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A new test of the convexity of the density

support

Catherine Aaron

May 29, 2012

Abstract

Given a sample of n independant and identically distributed ran-
dom vectors drawn from a density f we study two ways of testing
the convexity of the support of the density. The first one requires
the hypothesis that f is uniform on its support. Two statitistics are
proposed, one to test non-convexity due to the boundary, the other
one to detect non convexity due to the existance of a hole. p-values
for each test can be bounded above but this upper bound depends on
unknown parameters. An estimator for this upper bound is given, and
it is proved to be “almost surely similar” (with a given convergence
speed). It is also proved that there exists a consistent decision rule as-
sociated to this test. When the density is unknown the test is adapted
via a density estimation with k−nearest neighbors. Other similar re-
sults are given. They are obviously weaker (convergence speed can
not be given) but still give good results.

key words: density-support, convexity, nearest-neighbors.

1 Introduction, notation and hypotheses

1.1 introduction

Let Xn be a random sample in R
d drawn from an unknown density f . The

aim of this paper is to test wether S the support of the density is convex or
not. Such a test has various possible applications. Obviously it can help to
choose a dimension reduction method, since the density support is convex
PCA can be considered as the best way to solve the problem: it is the
easiest and it is well adapted. Suppose we are interested in the following
regression model: Y = φ(X) + ε, X a random sample in R

d that has a
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convex support, ε ∈ R independant to X and ε having a density fε such
that: {fε > 0} is an intervall. A test of convexity allows one to verify the
hypothesis on X and the convexity of (X, ε) indicates that a linear model can
solve the problem. Hernández, Delicado and Lugosi also mentioned in [10] an
application to the parametrization of ε−isomap [5] method. This way to use
the convexity test can be applied to every statistical method that requires
the use of geodesic distance: usually the geodesic distance is computed via a
local graph weighted by the euclidian distance. If the graph links two points
whenever they are closer than ε (as in ε−isomap) the ε parameter has to be
carefully chosen:

• small ε may disconnect the graph, inducing a huge overestimation of
the geodesic distance and a long computational time for the geodesic
distance.

• large ε may estimate the euclidian distance and not the geodesic one.

In [9] the authors proposed an a posteriori way to choose ε. But we think
a convexity test can also provide an a priori way to choose.

In spite of all these possible applications iwe have only found two papers
that mention a test for convexity.

• In [9] the idea is (very briefly) proposed to test the convexity by using
as test statistic the measure of the symetric difference between an esti-
mator of the density support (using the estimator originally introduced
by Devroye and Wise in [8]) and the convex hull of the sample. Ac-
cording to [4] (for the latest results on the asymptotic behavior of the
estimation of the density support) and [3], [14] and [15] (for asymptotic
results on the convex hull), under the null hypothesis (the support is
convex) this volume converges toward 0 with a known speed.

• In [10] Hernández, Delicado and Lugosi build a test based on:

S = 1
n(n−1)

∑

i<j ||Xi,j −Xk(i,j)|| with Xi,j = 0.5(Xi +Xj) and k(i, j) =

argmink{||Xk −Xi,j||}. They proved that when the support is convex
S → 0 and that if the support is not convex the statistic stays bounded.
Two disadvantages of this test can be seen:

– a slow convergence speed due to the average (see for instance
Figure 3; for such a set a global and averaged statistic may not
be useful decide the non-convexity),

2

ha
l-0

07
02

27
5,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
2



– the necessity of calibration for every distribution and every size
sample.

The aim of this paper is to propose another test that erases the two
above-mentioned disavantages.

For that it is proposed to build our statistic with a max instead of an
average and to look for the maximum value over the entire the convex hull
(and not only the middle points of sample pairs). More precisely the following
statistic is considered:

δ(Xn) = d(Xn,H(Xn)) = max
x∈Xn

min
y∈H(Xn)

(||x− y||).

It will be seen that such a statistic is useful to decide if there is a non-
convexity due to a non convex boundary when the sample is assumed to be
uniform (and the support to have a C2 boundary). Another statitistic to
solve the case of non-convexity due to an interior hole under the uniform
hypothesis is also built. The theoretical properties of a test based on these
two statistics is detailed in Section 1. Section 2 is devoted to adapt the
statistic and the theoretical results to the most useful case where the density
is unknown.

Our test gives very good results but the ability to compute it is condition-
nal upon the ability to compute the convex hull and the Delaunay complex.
This requires quite small dimension. When the dimension becomes too high
to compute our statistics, the test detailed in [10] can be used (as its com-
putational time does not depend on the dimension).

1.2 Hypotheses

The support S of the density is defined by S = {x, f(x) > 0}. Through-
out the paper we assume minx∈S f(x) = fm > 0. This is a important and
necessary hypothesis as mentioned in [10].

It also will we required that ∂S ,the boundary of S, is a C2 manifold. This
is an important hypothesis when testing non-convexity due to a boundary
non-convexity but it can be removed when dealing with non-convexity due
to an inside hole.

It is also supposed that the dimension of S and the dimension of the
space of the observation are the same. This is only a technical hypothesis
and the important dimension is that of S. If S is d′ dimensional convex set
with d′ < d, a PCA can isometrically map S ⊂ R

d onto S ′
R

d′ so the test can
be applied on S ′.
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1.3 Notations

Throughout the paper θd is the volume of the d−dimensional unit ball.
For the sample Xn, V or(Xi) denotes the Voronoi cell of Xi, i.e. the set

of all points closer to Xi than to any other observations.
Let A be a d−dimensional set

• V (A) denotes the volume of A,

• ∂A denotes the boundary of A,

• H(A) denotes the convex hull of A,

• Ω(A) denotes the affine surface area of A [13],

• ν(A, ε) is the interior covering number of A, i.e. the smallest number
of balls centered in A and with a radius ε that covers A. We denote
by c(A) and C(A) the two constants that can be defined by: ν(A, ε) ∼
c(A)ε−d and, for all ε ≤ 1, ν(A, ε) ≤ C(A)ε−d

• The function αA defined as follows:

αA[r] = inf
x∈A,ρ≤r

V (B(x, ρ) ∩ A)

V (B(x, ρ)) ,

plays an important role in the paper.

