right)\right) \\
&+\mathbb{P}\left(\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right) \geq \stackrel{\circ}{\Delta}\left(\aleph_{n}\right)\right)
\end{aligned}
\end{aligned}
$$

which entails

$$
\mathbb{P}\left(U\left(\aleph_{n}\right) \geq x\right) \leq 1-F_{n}(x)+\mathbb{P}\left(U\left(\aleph_{n}, G^{\rho_{n}}\right) \geq x\right)+\mathbb{P}\left(\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right) \geq \Delta\left(\aleph_{n}\right)\right)
$$

Because $\mathbb{P}\left(\Delta\left(\aleph_{n}, S \backslash G^{\rho_{n}}\right) \geq \AA\left(\aleph_{n}\right)\right) \rightarrow 0$ and $F_{n}(x) \rightarrow \exp (-\exp (-x))$, it only remains to prove that $\mathbb{P}\left(U\left(\aleph_{n}, G^{\rho_{n}}\right) \geq x\right) \rightarrow 0$. In order to do that, we will see that $G^{\rho_{n}}$ can be covered by a suitable number of balls of radius $1 / n^{1 / d}$, and then we will apply Lemma 6 .

Because $\left|\partial E_{i}\right|<K$ for $i=1, \ldots, k$, every ∂E_{i} can be covered by $\nu_{1} \leq K \rho_{n}^{-d+1}$ balls of radius ρ_{n} centered at some points x_{i}. Every ball $\mathcal{B}\left(x_{i}, \rho_{n}\right)$ can be covered by $\nu_{2} \leq c^{*} \rho_{n}^{d} n$ balls of radius $(1 / n)^{1 / d}$. Finally, because $G^{\rho_{n}} \subset \bigcup_{i}\left(\partial E_{i}\right)^{\rho_{n}}$, the set $G^{\rho_{n}}$ can be covered by less than $k K c^{*} \rho_{n} n=$ $\mathcal{O}\left(n^{1-1 / d}(\log (n))^{1 / d}\right)$ balls of radius $1 / n$. That conclude the proof.

4.4. Lipshitz continous density

Now we will prove a generalization of the Theorem 1 to the case of Lipschitz densities with compact support. Let us recall here the theorem:

Theorem 5. Let f be a density with compact support $S \subset \mathbb{R}^{d}$, let us assume that condition B holds, then

$$
\begin{gather*}
U\left(\aleph_{n}\right) \stackrel{\mathcal{L}}{\longrightarrow} U \quad \text { when } n \rightarrow \infty \tag{4.19}\\
\liminf _{n \rightarrow+\infty} \frac{n V\left(\aleph_{n}\right)-\log (n)}{\log (\log (n))}=d-1 \text { a.s. } \tag{4.20}\\
\limsup _{n \rightarrow+\infty} \frac{n V\left(\aleph_{n}\right)-\log (n)}{\log (\log (n))}=d+1 \text { a.s. } \tag{4.21}
\end{gather*}
$$

Proof. We will only prove (4.19), the proof of (4.20) and (4.21) are the same as the one in [8]. What we will do is to combine all the methods used to prove the previous theorems. Let us consider a "mesh" of \mathbb{R}^{d} with small squares of side c_{n},

$$
\prod_{i=1}^{d}\left[k_{i} c_{n},\left(k_{i}+1\right) c_{n}\right] \quad \text { with } k_{i} \in \mathbb{N} \text {. }
$$

We will suppose that $c_{n}=\mathcal{O}\left((\log (n) / n)^{\frac{1}{3 d}}\right)$. Let us denote m_{n} the number of this squares that are included in S and $C_{1}, \ldots, C_{m_{n}}$ this squares.

First inequality Like in the proof of Proposition 8 let us denote,

$$
\begin{aligned}
& \stackrel{\circ}{\Delta}\left(\aleph_{n}\right)=\sup \left\{r: \exists x \exists i, \text { such that } x+\frac{r}{f(x)^{1 / d}} A \subset \dot{C}_{i} \backslash \aleph_{n}\right\} \\
& \stackrel{\circ}{V}\left(\aleph_{n}\right)=\stackrel{\circ}{\Delta}^{d}\left(\aleph_{n}\right) \\
& \stackrel{\circ}{U}\left(\aleph_{n}\right)=n \stackrel{\circ}{V}\left(\aleph_{n}\right)-\log (n)-(d-1) \log (\log (n))-\log \left(\alpha_{A}\right)
\end{aligned}
$$

Because $\bigcup_{i=1}^{m_{n}} \stackrel{\circ}{C}_{i} \subset S$ we have: $\mathbb{P}\left(U\left(\aleph_{n}\right) \leq x\right) \leq \mathbb{P}\left(\stackrel{\circ}{U}\left(\aleph_{n}\right) \leq x\right)$.
Also, like in the proof of Proposition 7 let us denote:

- $N_{i}=\#\left\{\aleph_{n} \cap C_{i}\right\}$.
- $a_{i}=\int_{C_{i}} f(t) d t ; a_{0}=\min _{i} a_{i} ; A_{0}=\max _{i} a_{i}$ and $C=\sum \frac{1-a_{i}}{a_{i}}$. Observe that $\sum a_{i}=1$ and $a_{0} \geq f_{0} c_{n}^{d}$.
- $\aleph_{N_{i}}^{i}=\left\{X_{i_{1}}, \ldots, X_{i_{N_{i}}}\right\}$ the subsample of \aleph_{n} that belongs to C_{i}. Observe that $X_{i_{j}}$ for $j=$ $1, \ldots, N_{i}$ has density $f_{i}(x)=\left(f(x) / a_{i}\right) \mathbb{I}_{C_{i}}(x)$.
- $\varepsilon_{i}=\frac{N_{i}-a_{i} n}{n a_{i}}$

Proceeding exactly as in the proof of Proposition 7 we can derive that

$$
\grave{\Delta}\left(\aleph_{n}\right)=\max _{i} \sup \left\{r: \exists x \text { such that } x+\frac{r a_{i}^{1 / d}}{\left(a_{i} f_{i}(x)\right)^{1 / d}} A \subset \dot{C}_{i} \backslash \aleph_{N_{i}}^{i}\right\},
$$

and therefore

$$
\grave{\Delta}\left(\aleph_{n}\right)=\max _{i}\left\{a_{i}^{1 / d} \Delta\left(\aleph_{N_{i}}^{i}\right)\right\} \text { and } V\left(\aleph_{n}\right)=\max _{i}\left\{a_{i} V\left(\aleph_{N_{i}}^{i}\right)\right\} .
$$

Now, in order to use Proposition 7 we need to see that the density is close to the uniform density on small squares and then apply Lemma 8 . Let us observe that, for all $y \in C_{i}$,

$$
\left|f_{i}(y)\right| C_{i}|-1|=\left|\frac{f(y)}{a_{i}}\right| C_{i}|-1|=\frac{1}{a_{i}}\left|\int_{C_{i}} f(y) d t-\int_{C_{i}} f(t) d t\right| \leq \frac{1}{a_{i}} K \int_{C_{i}}|y-t| d t,
$$

and as $|y-t| \leq \sqrt{d} c_{n}$, we have that

$$
\left|f_{i}(y)\right| C_{i}|-1| \leq \frac{1}{a_{i}} K \sqrt{d} c_{n}^{d+1} \leq K_{1} c_{n} \quad \forall y \in C_{i},
$$

where $K_{1}=\sqrt{d} K / f_{0}$. We will apply now Lemma 8 , (with $\left.\varepsilon=K_{1} c_{n}\right)$. If we denote $N_{i}^{\prime}=\left\lceil N_{i}(1+\right.$ $\left.\left.2 K_{1} c_{n}\right)\right\rceil, w^{\prime}=w \frac{1-2 K_{1} c_{n}}{1+K_{1} c_{n}}$ and $y_{N_{i}^{\prime}}$ a sample of N_{i}^{\prime} variables uniformly drawn on C_{i} it holds that

$$
\mathbb{P}\left(N_{i} \Delta^{d}\left(\aleph_{N_{i}}\right) \leq \frac{w N_{i}}{a_{i} n}\right) \leq \mathbb{P}\left(N_{i}^{\prime} \Delta^{d}\left(y_{N_{i}^{\prime}}\right) \leq \frac{w^{\prime} N_{i}^{\prime}}{a_{i} n}\right)\left(1-\frac{1+2 K_{1} c_{n}+n^{-1}}{\left(n K_{1} c_{n}\right)\left(1+K_{1} c_{n}\right)}\right)^{-1} .
$$

In order to prove that $\mathbb{P}\left(U\left(\aleph_{n}\right)<x\right) \leq \exp (-\exp (-x))$ asymptotically, we have to prove that:

$$
\begin{equation*}
\left(1-\frac{1+2 K_{1} c_{n}+n^{-1}}{\left(n K_{1} c_{n}\right)\left(1+K_{1} c_{n}\right)}\right)^{-m_{n}} \rightarrow 1 \tag{4.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{i=1}^{m_{n}} \mathbb{P}\left(N_{i}^{\prime} \Delta^{d}\left(y_{N_{i}^{\prime}}\right) \leq \frac{w^{\prime} N_{i}^{\prime}}{a_{i} N}\right) \rightarrow \exp (-\exp (-x)) \tag{4.23}
\end{equation*}
$$

