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We apply the semidefinite programming method to derive bounds for projective codes over a finite field.

Introduction

In network coding theory, as introduced in [START_REF] Ahlswede | Network information flow[END_REF], information is transmitted through a directed graph. In general this graph has several sources, several receivers, and a certain number of intermediate nodes. Information is modeled as vectors of fixed length over a finite field F q , called packets. To improve the performance of the communication, intermediate nodes should forward random linear F q -combinations of the packets they receive. This is the approach taken in the non-coherent communication case, that is, when the structure of the network is not known a priori [START_REF] Ho | The benefits of coding over routing in a randomized setting[END_REF]. Hence, the vector space spanned by the packets injected at the source is globally preserved in the network when no error occurs. This observation led Koetter and Kschischang [START_REF] Koetter | Coding for errors and erasures in random network coding[END_REF] to model network codes as subsets of projective space P(F n q ), the set of linear subspaces of F n q , or of Grassmann space G q (n, k), the subset of those subspaces of F n q having dimension k. Subsets of P(F n q ) are called projective codes while subsets of the Grassmann space will be referred to as constant-dimension codes or Grassmann codes.

As usual in coding theory, in order to protect the system from errors, it is desirable to select the elements of the code so that they are pairwise as far as possible with respect to a suitable distance. The subspace distance between U and V

d S (U, V ) = dim(U + V ) -dim(U ∩ V ) = dim U + dim V -2 dim(U ∩ V )
was introduced in [START_REF] Koetter | Coding for errors and erasures in random network coding[END_REF] for this purpose. It is natural to ask how large a code with a given minimal distance can be. Formally, we define A q (n, d) := max{|C| : C ⊂ P(F n q ), d S (C) ≥ d} A q (n, k, 2δ) := max{|C| : C ⊂ G q (n, k), d S (C) ≥ 2δ} where d S (C) denotes the minimal subspace distance among distinct elements of a code C. In this paper we will discuss and prove upper bounds for A q (n, d) and A q (n, k, 2δ).

1.1. Bounds for A q (n, k, 2δ). Grassmann space G q (n, k) is a homogeneous space under the action of the linear group GL n (F q ). Moreover, the group acts distance transitively when we use the subspace distance; the orbits of GL n (F q ) acting on pairs (U, V ) of G q (n, k) are characterized by the subspace distance d(U, V ). In other words, Grassmann space is two-point homogeneous under this action.

Due to this property, codes and designs in G q (n, k) can be analyzed in the framework of Delsarte's theory, in the same way as other classical spaces in coding theory, such as Hamming space and binary Johnson space. In fact, G q (n, k) is a q-analog of binary Johnson space; see [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF]. The linear group plays the role of the symmetric group for the Johnson space, while the dimension replaces the weight function.

The classical bounds (anticode, Hamming, Johnson, Singleton) have been derived for the Grassmann codes [START_REF] Koetter | Coding for errors and erasures in random network coding[END_REF][START_REF] Wang | Linear authentication codes: bounds and constructions[END_REF][START_REF] Xia | Johnson type bounds on constant dimension codes[END_REF]. The more sophisticated Delsarte linear programming bound was obtained in [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF]. However, numerical computations indicate that it is not better than the anticode bound. Moreover, the Singleton and anticode bounds have the same asymptotic behavior which is attained by a family of Reed-Solomon-like codes constructed in [START_REF] Koetter | Coding for errors and erasures in random network coding[END_REF] and closely related to the rank-metric Gabidulin codes. 1.2. Bounds for A q (n, d). In contrast to G q (n, k), the projective space has a much nastier behavior, essentially because it is not two-point homogeneous. In fact it is not even homogeneous under the action of a group. For example, the size of balls in this space depends not only on their radius, but also on the dimension of their center. Consequently, bounds for projective codes are much harder to obtain. Etzion and Vardy in [START_REF] Etzion | Error-correcting codes in projective space[END_REF] provide a bound in the form of the optimal value of a linear program, which is derived by elementary reasoning involving packing issues. Up to now the Etzion-Vardy bound is the only successful generalization of the classical bounds to projective space.

In this paper we derive semidefinite programming bounds for projective codes and compare them with the above mentioned bounds.