2 Test for convexity under uniform hypothe-

sis

2.1 Introduction

In this part Xn = {X1, ..., Xn} is supposed to be a random sample drawn
from an uniform law on an unknown support S. We wish to be able to decide
whether S is convex or not. The underlying idea of the test is the following:
if S is a convex set, then d(S,H(S)) = 0. Obviously, as S is unknown,
d(S,H(S)) can not be measured and it is proposed here to evaluate:

δ(Xn) = d(Xn,H(Xn)) = max
x∈Xn

min
y∈H(Xn)

(||x− y||).

If one wants to test H0 versus H1 with:

• H0: The support is a convex set with boundary, ∂S, of differentiability
class C2
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• H1: The support is a non-convex set with boundary, ∂S, of differentia-
bility class C2

then the test T1 defined via its critical region

W1 = {δ(Xn) > a}
can be realized and its properties are described by Theorem 1

Theorem 1. When the density is assumed to be uniform then :

• (i) If H0 is true and λ > 4 is a constant:

nδ(Xn)
d

log(n)
≤ 4V (S)

θd
almost surely.

nδ(Xn)
d

log(n)
≥ λV (H(Xn))

θd
for finitely many n.

• (ii) Given a fixed support that satisfies the hypthesis H1 there exists a
constant dS such that:

δ(Xn) ≤ dS for finitely many n and so
nδ(Xn)

d

log(n)
→ +∞.

• (iii) Let us denote δ0,n = ( log(n)δ0
n

)1/d and ε0,n = 2V (H(Xn))
θdnδd(Xn)

. Then :

– PH0(nδ(Xn)d

log(n)
≥ δ0) ≤ pn(S, δ0) with:

pn(S, δ0) = ν(S, δ0,nε0,n)

(

1− θdαS[δ0,n]δ
d
0,n(1− ε0,n)

d

V (S)

)n

– pn(S, δ0) depends on unknown parameters but it can be approxi-
mated by p̂n(H(Xn), δ0) with:

p̂n(H(Xn), δ0) = ν(H(Xn), δ0,nε0,n)

(

1−
θdδ

d
0,n(1− ε0,n)

d

2V (H(Xn))

)n

with the following asymptotical result: there exist a1 and a2 two
constants such that:
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a1 ≤
n1/d

log(n)1+1/d
(p̂n(H(Xn), δ0)/pn(S, δ0)− 1) ≤ a2 a.s.

Remark: Points (i) and (ii) prove that there exist consistant decision
rules for the test T1.

Such a test gives good results when non-convexity is induced by the
boundary (∂(H(S)) 6= ∂(S)) but empirically it seems a little weak when
the non convexity is induced the existence of a hole in S (∂(H(S)) = ∂(S)
and (H(S)) 6= (S)). To understand why and correct that default let us notice
that δn can also be written:

δn(Xn) = sup
r
{r such that: ∃x ∈ H(Xn) such that: ∀i, Xi /∈ B(x, r)},

i.e. δn is the maximum radius for a ball centerd in x ∈ S that does not
contain any observation.

The p−value computation is thus the evaluation of the probability, under
H0, that there exists a ball B0 centered in S that does not contains any
observation. Such a probability is obviously very dependent on the volume
of the intersection between the ball B0 and S. When there is no knowledge
of the location of the center, the worst situation has to be considered, i.e.
the center is located near the boundary and the volume of the intersection is
approximately the volume of the half ball (because of the diffentiability class
of ∂S).

To correct that effect we also define:

δintn (Xn) = sup
r
{r such that: ∃x , B(x, r) ⊂ H(Xn) and ∀i, Xi /∈ B(x, r)}

If one wants to test H0 versus H1 with:

• H0: The support is a convex set,

• H1: The support is a non-convex set,

the test T2 defined via its critical region

W2 = {δintn (Xn) > a′}
can be realized and its properties are described by Theorem 2.
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Theorem 2. When the density is assumed to be uniform then :

• (i) If H0 is true and λ > 2 is a constant then:

nδint(Xn)
d

log(n)
≤ 2V (S)

θd
almost surely.

nδint(Xn)
d

log(n)
≥ λV (H(Xn))

θd
for finitely many n.

• (ii) Given a fixed support that satisfies the hypthesis H1 there exists a
constant d′S such that:

δint(Xn) ≤ d′S for finitely many n and so
nδint(Xn)

d

log(n)
→ +∞.

• (iii) Let us denote δ0,n = ( log(n)δ0
n

)1/d and ε0,n = V (H(Xn))
θdnδd(Xn)

then:

– PH0(nδ
int(Xn)d

log(n)
≥ δ0) ≤ qn(S, δ0) with:

qn(S, δ0) = ν(S, δ0,nε0,n)

(

1− θdδ
d
0,n(1− ε0,n)

d

V (S)

)n

– qn(S, δ0) depends on unknown parameters but it can be approxi-
mated by q̂n(H(Xn), δ0) with:

q̂n(H(Xn), δ0) = ν(H(Xn), δ0,nε0,n)

(

1− θdδ
d
0,n(1− ε0,n)

d

V (H(Xn))

)n

with the following asymptotical result: there exists b1 and b2 two
constants such that :

b1 ≤
n1/d

log(n)1+1/d
(p̂n(H(Xn), δ0)/pn(S, δ0)− 1) ≤ b2 a.s.
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To conclude, the following strategy to test the convexity of the support
under the uniform hypothesis is chosen:

Compute the two estimated p − values p̂ and q̂, and if the smallest one
is small enough reject the null hypothesis.

Proof of Theorem 1 can be found in the appendix, the proof of theorem
2 is very similar (even a little easier), and is left to the reader. The next
section is dedicated to the computational aspects of the estimated p−value
and it is followed by the study of some results.

2.2 Computation of the estimated p-value

An interesting fact is that each parameter of the estimated p−value can be
quite easily computed since the Delaunay Complex and the Voronoi cells
can be computed. The only limitation is the ability to obtain the Delaunay
complex (and the Voronoi cells) within a reasonable computational time.
This limitation becomes significant once the dimension is stricly superior to
4. For such dimensions we will give a way to compute the test more quickly
in the next section.

2.2.1 Computation of δn and δintn

Since the Voronoi cells and the convex hull are computed δn and δintn can be
quite easily computed.