being $w=x+\log (n)+(d-1) \log (\log (n))+\log (\alpha))$.
To see (4.22) observe that

$$
\begin{equation*}
\left(1-\frac{1+2 K_{1} c_{n}+n^{-1}}{\left(n K_{1} c_{n}\right)\left(1+K_{1} c_{n}\right)}\right)^{-m_{n}}=\exp \left(\frac{m_{n}}{n K_{1} c_{n}}\right)(1+o(1)), \tag{4.24}
\end{equation*}
$$

where $m_{n} \leq M c_{n}^{-d}$. Because $n c_{n}^{d+1} \rightarrow \infty$, the right hand side of (4.24) converge to 1 , as desired.

Let us prove now (4.23). Observe that the product is similar to the one in equation (4.11) with N_{i}^{\prime} instead of N_{i} and w^{\prime} instead of w. Because $w^{\prime}=w\left(1+O\left(c_{n}\right)\right)$, we have $w^{\prime d-1} \exp \left(-w^{\prime}\right) \sim$ $w^{d-1} \exp (-w)$.

Then, if we denote by $\varepsilon^{\prime}=\max _{i} \frac{\left|N_{i}^{\prime}-a_{i} n\right|}{n a_{i}}$, equation (4.13) imply that to prove (4.23) it suffices to prove that there exist $\delta_{n} \rightarrow 0$ such that $\mathbb{P}\left(\log (n) \varepsilon^{\prime} \geq \delta_{n}\right) \rightarrow 0$.

First, let us introduce $\varepsilon_{i}=\frac{\left|N_{i}-a_{i} n\right|}{a_{i} n}$, and $\varepsilon=\max \left|\varepsilon_{i}\right|$, then, proceeding in (4.15) we obtain

$$
\begin{aligned}
\mathbb{P}\left(\varepsilon \log (n) \geq \log (n)^{-1}\right) & \leq \frac{(\log (n))^{4}}{n} \sum_{i=1}^{m_{n}} \frac{1-a_{i}}{a_{i}} \\
& \leq \frac{(\log (n))^{4}}{n} \sum_{i=1}^{m_{n}} \frac{1}{a_{0}} \\
& \leq \frac{(\log (n))^{4}}{n} \frac{M c_{n}^{-d}}{c_{n}^{d} f_{0}}
\end{aligned}
$$

Now, because $\varepsilon^{\prime} \leq \max _{i} \frac{\left|N_{i}^{\prime}-N_{i}\right|}{n a_{i}}+\max _{i} \frac{\left|N_{i}-a_{i} n\right|}{n a_{i}}=\max _{i} \frac{\left|N_{i}^{\prime}-N_{i}\right|}{n a_{i}}+\varepsilon$ and $N_{i}^{\prime} \leq N_{i}\left(1+2 K_{1} c_{n} N_{i}\right)+$ 1 , it holds that $\varepsilon^{\prime} \leq \max _{i} \frac{2 K_{1} c_{n} N_{i}+1}{n a_{i}}+\varepsilon$. Because $1+\varepsilon=N_{i} /\left(n a_{i}\right)$ we have that $\varepsilon^{\prime} \leq 2 K_{1} c_{n}(1+$ $\varepsilon)+\frac{1}{f_{0} n c_{n}^{d}}+\varepsilon$. Therefore, for $\varepsilon \leq(\log (n))^{-2}$

$$
\varepsilon^{\prime} \leq 2 K_{1} c_{n}\left(1+\log (n)^{-2}\right)+\frac{1}{f_{0} n c_{n}^{d}}+(\log (n))^{-2}
$$

Thus,

$$
\mathbb{P}\left(\log (n) \varepsilon^{\prime} \geq 2 K_{1} c_{n} \log (n)\left(1+\log (n)^{-1}\right)+\frac{\log (n)}{f_{0} n c_{n}^{d}}+(\log (n))^{-1}\right) \leq \frac{(\log (n))^{4} M}{n c_{n}^{2 d} f_{0}}
$$

Finally, because, $\log (n) c_{n} \rightarrow 0, \frac{\log (n)}{n c_{n}^{d}} \rightarrow 0$ and $\frac{(\log (n))^{4}}{n c_{n}^{2 d}} \rightarrow 0$, we obtain $\delta_{n}=2 K_{1} c_{n} \log (n)(1+$ $\left.\log (n)^{-1}\right)+\frac{\log (n)}{f_{0} n c_{n}^{d}}+(\log (n))^{-1} \rightarrow 0$.

Second inequality We will do a sketch of the proof, the arguments are similar to those in the proof of Proposition 8 using Lemma 8 like in the first inequality.