In convex optimization, semidefinite programs generalize linear programs and one can solve them by efficient algorithms [START_REF] Todd | Semidefinite optimization[END_REF], [START_REF] Vandenberghe | Semidefinite programming[END_REF]. They have numerous applications in combinatorial optimization. The earliest is due to Lovász [START_REF] Lovász | On the Shannon capacity of a graph[END_REF] who found a semidefinite programming upper bound, the theta number, for the independence number of a graph.

Because a code with given minimal distance can be viewed as an independent set in a certain graph, the theta number also applies to coding theory. However, because the underlying graph is built on the space under consideration, its size grows exponentially with the parameters of the codes. So by itself the theta number is not an appropriate tool, unless the symmetries of the space are taken into account. A general framework for symmetry reduction techniques of semidefinite programs is provided in [START_REF] Bachoc | Invariant semidefinite programs[END_REF]. For the classical spaces of coding theory, after symmetry reduction, the theta number turns out to be essentially equal to the celebrated Delsarte linear programming bound. For projective spaces, the symmetry reduction was announced in [START_REF] Bachoc | More semidefinite programming bounds (extended abstract)[END_REF] (see also [START_REF] Bachoc | Applications of semidefinite programming to coding theory[END_REF]). The program remains a semidefinite program (it does not collapse to a linear program) but fortunately it has polynomial size in the dimension n.

The relationship between Delsarte's linear programming bound and the theta number was recognized long ago in [START_REF] Schrijver | A comparison of the Delsarte and Lovász bound[END_REF] and [START_REF] Mceliece | The Lovász bound and some generalizations[END_REF]. Recently, more applications of semidefinite programming to coding theory have been developed, see [START_REF] Schrijver | New code upper bounds from the Terwilliger algebra and semidefinite programming[END_REF], [START_REF] Bachoc | New upper bounds for kissing numbers from semidefinite programming[END_REF], [START_REF] Vallentin | Symmetry in semidefinite programs[END_REF], [START_REF] Gijswijt | Semidefinite code bounds based on quadruple distances[END_REF] and the survey [START_REF] Bachoc | Applications of semidefinite programming to coding theory[END_REF].

1.3. Organization of the paper. In Section 2 we review the classical bounds for Grassmann codes and the Etzion-Vardy bound for projective codes. In Section 3 we present the semidefinite programming method in connection with the theta number. We show that most of the bounds for Grassmann codes can be derived from this method. In Section 4 we reduce the semidefinite program by the action of the group GL n (F q ). In Section 5 we present numerical results obtained with this method and we compare them with the Etzion-Vardy method for q = 2 and n ≤ 16. Another distance of interest on projective space, the injection distance, was introduced in [START_REF] Kschischang | On Metrics for Error Correction in Network Coding[END_REF]. We show how to modify the Etzion-Vardy bound as well as the semidefinite programming bound for this.

Elementary bounds for Grassmann and projective codes

2.1. Bounds for Grassmann codes. In this section we review the classical bounds for A q (n, k, 2δ). We note that the subspace distance takes only even values on the Grassmann space and that one can restrict to k ≤ n/2 by the relation A q (n, k, 2δ) = A q (n, n -k, 2δ), which follows by considering orthogonal subspaces.

We recall the definition of the q-analog of the binomial coefficient that counts the number of k-dimensional subspaces of a fixed n-dimensional space over F q , i.e. the number of elements of G q (n, k).

Definition 2.1. The q-ary binomial coefficient is defined by n k q = (q n -1) . . . (q n-k+1 -1) (q k -1) . . . (q -1) .

2.1.1. Sphere-packing bound.

(1)

A q (n, k, 2δ) ≤ |G q (n, k)| |B k (δ -1)| = n k q ⌊(δ-1)/2⌋ m=0 k m q n-k m q q m 2
It follows from the well-known observation that balls of radius δ -1 centered at elements of a code C ⊂ G q (n, k) with minimal distance 2δ are pairwise disjoint and have the same cardinality

⌊(δ-1)/2⌋ m=0 k m q n-k m q q m 2 .
2.1.2. Singleton bound [START_REF] Koetter | Coding for errors and erasures in random network coding[END_REF].

(2)

A q (n, k, 2δ) ≤ n -δ + 1 k -δ + 1 q
It is obtained by the introduction of a "puncturing" operation on the code.