Let us first focus on δn and look for x ∈ H(Xn) such that B(x, δn) does
not contains any observation. It is easy to see that:

• if x ∈ H̊(Xn) (the interior of the convex hull) then x is in d+1 different
Voronoi cells

• if x ∈ δH(Xn) then x is in d differents Voronoi cells

So to find x it is sufficient to consider only a finite set of points and their
associated radius:

• Points yk that are the intersection of d + 1 different Voronoi cells and
that are in H(Xn). Here the associated radius is the radius of the
circumscript sphere of the associated Xi.

• Intersection zj of “faces“ of the boundary of H(Xn) (dimension d− 1)
with the intersections of d different Voronoi cells (dimension 1). Here
the associated radius is the minimum distance between x and Xn.
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Finally δn = min{mink{r(yk)},minj{r(zj)}}

Let us now focus on δintn . It is clear that the associated - x: x ∈
H(Xn) such that B(x, δn) does not contains any observation and such that
B(x, δintn ) ⊂ H(Xn)- is located on one of the previous yk. The only thing that
changes is that the associated radius is now rint(yk) = min{r(yk), d(yk, δ(H(Xn)))}

2.2.2 Upper bound of ν(S, ε)

Let us recall that ν(S, ε) is the minimum number of balls of radius ε that are
needed to cover S. Since a number ν∗(S, ε) of balls of radius ε that cover S
is known ν(S, ε) ≤ ν∗(S, ε). It is proposed here to compute a ν∗ as follows.
For a simplex σ = {y1, .., yd+1}, g(σ) is the barycentre of the simplex and
R(σ) = maxi(d(yi, g(σ))). For all ε ≥ R(σ) ν(σ, ε) ≤ 1. As σ can be divided
into 2d simplexes, all isometric we have that for all ε ≥ R(σ)/2, ν(σ, ε) ≤ 2d

and, iteratively, for all ε ≥ R(σ)/2k , ν(σ, ε) ≤ 2kd.

Let us first compute H(Xn) and its Delaunay complex H(Xn) = ∪jσ
∗
j

Under H0, ν(S, ε) can be estimated by ν(S,H(Xn)) ≤
∑

j ν(σ
∗
j ε).

2.3 Some results

Here we present two simulated examples.
Each figure is drawn the same way:

• Blue points represent the data set.

• The yellow complex is the support estimation via the Delaunay com-
plex restricted to nearest neighbors as in [2]. An interesting point is
that the proposed test sometimes detects the non-convexity even when
the support estimation is convex, and that can be a starting point to
improve the density support method.

• The red point is the center of the empty ball. It is surrounded by a
black circle when the test T2 has been choosen and by a Red dashed
circle when T1 has been choosen.

• The background of the picture is green when the decision is the correct
one (accept convexity when support is convex and reject convexity when
the support is not convex). The decision has been made according to
a comparison between the estimated p−value and 5.10−2.

9

ha
l-0

07
02

27
5,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
2



In the first example, points (x, y) = (r cos(θ), r sin(θ)) are simultated in
the part of the disk where the radius r is in [0.5, 1] and the angle θ in [0, θ0].
Simulated examples correspond to θ0 ∈ {π/6, π/3, π/2, 2π/3, 5π/6, π} (each
line of Figure 1 is associated to a value of θ0) and n ∈ {50, 100, 200, 500}
(each column of Figure 1 is associated to a value of n). When θ0 ≤ π/3
non-convexity is never found. For the first line (θ0 = π/6) it is a decision
similar to the ”human eye“ point of view (the simulated data seem to be
convex). Since θ0 ≥ π/2 non-convexity is observed for an increasing number
of values for n, and each time this non-covexity is detected a little after the
human eye.

In the second example, points (x, y) = (r cos(θ), r sin(θ)) are simultated
in the part of the disk where the radius r is in [r0, 1] and the angle θ in [0, 2π].
Simulated examples correspond to r0 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} (each line of
Figure 3 is associated to a value of θ0) and n ∈ {50, 100, 200, 500} (each
column of Figure 3 is associated to a value of n).

3 Test for convexity without uniform hypoth-

esis

3.1 Adaptation of the previous test

In this section it is no longer assumed that Xn is uniformly randomized on
S. The sample is now drawn from an unknown density f that has to satisfy
some properties:

• f is bounded on S with a lower bound fm > 0. Let us also denote by
fM the maximum value of f on S.

• f is continuously differentiable on S. this (combined with the previous
hypothesis) implies the existence of K1 and K−1/d such that, for all x
and y in S, |f(x) − f(y)| ≤ K1||x − y|| and |f(x)−1/d − f(y)−1/d| ≤
K−1/d||x−y|| (in fact the existence of such constants is the only needed
hypothesis).

The idea is now to build a test for the convexity of S that generalizes
the previous test and adapt it to a more general case. Working with the
same statitistics δ(Xn) and δint(Xn) is a convergent method but may not be
very convenient because it does not take into account the local effect of the
non-uniformity. The problem in choosing of such a statistic is illustrated
in figure 3. To realize this figure 100 points have been uniformly drawn in
B(0, 1) \ B(0, 0.1). Then 100 more points are added, uniformly drawn in
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Figure 1: Some results for a uniform sample on an arc.

B(0, 0.2) \ B(0, 0.1). In this case the support of the density is obviously not
convex. Application of the δ statistics fails to recognize non-convexity due
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Figure 2: Some results for a uniform sample on an cd.

to the location of the empty ball (B(0, 0.1) should have been expected) for
the estimated p−value.
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Figure 3: δ(Xn) does not take into account the local effects.

The proposed way to deal with the non-uniformity of the density is to
consider the volume (weighted by the density) instead of the radius of empty
balls. As the density is unknown it leads us to consider the new statistics:

∆(Xn) = sup
r
{r such that: ∃x ∈ H(Xn) such that: ∀i, Xi /∈ B(x, r/f̂ 1/d(x))}

and

∆int(Xn) = sup
r
{r such that: ∃x,B(x, r/f̂ 1/d

n (x)) ⊂ H(Xn)∀i, Xi /∈ B(x, r/f̂ 1/d(x))}

The principal other idea is to base the test on a density estimation that
over-estimates the density when the support is not convex. It is thus proposed
here to work with:

f̂kn(x) = min
x∈V or(Xi)

f̃kn(Xi)

with f̃kn the usual kn nearest neighbor density estimation ([16]). The
choice of such an estimator (instead of the usual nearest neighbor one) is
detailed in the next section.