As in Proposition 8 let us denote:

- $\rho_{n}=\frac{r_{f} \rho_{A}}{f_{0}^{1 / d}}\left(\frac{\log (n)}{n}\right)^{1 / d}$ with $\rho_{A}=\max _{x \in A}\|x\|$.
- $G=\cup_{i \neq j}^{m_{n}}\left(\overline{C_{i}} \cap \overline{C_{j}}\right)$
- $H=S \backslash\left(\cup_{i}^{m_{n}} C_{i}\right)$, notice that $H \subset \partial S^{c_{n}}$.

Exactly as in the proof of Proposition 8 we have that

$$
U\left(\aleph_{n}\right) \leq \max \left\{\stackrel{\circ}{U}\left(\aleph_{n}\right), U\left(\aleph_{n}, G^{\rho_{n}}\right), U\left(\aleph_{n}, H\right)\right\} \text { eventually almost surely. }
$$

The proof that $\mathbb{P}\left({ }^{\circ}\left(\aleph_{n}\right) \leq x\right) \rightarrow \exp (-\exp (-x))$ is obtained exactly as we did to obtain the first inequality, but using equation (4.7). We will bound the covering numbers of $G^{\rho_{n}}$ and H to apply Lemma 7 , to conclude the proof of the second inequality.
G is the union of less than $m_{n} 2^{d}$ squares of size c_{n} let us call them D_{i}. Each of this squares D_{i} can be cover by less than $a c_{n}^{d-1} \rho_{n}^{-d+1}$ balls of radius ρ_{n}, centered at some points x_{j}^{i}. We have that $G^{\rho_{n}} \subset \bigcup_{i, j} \mathcal{B}\left(x_{j}^{i}, 2 \rho_{n}\right)$ and each of this balls can be covered by $c^{*} \rho_{n}^{d} n$ balls of radius $n^{-1 / d}$. So G can be covered by less than $m_{n} 2^{d} a c_{n}^{d-1} \rho_{n}^{-d+1} c^{*} \rho_{n}^{d} n$ balls, that is $2^{d} a c^{*} M c_{n}^{-1} \rho_{n} n$, which satisfies the conditions to apply Lemma 7 because $c_{n}=\mathcal{O}(\log (n) / n)^{1 / 3 d}$.

In the same way it can be proved that H can be covered with $\mathcal{O}\left(n c_{n}\right)$ balls of radius $n^{-1 / d}$, which satisfies the hypothesis to apply Lemma 7 for the proposed value of c_{n}.

References

[1] Cuevas, A. and Fraiman, R. (1997) A plug-in approach to support estimation Ann. Statist. 25, 2300-2312.
[2] Cuevas, A. and Rodriguez-Casal, A.(2004) On boundary estimation. Adv. in Appl. Probab. 36, 340-354.
[3] Cuevas, A., Fraiman, R. and Pateiro-Lopez, B.(2012) On statistical properties of sets fulfilling rolling-type conditions. Adv. in Appl. Probab. 44, 311-239.
[4] Delicado, P., Hernández, A. and Lugosi, G. (2014) Data-based decision rules about the convexity of the support of a distribution. Electron. J. Statist. 8, 96-129.
[5] Deheuvels, P. (1983). Strong Bounds for Multidimensional Spacings. Probab. Theory Related Fields 64 (4) 411-424
[6] Devroye, L. (1981). Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probab. 9 860-867.
[7] Giné, E. and Guillou, A. (2002). Rates of strong uniform consistency for multivariate kernel density estimators. Annales de l'Institut Henri Poincare (B). Probability and Statistics 38(6) 907-921.
[8] Janson, S. (1987). Maximal spacings in several dimensions. Ann. Prob. 15 274-280.
[9] Janson, S. (1986). Random coverings in several dimensions. Acta Math. 156 82-118.
[10] Pyke, R. (1965). Spacings. J. Roy. Statist. Soc. Ser. B 27 395-449.
[11] Pyke, R. (1972). Spacings revisited. Proc. Sixth Berkeley SYmp. Math. Sgatist. Probab. 1 417427.
[12] Proschan, F. and Pyke, R. (1967). Tests for monotone failure rate. Berkeley Symp. on Math. Statist. and Prob. Proc. Fifth Berkeley Symp. on Math. Statist. and Prob. 3 293-312.
[13] Ranneby, B. (1984). The maximal spacing method. An estimation method related to maximum likelihood method. Scand. J. Statist. 11 93-112.
[14] Stevens, W. L. (1939) Solution to a geometrical problem in probability. Ann. Eugenics 9 315320
[15] Walther, G. (1997) Granulometric smoothing. Ann. Statist. 25 2273-2299