2.1.3. Anticode bound [START_REF] Wang | Linear authentication codes: bounds and constructions[END_REF]. An anticode of diameter e is a subset of a metric space whose pairwise distinct elements are at distance less or equal than e.

The general anticode bound (see [START_REF] Delsarte | An algebraic approach to the association schemes of coding theory[END_REF]) states that, given a metric space X which is homogeneous under the action of a group G, for every code C ⊂ X with minimal distance d and for every anticode A of diameter d -1, we have

|C| ≤ |X| |A| .
Spheres of given radius r are anticodes of diameter 2r. So if we take A to be a sphere of radius δ -1 in G q (n, k) we recover the sphere-packing bound.

Obviously, to obtain the strongest bound, we have to choose the largest anticodes of given diameter, which in our case are not spheres. Indeed, the set of all elements of G q (n, k) which contain a fixed (k -δ + 1)-dimensional subspace is an anticode of diameter 2δ -2 with n-k+δ-1 δ-1 q elements and which is in general larger than the sphere of radius δ -1. Moreover Frankl and Wilson proved in [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] that these anticodes have the largest possible size. Taking such A in the general anticode bound, we recover the (best) anticode bound for G q (n, k):

(3)

A q (n, k, 2δ) ≤ n k q n-k+δ-1 δ-1 q = n k-δ+1 q k k-δ+1 q = (q n -1)(q n-1 -1) . . . (q n-k+δ -1) (q k -1)(q k-1 -1) . . . (q δ -1)
It follows from the previous discussion that the anticode bound improves the sphere-packing bound. Moreover, the anticode bound is usually stronger than the Singleton bound, with equality only in the cases n = k or δ = 1, see [START_REF] Xia | Johnson type bounds on constant dimension codes[END_REF].

2.1.4. First and second Johnson-type bound [START_REF] Xia | Johnson type bounds on constant dimension codes[END_REF].

(4) A q (n, k, 2δ) ≤ (q n -1)(q k -q k-δ ) (q k -1) 2 -(q n -1)(q k-δ -1) as long as (q k -1) 2 -(q n -1)(q k-δ -1) > 0, and (5)

A q (n, k, 2δ) ≤ q n -1 q k -1 A q (n -1, k -1, 2δ) .
These bounds were obtained in [START_REF] Xia | Johnson type bounds on constant dimension codes[END_REF] through the construction of a binary constant-weight code associated to every constant-dimension code. Iterating the latter, one obtains

(6) A q (n, k, 2δ) ≤ q n -1 q k -1 q n-1 -1 q k-1 -1 . . . q n-k+δ -1 q δ -1 . . . .
If the floors are removed from the right hand side of ( 6), the anticode bound is recovered, so ( 6) is stronger. In the particular case of δ = k and if n ≡ 0 mod k, (6) was sharpened in [START_REF] Etzion | Error-correcting codes in projective space[END_REF] to

(7) A q (n, k, 2k) ≤ q n -1 q k -1 -1.
For δ = k and if k divides n, we have equality in [START_REF] Delsarte | An algebraic approach to the association schemes of coding theory[END_REF], because of the existence of spreads (see [START_REF] Etzion | Error-correcting codes in projective space[END_REF])

A q (n, k, 2k) = q n -1 q k -1 .
Summing up, the strongest upper bound for constant dimension codes reviewed so far comes by putting together ( 6) and ( 7):

Theorem 2.2. If n -k ≡ 0 mod δ, then A q (n, k, 2δ) ≤ q n -1 q k -1 . . . q n-k+δ+1 -1 q δ+1 -1 q n-k+δ -1 q δ -1 -1 . . . otherwise A q (n, k, 2δ) ≤ q n -1 q k -1 . . . q n-k+δ+1 -1 q δ+1 -1 q n-k+δ -1 q δ -1 . . . .

A bound for projective codes.

Here we turn our attention to projective codes whose codewords have not necessarily the same dimension, and we review the bound obtained by Etzion and Vardy in [START_REF] Etzion | Error-correcting codes in projective space[END_REF]. The idea is to split a code C into subcodes n -i ℓ -j q q j(ℓ-j) .