A way to test H0 versus H1 with:

• H0: The support is a convex set with boundary, ∂S, of differentiability
class C2.
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• H1: The support is a non-convex set with boundary, ∂S, of differentia-
bility class C2.

can be described by Theorem 3:

Theorem 3. If kn log(n)d

n
→ 0 and kn

log(n)d+1 → +∞:

• (i) If H0 is true and λ > 8 is a constant then:

n∆(Xn)
d

log(n)
≤ 8

θd
almost surely.

n∆(Xn)
d

log(n)
≥ λ

θd
for finitely many n.

• (ii) Given a fixed support that satisfies the hypthesis H1 there exists a
constant d∗S such that:

∆(Xn) ≤ d∗S for finitely many n and so
n∆(Xn)

d

log(n)
→ +∞.

• (iii) Let us denote δ0,n = ( log(n)δ0
n

)1/d and ε0,n = 2
θdnδd(Xn)

Then there

exists a function p∗n(S, δ0, kn) that depends on unkown parameters that
satisfies

– PH0(n∆(Xn)d

log(n)
≥ δ0) ≤ p∗n(S, δ0, kn)

– p̂−n (S, r0, r0,nεn,Xn) ≤ p∗n(S, r0, r0,nεn) ≤ p̂+n (S, r0, r0,nεn,Xn) al-
most surely

with :

– p̂+n (S, r0, r0,nεn,Xn) = ν

(

H(Xn),
r0,nεn

f
1/d
M

)

(1− 2−1θdr
d
0,n(1− εn)

d)n

– p̂−n (S, r0, r0,nεn,Xn) = ν

(

H(Xn),
r0,nεn

f
1/d
M

)

(1− θdr
d
0,n(1− εn)

d)n

Now using ∆int(Xn) to test H0 versus H1 with:

• H0: The support is a convex set
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• H1: The support is a non-convex set

can be done according to Theorem 4

Theorem 4. If kn log(n)d

n
→ 0 and kn

log(n)d+1 → +∞ then :

• (i) If H0 is true and λ > 4 is a constant then:

n∆int(Xn)
d

log(n)
≤ 4

θd
almost surely.

n∆int(Xn)
d

log(n)
≥ λ

θd
for finitely many n.

• (ii) Given a fixed support that satisfies the hypthesis H1 there exist a
constant d′∗S such that

∆int(Xn) ≤ d′∗S for finitely many n and so:
n∆int(Xn)

d

log(n)
→ +∞.

• (iii) Let us denote δ0,n = ( log(n)δ0
n

)1/d and ε0,n = 1
θdnδd(Xn)

. Then there

exists a function q∗n(S, δ0, kn) that depends on unkown parameters that
satisfies

– PH0(n∆
int(Xn)d

log(n)
≥ δ0) ≤ q∗n(S, δ0, kn)

– q̂−n (S, r0, r0,nεn,Xn) ≤ q∗n(S, r0, r0,nεn) ≤ q̂+n (S, r0, r0,nεn,Xn) al-
most surely

with :

– q̂+n (S, r0, r0,nεn,Xn) = ν

(

H(Xn),
r0,nεn

f
1/d
M

)

(1− θdr
d
0,n(1− εn)

d)n

– q̂−n (S, r0, r0,nεn,Xn) = ν

(

H(Xn),
r0,nεn

f
1/d
M

)

(1− 2θdr
d
0,n(1− εn)

d)n

As in the uniform case the proofs Theorem 3 can be found in the appendix.
The following subsection is dedicated to discussing the unusual choice of the
density estimation method. Following that, as for the uniform case, we will
focus on the computational aspects and present some results.
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3.2 Remark about the choice of the density estimation
method

The choice of the simplest nearest neighbor density estimation has been done
for simplicity but it may be interesting to explore if other ways to estimate
density the can be made.

The choice of a density estimation that is constant on the Voronoi cells
is important for the computational aspects: such a choice allows us to keep
the method to look for the maximum descibed in 2.2.1. It is for that reason
the coice has been made, but it also has another advantage linked to the
existence of a consistent decision rule. Let us first remark that the existence
of a consistent decision rule is a corollary of points (i) and (ii) of the theorems.

The choice of this density estimator is linked to point (ii). Let us now
imagine that the support is not convex. There exist x0 ∈ H(S) and d(x0, S) =
d0 > 0. Thus ∆(Xn) is expected to be higher than d0f̂kn(x0)

1/n.

• With our estimation method the estimated density is a f̃(Xi) and as
Xi ∈ S, f̃(Xi) is expected to be higher than fm (in fact it will be
2−1/dfm but it is still a positive constant);

• With a classical nearest neighbor density estimation f̂kn(x0) will con-
verge towards 0.

3.3 Computation of the estimated p− value

3.3.1 Reasonable values for d and n

When d and n are reasonable enough values to allow the computation of the
convex hull, the Delaunay complex and the Voronoi cells, the computation of
every part of the statitistic can be computed exactly as in the uniform case.

3.3.2 High dimension

When the dimension is too high to allow the computation of the convex hull,
the Delaunay complex and the Voronoi cells, two problems appear:

• The computation of an upper bound for ν(H(Xn), ε),

• The computation of the statistic.

For the computation of an upper bound for ν(S, ε) it can be proposed to
include H(Xn) in a box (i.e. a set isometric to a

∏

[0, bd]) and to compute
the convering number of the box.
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For the computation of the statistics, two different cases have to be imag-
ined:

• If n is ”reasonable”, we can look for an upper bound on every Xi,j =
(Xi +Xj)/2 (idea based on the [10]).

• When n is so fast that the previously proposed algorithm is not fast
enough, a quicker maximization algorithm (such as a genetic algorithm)
has to be considered.

3.4 Some Results

As for the uniform, case results are better in practice than the poor conver-
gence speed seems to indicate. We will not present here a detailed series of
examples, but we make the choice to study the impact of the choice for k the
number of neighbors. When working with k−nearest neighbors an asymp-
totical result for convergence is established but it does not gives accurate
values for k for specific studies.

We first recall that in all applications convexity is prefered to non-convexity.
Let us first observe the behaviour of the estimated p−value for a simulation
on a support non-convex support. Here we have computed N = 100 samples
of size n = 200 with d = 2 and we have used every value for k from 1 to 199.
Computed p−values are presented in Figure 4, and it can be observed that
every value from 5 to 199 can be chosen. It can also be observed that when
the number of neighbors is too small there is instability and the estimated
p−value can be too small.

We now test our method for a sample of size 200 and dimension 2, realized
as follows :

• r follows a normal law of mean 0 and variance 1 conditioned to have
its values in [a0, 2] (with a0 ∈ {0.2, 0.25, 0.3, 0.35, 0.4, 0.45}),

• θ follows a uniform law on [0, 2π],

• X = (r cos(θ), r sin(θ)).

Results are presented in Figure 5. To see the effect of the introduction of
the estimated density, the first column of the figure presents the result for the
first test based on the uniform hypothesis. The second column presents the
result for the test without the uniform hypothesis. The indicated p−value
has been automatically computed as the smallest for the tested values of
k. This p−value has to be compared to the last column which presents the
estimated p−value as a function of the number of neighbors. For instance, for
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1

Figure 4: Estimation of the p−value for N = 100 samples of size n = 200
with d = 2 uniformly randomized on a d−dimensional ball for k from 1 to
20 (for higher k the estimated p−value is always 1)

the third line the minimum value is very small but the minimum is realized
for k = 5. According to the previous remark, when looking at the result on a
known convex support we should not trust this small value but rather trust
the 0.06 value observed for k = 84. Let us remark that the second test always
correctly locates the hole in the support even if it does not always recognize
the non-convexity of the support. The values a0 ∈ [0.3, 0.35] have really
been observed as a critical zone where the second test starts to sometimes
recognize the non convexity.

When computing examples the same behaviour has always been observed
for the estimated p−value as a function of the number of neighbors:

• For small k values there is sometimes a highly irregular zone

• The p−value decreases then seems quite stable around a minimum value
before increasing again.

It is proposed to consider the stable minimum zone to give an approximation
of the p−value.

4 Conclusion

The proposed method to test the convexity of the density support gives quite
good results but some theoretical improvement may be done :
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Figure 5: Estimation of the p−value for N = 100 samples of size n = 200
with d = 2 uniformly randomized on a d−dimensional ball for k from 1 to
20 (for higher k the estimated p−value is always 1).

• Can a confidence interval on the p−value be found instead of a mupper
bound ?

• The strong hypothesis on the density minS f > 0 cannot be removed
(as mentioned in [10]), but when minS f = 0 can our test be used to test
the convexity of level subsest of the density (Eλ = {x such that:f(x) ≥
λ})?

Various applications can easily be imagined for a test for convexity. Let
us mention here two kinds of application for which the work has been started
and the results encouraging:
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• As mentioned in the introduction, it can help compute the geodesic
distance, and so is useful for any statistical method that is based
on geodesic distance. Such methods originally began with isomap[?].
Working with the geodesic distance instead of the euclidian one is
known to solve many problems and so has become quite popular (see
for instance [6] or [1] for new developments on the use of geodesic dis-
tance). In [10] it is proposed to use convexity test to select a result with
an a posteriori criteria, but we think that it can be used to compute the
geodesic distance a priori. The idea is very intuitive: build the graph
as follows : connect x to all the observations that are in B(x, rx), with
rx the highest value such that S ∩ B(x, rx) is convex.

• As mentioned in 2.3, a small adaptation from our test can be used to
compute a density support estimation based on a restricted Delaunay
complex with a better rule than this provided in [2].
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Appendices

A Proof of Theorem 1

A.1 Theoretical upper bound on the probability (Point

(iii− 1))

Let us start with some elementary lemmas:

Lemma 1. Let us denote

21

ha
l-0

07
02

27
5,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
2



αS[r] = inf
x∈S,ρ≤r

V (B(x, ρ) ∩ S)

V (B(x, ρ))
If ∂S is of differentiability class C2 then:

• there exists r0(S) such that, when r ≤ r0(S), αS[r] is a decreasing
function (i.e. for all r < r′ ≤ r0, αS[r] < αS[r

′]).

• limr→0 αS[r] = 0.5, and more precisely there exists r′0 and aS > 0 such
that, when r ≤ r′0, |αS[r]− 0.5| < aSr.

This is a direct corollary of Lemma 2.3 of Penrose [11].

Lemma 2. Let us pick x deterministically in S. Then
P (B(x, r) does not contains any observation ) = (1− V (B(x,r)∩S)

V (S)
)n

P (B(x, r) does not contains any observation ) ≤ (1− α[r]θdr
d)

V (S)
)n

Corollary 1. Let us pick points (x1, ..., xν(S,ε)) deterministically in S such
that S ⊂ ∪B(xi, ε). Then

P (∃i such that: B(xi, r) ∩ Xn = ∅) ≤ ν(S, ε)(1− α[r]θdr
d)

V (S)
)n.

Proof. Direct consequence of Lemma 2.

Corollary 2. When r ≤ r0(S), for all ε ∈]0, r], P (δ(Xn > r) ≤ ν(S, ε)(1 −
α[r]θd(r−ε)d)

V (S)
)n.

Proof. For a fixed ε let us cover S with small balls of radius ε as in Corollary 1.
Let us suppose that δ(Xn) > r. The compacitness of S implies the existence
of x ∈ S such that B(x, r)∩Xn = ∅. There exists i such that x ∈ B(xi, ε) and
B(xi, r− ε) ⊂ B(x, r) does not contains any observation. Lemma 1 allows us
to replace α[r − ε] by α[r] and Corollary 1 gives the conclusion.

Corollary 3. For all δ0 > 0 let us denote δ0,n = ( log(n)δ0
n

)1/d and ε0,n =
2V (H(Xn))
θdδ0 log(n)

.
There exists n0 such that, for all n ≥ n0:

P (δ(Xn) > δ0,n) ≤ pn(S, δ0) = ν(S, δ0,nε0,n)

(

1−
θdαS[δ0,n]δ

d
0,n(1− ε0,n)

d

V (S)

)n

.

Proof. This is a direct consequence of the previous corollary with r = δ0,n,
ε = δ0,nε0,n and n0 = min{n such that: δ0,n ≤ r0 and ε0,n < 1}.
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Remark: The choice for ε0,n has been empirically made as follows.

When n → +∞, c(S, δ0,nε0,n) → c(S) and so pn ∼ c(S)ε−d(1−0.5θdθd(δ0,n−ε)d)

V (S)
)n

and we want to minimize this function. If ε−d(1 − 0.5θdθd(δ0,n−ε)d)

V (S)
)n is mini-

mized for xn = o(δ0,n) (which is empirically observed) then xn ∼ 2V (S)
θdδ0 log(n)

δ0,n ∼
2V (H(Xn))
θdδ0 log(n)

δ0,n.