C k = C ∩ G q (n, k) of constant dimension,
We define c(i, k, e)

:= |B(V, e) ∩ G q (n, k)| for V of dimension i. It is not difficult to prove that (8) c(i, k, e) = min{k,i} j=⌈ i+k-e 2 ⌉ i j q n -i k -j q q (i-j)(k-j) .
Theorem 2.3 (Linear programming bound for codes in P(F n q ), [START_REF] Etzion | Error-correcting codes in projective space[END_REF]).

A q (n, 2e + 1) ≤ max n k=0

x k :

x k ≤ A q (n, k, 2e + 2) for k = 0, . . . , n, n i=0 c(i, k, e)x i ≤ n k q for k = 0, . . . , n
Proof. For C ⊂ P(F n q ) of minimal distance 2e + 1, and for k = 0, . . . , n, we introduce

x k = |C ∩ G q (n, k)|. Then n k=0
x k = |C| and each x k represents the cardinality of a subcode of C of constant dimension k, so it is upper bounded by A q (n, k, 2e + 2). Moreover, balls of radius e centered at the codewords are pairwise disjoint, so the sets

B(V, e) ∩ G q (n, k) for V ∈ C are pairwise disjoint subsets of G q (n, k). So V ∈C |B(V, e) ∩ G q (n, k)| ≤ |G q (n, k)|. Because |B(V, e) ∩ G q (n, k)| = c(i, k, e) if dim(V ) = i we obtain the second constraint n i=0 c(i, k, e)x i ≤ n k q .
So |C| is at most the optimal value of the linear program above.

Remark 2.4. Of course, in view of explicit computations, if the exact value of A q (n, k, 2e + 2) is not available, it can be replaced in the linear program of Theorem 2.3 by an upper bound.

3. The semidefinite programming method This formulation includes linear programming as a special case when all matrices involved are diagonal matrices. When the input data satisfies some technical assumptions (which are fulfilled for our application) then there are polynomial time algorithms which determine an approximate optimal value. We refer to [START_REF] Todd | Semidefinite optimization[END_REF] and [START_REF] Vandenberghe | Semidefinite programming[END_REF] for further details.

3.2. Lovász' theta number. In [START_REF] Lovász | On the Shannon capacity of a graph[END_REF], Lovász gave an upper bound on the independence number α(G) of a graph G = (V, E) as the optimal value ϑ(G) of a semidefinite program: [START_REF] Lovász | On the Shannon capacity of a graph[END_REF]). ( 9)

Theorem 3.1 ([
α(G) ≤ ϑ(G) := max (x,y)∈V 2 F (x, y) : F ∈ R V ×V , F 0, x∈V F (x, x) = 1, F (x, y) = 0 if xy ∈ E
Here we can write max instead of sup because one can show using duality theory of semidefinite programming that the supremum is attained: the Slater condition [24, Theorem 3.1] is fulfilled.

In the above and all along this paper, we identify a matrix indexed by a given finite set V with a function defined on V 2 . The program given in ( 9) is one of the many equivalent formulations of Lovász' original ϑ(G). If the constraint that F only attains nonnegative values is added, the optimal value gives a sharper bound for α(G). Traditionally this semidefinite program is denoted by ϑ ′ (G) [START_REF] Schrijver | A comparison of the Delsarte and Lovász bound[END_REF].

This method applies to bound the maximal cardinality A(X, d) of codes in a metric space X with prescribed minimal distance d. Indeed A(X, d) = α(G) where G is the graph with vertex set X and edges set {xy : 0 < d(x, y) < d}. So, we obtain: Corollary 3.2 (The semidefinite programming bound). ( 10)

A(X, d) ≤ max (x,y)∈X 2 F (x, y) : F ∈ R X×X , F 0, F ≥ 0, x∈X F (x, x) = 1, F (x, y) = 0 if 0 < d(x, y) < d (11) = min t/λ : F ∈ R X×X , F -λ 0, F (x, x) ≤ t for all x ∈ X, F (x, y) ≤ 0 if d(x, y) ≥ d
The second semidefinite program [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] is the dual of [START_REF] Etzion | Error-correcting codes in projective space[END_REF]. Furthermore, by weak duality, any feasible solution of the semidefinite program in [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] leads to an upper bound for A(X, d).

Bounds for Grassmann codes.