The first part of Theorem 1 is thus proved.

A.2 Proof of convergence (point (iii− 2))

It has now to be proved that

p̂n(H(Xn), δ0) = ν(H(Xn), δ0,nε0,n)

(

1−
θdδ

d
0,n(1− ε0,n)

d

2V (H(Xn))

)n

gives a good approximation of

ν(S, δ0,nε0,n)

(

1− θdαS[δ0,n]δ
d
0,n(1− ε0,n)

d

V (S)

)n

i.e. that:

• p̂n(H(Xn), δ0)/pn(S, δ0)
L2

−→ 1, and

• n1/(d)

log(n)
(p̂n(H(Xn), δ0)/pn(S, δ0)− 1) = Op(1).

A.2.1 Convergence for the first term of the product

We now study the convergence of ν(H(Xn), ε)/ν(S, ε) toward 1. Let us first
remark that if S is convex then ν(H(Xn), ε)/ν(S, ε) ≤ 1. The main problem
is to find a lower bound for this quantity. For that, let us remark that:

Lemma 3. Let us denote S−
a = {x ∈ S,B(x, a) ⊂ S}. For all r ≤ a,

P (∃x ∈ S−
a such that B(x, r) ∩ Xn = ∅) ≤ ν(S, ε)(1− θd(r − ε)d/V (S))n.

The proof is the same as that of Corollary 2.

Corollary 4. Let us denote

δa(X = n) = maxx∈S−

a
{r such that B(x, r) ∩ Xn = ∅}.

Then
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δa(Xn) ≤
(

2V (S) log(n)

θdn

)1/d

almost surely.

Proof. Let ρn = (2V (S) log(n)
θdn

)1/d. Apply Lemma 3 replacing:

• r by the series ρn(ε
′) = ρn(1 + ε′),

• ε by the series e(ε′) = ρnε
′/2.

Then P (δ(Xn) ≥ ρn(ε
′) ≤ C(S)(ρnε

′/2)−d n
log(n)

O(n−2(1+ε′/2)d)

so
∑

P (δ(Xn) ≥ ρn(ε
′) < +∞. The Borrel-Cantelli lemma gives the

conclusion.

In the following the notation ρn = (2V (S) log(n)
θdn

)1/d is kept.

Corollary 5. If S is convex S−
2ρn ⊂ H(Xn) almost surely

Proof. Let us suppose the converse. Then there exists a point x ∈ S−
2ρn that

is not inH(Xn). AsH(Xn) is obvioulsy convex, there exists −→u with ||−→u || = 1

and, for all i,
−−→
xXi.

−→u ≤ 0. Let us define y as follows: −→xy = ρn
−→u . It is easy

to see that:

• y ∈ S−
ρn ,

• B(y, ρn) does not contains any observation.

That is (almost surely) not possible.

Corollary 6. There exists a constant c∗(S) such that

1− c∗(S)

(

log(n)

n

)d
ν(H(Xn), δ0,nε0,n)

ν(S, )δ0,nε0,n
≤ 1.

Proof. For a fixed n let us cover ∂S with deterministic points x∗
1,n, ..., x

∗
i,n, ...x

∗
ν(∂S,2ρn),n

.

ν(∂S, 2ρn), n < C(∂S)ρ−d+1
n . It is easy to see that S \ S−

2ρn ⊂ ∪iB(x∗
i,n, 4ρn)

so
ν(S \ S−

2ρn , δ0,nε0,n) ≤
∑

i

ν(B(x∗
i,n, 4ρn), δ0,nε0,n),

ν(S \ S−
2ρn , δ0,nε0,n) ≤ C(∂S)(ρn/2)

−d+1ν(B(0, 1), δ0,nε0,n/(4ρn)),

ν(S \ S−
2ρn , δ0,nε0,n) ≤ 2d+1C(∂S)C(B(0, 1))ρn(δ0,nε0,n)−d.
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On the other hand,

ν(S, δ0,nε0,n) ≥ C−(S)(δ0,nε0,n)
−d,

so according to the previous corollary,

ν(S \ H(Xn), δ0,nε0,n)

ν(S, δ0,nε0,n)
≤ ρn

2d+1C(∂S)C(B(0, 1))
C−(S)

.

A.2.2 Convergence for the second term of the product

Corollary 7. Let S be a d−dimensional convex set that has a boundary, ∂S,
of differentiability class C2:

let Xn = {X1, ..., Xn} be a set of n independant and uniformly distributed
points on S.

Let δ0,n be the series δ0,n = ( log(n)δ0
n

)1/d. Then

nδd0,nθd

(

αS[δ0,n]

V (S)
− 1

2V (H(Xn))

)

a.s.−−→ 0.

More precisely there exist constants a1 and a2 such that

a1 ≤
n1/d

log(n)1+1/d

[

nδd0,nθd

(

αS[δ0,n]

V (S)
− 1

2V (H(Xn))

)]

≤ a2 a.s..

Proof. This is a direct consequence of Theorem 5 and Lemma 1. Let us write
αS [δ0,n]

V (S)
− 1

2V (H(Xn))
= αS [δ0,n]−0.5

V (S)
+ 1

2

(

1
V (S)

− 1
V (H(Xn))

)

. Lemma 1 and Theorem

5 imply that the two parts of the sum are both O((log(n)/n)1/d).

Corollary 8. Let S be a d−dimensional convex set that has a boundary, ∂S,
of differentiability class C2:

Let Xn = {X1, ..., Xn} be a set of n independant and uniformly distributed
points on S.

Let δ0,n be the series δ0,n = ( log(n)δ0
n

)1/d and ε0,n ∈ [0, 1], εn,0 → 0. Then




1− θdδ
d
0,n(1−ε0,n)d

2V (H(Xn))

1− θdαS [δ0,n]δ
d
0,n(1−ε0,n)d

V (S)





n

a.s.−−→ 1,

and there exists b1 and b2 such that

b1 ≤
n1/d

log(n)1+1/d









1− θdδ
d
0,n(1−ε0,n)d

2V (H(Xn))

1− θdαS [δ0,n]δd0,n(1−ε0,n)d

V (S)





n

− 1



 ≤ b2 a.s.
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The convergence part of Theorem 1 is a direct consequence of Corrolaries
6 and 8.

A.3 Note on the convergence speed

For Theorem 1 our easy work on Xn that lead to Corrolaries 6, 7 and 8 is
sufficient since, in the first case the convergence speed can not be higher
than n1/d/(logn1+1/d) because of the αS term. When proving Theorem 2
every step is the same but getting rid of the α term.

the existence of the following theorem due to [3],[14],[12] may indicates
that the true convergence speed is higher than ours.

Theorem 5. Let S be a d−dimensional convex set and Xn = {X1, ..., Xn}
be a random sample of n independant and uniformly distributed points in S.
Then

n2/(d+1)(V (S)− V (H(Xn)))
L1

−→ γdV (S)2/(d+1)Ω(S).
If now the boundary of S, ∂S is assumed to have a differentiability class

C2 then

n2/(d+1)(V (S)− V (H(Xn)))
L2

−→ γdV (S)2/(d+1)Ω(S)
with γd a constant that only depends on d and Ω(S) the affine surface

area.

However working with high refinement on the convex hull is a very difficult
task (see for instance the 20 years between results on the mean and results
on the variance or the length of [15]), and it is reasonable to satisfy ourselves
with a quick result that allows almost surely convergence for the volume and
that allows us to prove the convergence of the covering number.

A.4 Proof of the two first points

Recall that the first point of Theorem 1 is :
(i) If H0 is true and λ > 4 is a constant then:

nδ(Xn)
d

log(n)
≤ 4V (S)

θd
almost surely.

nδ(Xn)
d

log(n)
≥ λV (H(Xn))

θd
for finitely many n.

The first inequality can be proved exactly as in Corollary 4 (using Corol-
lary 1 instead of Lemma 3). To prove the second part one has to combine
this with Corollary 4 and Corollary 5.
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Let us now focus on the second point, which does not have a proof similar
to those above:

Lemma 4. Given a fixed support that satisfies the hypthesis H1, there exists
a constant dS such that

δ(Xn) ≤ dS for finitely many n and so
nδ(Xn)

d

log(n)
→ +∞.

Proof. Let us assume that S is not convex, then there exists x0 ∈ H(S) with
x0 /∈ S. As S is a closed set this can be improved to : x0 ∈ H̊(S) with
x0 /∈ S. We are now going to prove that:

x0 /∈ H(Xn) for finitely many n.

Since x0 ∈ ˚H(S), there exists y1, .., yd ∈ S such that x0 ∈ H̊({y1, .., yd}).
So there exists ε > 0 such that for any (y′1, .., y

′
d) ∈ ΠB(yi, ε), x0 ∈ H̊({y′1, .., y′d}).

Thus :

P (x0 /∈ H(Xn)) ≤ P (∃i such that: B(yi, ε) ∩ Xn = ∅),

P (x0 /∈ H(Xn)) ≤ d(1− αS[ε]θdε
d/V )n.

The series is summable, so the Borrel-Cantelli Lemma implies that x0 /∈
H(Xn) for finitely many n.

This implies that δ(Xn) < d(x0, S) for finitely many n. The fact that
d(x0, S) > 0 because of the closeness of S completes the proof.

B Proof of Theorem 3

The proof of theorem 3 will not be as detailed as that of theorem 1 when
arguments are very similar (as for the two first points for instance).

B.1 Theoretical bound on the probability (points iii−
1)

Lemma 5. Let us again write r0,n = r0

(

n
log(n)

)1/d

.

Let us denote by An(r0) the event {∃x,B(x, r0,nf(x)−1/d) ∩ Xn = ∅}.
Let us denote by B the constant B = 1 +K−1/d
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For all ε ≤ r0,n,

P (An(r0)) ≤ ν

(

S,
ε

f
1/d
M

)

(

1− θdαS[r0,n](r0,n − ε)d(1−K1r0,n)(1−Bε)d
)n

Proof. For a deterministic x:

P (B(x, r/f(x)1/d) ∩ Xn = ∅) ≤
(

1− θdα[r/f
1/d
m ]rd(1− rK1)

)n
.

Let us now cover S with determinitic balls B(xi, ε/f(xi)
1/d) with ε ≤ r.

Let us suppose that B(x, ρ/f(x)1/d does not contain any observation. There
exists i such that x ∈ B(xi, ε/f(xi)

1/d) and so:

• f(x)−1/d ≥ f(xi)
−1/d(1−K−1/dε), so B(x, ρ(1−K−1/dε)/f(xi)

1/d) does
not contain any observations.

• Then B(xi, ρ(1 − (K−1/d + 1)ε)/f(xi)
1/d) does not contain any obser-

vation.

To finish the proof, replace ρ by r0,n and remark that ε/f(xi)
1/d ≥ ε/f

1/d
M .

Corollary 9. Let mn(= mn(Xn)) denote minx f(x)/f̂kn(x)
For all εn = o(r0,n) there exists n1 such that, for all n ≥ n1:

P (∆(Xn) ≥ r0,n) ≤ p∗n(S, r0, εn,Xn)

with

p∗n(S, r0, εn,Xn) = ν

(

S,
εn

f
1/d
M

)

(

1− θdαS[r0,nmn](r0,nmn − εn)
d(1−K1r0,nmn)(1− Bεn)

d
)n

.

This is a direct consequence of the previous lemma with n1 such that
r0,n1mn < r0(S), K1r0,nmn ≤ 1 and Bεn ≤ 1 . In fact for a completely
rigorous proof one need the previous Lemma 5, which proves that there
exists n2 such that for all n ≥ n2, mn ∈ [0.5, 2].

B.2 Convergence (Points iii− 2)

Corollary 10. Let us define

p̂+n (S, r0, r0,nεn) = ν

(

H(Xn),
r0,nεn

f
1/d
M

)

(1− 2−1θdr
d
0,n(1− εn)

d)n.
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and

p̂−n (S, r0, r0,nεn) = ν

(

H(Xn),
r0,nεn

f
1/d
M

)

(1− θdr
d
0,n(1− εn)

d)n.

If log(n)(md
n − 1) ≥ 0 almost surely and if log(n)(md

n − 2) ≤ 0 almost
surely and if S is convex with a C2 boundary ∂S, then q̂−n (S, r0, r0,nεn) ≤
qn(S, r0, r0,nεn,Xn) ≤ q̂+n (S, r0, r0,nεn) almost surely.

The proof requires two parts: the convergence of the covering numbers
(for which the proof is very similar to the uniform case) and the proof of the
convergence for the second component of the product (wich is obvious).

We are now going to prove that log(n)(md
n − 1) ≥ 0 almost surely and if

log(n)(md
n − 2) ≤ 0 almost surely .

Lemma 6. Let us denote m̃n = min
(

f(x)

f̃kn(x)

)1/d

.

If kn log(n)d

n
→ 0 and kn/ log(n)

3 → +∞

then log(n)(m̃n − 1) ≥ 0 a.s.

Remark: Results on uniform convergence (as in [7]) can not be applied
here because they requires uniform continuity on R for f . Obviously our
hypotheses on f are not compatible with the uniform continuity.

Proof. Let us assume that kn log(n)d

n
→ 0 and kn/ log(n)

3 → +∞. Start to pick
a deterministic x in S. Let us denote ρn(ε, x) = (1−ε/(3 log(n))(kn/(nθdf(x)))

1/d.
Then

(

f(x)

f̃kn(x)

)1/d

≤ (1−ε/(3 log(n))) ⇔ B(x, ρn(ε, x)) contains most than kn points

The probability for an observation to be in B(x, ρn(ε, x)) is bounded above
by:

λn = (1 +K1ρn(ε, x))
kn
n
(1− ε/(3 log(n)))d.

Thus

P

(

(

f(x)

f̃kn(x)

)1/d

≤ (1− ε/(3 log(n)))

)

= O

(

Φ

(

nλn − kn√
nλn

))
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and since kn log(n)d

n
→ 0, nλn − kn ∼ −d ε

3 log(n)

Hence

P

(

(

f(x)

f̃kn(x)

)1/d

≤ (1− ε/(3 log(n)))

)

= O

(

log(n)

kn
exp

(

−9d2ε2kn
log(n)2

))

Let us now cover S with ν(S, ( kn
nθdfM

)1/d ε
3 log(n)

) deterministic balls centered

on xi with radius an = ( kn
nθdfM

)1/d ε
3 log(n)

.

The probability λ′
n that there exists a xi with

(

f(xi)

f̃kn(xi)

)1/d

≤ (1−ε/(3 log(n)))

satisfies:

λ′
n = O

(

n log(n)d+1

k
3/2
n

exp

(

−9d2ε2kn
log(n)2

))

.

One easily shows that if kn/ log(n)
3 → +∞ then

∑

λ′
n < +∞.

Let us now suppose that there exists x ∈ S such that:

(

f(x)

f̃kn(x)

)1/d

≤ (1− ε/(log(n))).

Then B(x, ρn(3ε, x)) contains most than kn points. There exists xi such
that x ∈ B(xi, an). Let us first remark that, as kn/n → 0, an = o(1/ log(n)),

and there exists n0(ε) such that for all n ≥ n0(ε), an ≤
(

1−2ε/(3 log(n))
1−ε/ log(n)

− 1
)

1
K

−1/d
.

Now x ∈ B(xi, an) and so, for n ≥ n0(ε), B(x, ρn(3ε, x)) ⊂ B(x, ρn(2ε, xi)) ⊂
B(xi, ρn(ε, xi)).

So B(xi, ρn(ε, xi)) contains at least kn points.

To conclude, P (
(

f(x)

f̃kn(x)

)1/d

≤ (1 − ε/(log(n)))) ≤ λ′
n and the Borrel-

Cantelli lemma allows us to conclude that

log(n) (mn − 1) ≥ 0 a.s.

Lemma 7. Let us denote M̃n = max
(

f(x)

f̃kn (x)

)1/d

. If S has a C2 boundary, if

kn log(n)d

n
→ 0 and kn/ log(n)

3 → +∞

log(n)(M̃n − 21/d) ≤ 0 a.s.

The proof uses the same kind of steps.
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Lemma 8. Let us denote bym∗
n = minx∈S(f̃(x)/f̂(x)) and M∗

n = maxx∈S(f̃(x)/f̂(x)).

If kn log(n)d

n
→ 0 and kn

log(n)d+1 → +∞ then:

log(n)(m∗
n − 1)

a.s.−−→ 0
and log(n)(M∗

n − 1)
a.s.−−→ 0

Let us denote ρkn(x) the distance between x and its kthe
n neighbor. Let y

be a point in V or(x). Then we see that:

ρkn(y) ≤ ρkn(x) + ||x− y|| and ρkn(x) ≤ ρkn(y) + ||x− y||,
If for all x in S we let X(x) denote the observation Xi such that x ∈

V or(Xi) then

∣

∣

∣

∣

∣

∣

(

f̃kn(x)

f̂kn(x)

)1/d

− 1

∣

∣

∣

∣

∣

∣

≤ ||x−X(x)||
f̃
1/d
kn

(x)
.

With the same kind of reasoning as in Corollary 4 there exists a constant
C1 such that:

For all x : ||x−X(x)|| ≤ C1

(

log(n)
n

)1/d

a.s.

With the same kind of reasoning as in Corollary 5, there exists a constant
C2 such that

For all x : f̃
1/d
kn

(x) ≥ C2

(

kn
n

)1/d
a.s.

The additional condition on kn:
kn

log(n)d+1 → +∞ ensures the conclusion

Corollary 11. If d ≥ 2, if kn log(n)d

n
→ 0 and kn

log(n)d+1 → +∞ then

log(n)(mn − 1) ≥ 0 a.s. and log(n)(mn − 21/d) ≤ 0 a.s.

Corollary 12. Let us define

q̂−n (S, r0, r0,nεn) = ν

(

H(Xn),
r0,nεn

f
1/d
M

)

(1− 2−1θdr
d
0,n(1− εn)

d)n

and

q̂+n (S, r0, r0,nεn) = ν

(

H(Xn),
r0,nεn

f
1/d
M

)

(1− 2−1+1/dθdr
d
0,n(1− εn)

d)n

If kn log(n)d

n
→ 0 and kn

log(n)d+1 → +∞ and if S is convex with a C2 bound-

ary ∂S then q̂−n (S, r0, r0,nεn) ≤ qn(S, r0, r0,nεn,Xn) ≤ q̂+n (S, r0, r0,nεn) almost
surely.

This completes the proof of Point (iii) of Theorem 3.
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