In two-point homogeneous spaces, the semidefinite program in [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] collapses to the linear program of Delsarte, first introduced in [START_REF] Delsarte | An algebraic approach to the association schemes of coding theory[END_REF] in the framework of association schemes. This fact was first recognized in the case of the Hamming space, independently in [START_REF] Mceliece | The Lovász bound and some generalizations[END_REF] and [START_REF] Schrijver | A comparison of the Delsarte and Lovász bound[END_REF]. We refer to [START_REF] Bachoc | Invariant semidefinite programs[END_REF] for a general discussion on how [START_REF] Etzion | Error-correcting codes in projective space[END_REF] and [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] reduce to linear programs in the case of two-point homogeneous spaces.

Grassmann space G q (n, k) is two-point homogeneous for the action of the group G = GL n (F q ) and its associated zonal polynomials are computed in [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF]. They belong to the family of q-Hahn polynomials, which are q-analogs of the Hahn polynomials related to the binary Johnson space.

Definition 3.3. The q-Hahn polynomials associated to the parameters n, s, t with 0 ≤ s ≤ t ≤ n are the polynomials Q ℓ (n, s, t; u) with 0 ≤ ℓ ≤ min(s, nt) uniquely determined by the properties:

(a) Q ℓ has degree ℓ in the variable [u] = q 1-u u 1 q
(b) They are orthogonal polynomials for the weights

0 ≤ i ≤ min(s, n -t) w(n, s, t; i) = s i q n -s t -s + i q q i(t-s+i) (c) Q ℓ (0) = 1.
To be more precise, in the Grassmann space G q (n, k), the zonal polynomials are associated to the parameters s = t = k. The other parameters will come into play when we analyze the full projective space in Section 4. The resulting linear programming bound is explicitly stated in [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF]: Theorem 3.4 (Delsarte's linear programming bound [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF]).

A q (n, k, 2δ) ≤ min 1 + f 1 + • • • + f k : f i ≥ 0 for i = 1, . . . , k, F (u) ≤ 0 for u = δ, . . . , k , where F (u) = 1 + k i=1 f i Q i (u) and Q i (u) = Q i (n, k, k; u) as in Defini- tion 3.3.
In order to show the power of the semidefinite programming bound, we will verify that most of the bounds in Section 2 for Grassmann codes can be obtained from Corollary 3.2 or Theorem 3.4. In each case we construct a suitable feasible solution of (11).

3.3.1. Singleton bound. We fix an arbitrary subspace w of F n q of dimension n-δ +1. We consider a function φ : G q (n, k) → {u ⊂ w : dim(u) = k -δ +1} such that φ(x) ⊂ x for all x. Clearly dim(x ∩ w) ≥ k -δ + 1. In the case of equality, we set φ(

x) = x ∩ w. If dim(x ∩ w) > k -δ + 1, φ(x) is chosen arbitrarily among the (k -δ + 1)-dimensional subspaces of x ∩ w.
We define the function

F (x, y) = 1 if φ(x) = φ(y) 0 otherwise = u⊂w dim(u)=k-δ+1 1(φ(x) = u)1(φ(y) = u)
where 1(φ(x) = u) denotes the characteristic function of the set {x ∈ G q (n, k) : φ(x) = u}. Then, F is obviously positive semidefinite, and (F, t, λ) is a feasible solution of [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] where t = 1 and

λ = n k -2 q (x,y)∈Gq(n,k) 2 F (x, y) = n k -2 q u⊂w dim(u)=k-δ+1 x∈Gq(n,k) 1(φ(x) = u) 2 .
It follows from Cauchy-Schwarz inequality that λ ≥ n-δ+1 k-δ+1 q so the Singleton bound (2) is recovered from (11).

3.3.2.

Sphere-packing and anticode bounds. The sphere-packing bound and the anticode bound in G q (n, k) can also be obtained directly, with

F (x, y) = dim(z)=k 1 B(z,δ-1) (x)1 B(z,δ-1) (y),
and

F (x, y) = dim(z)=k-δ+1 1(z ⊂ x)1(z ⊂ y) .
In general, the anticode bound |C| ≤ |X|/|A| can be derived from [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF], using the function F (x, y) = g∈G 1 A (gx)1 A (gy).

3.3.3.

First Johnson-type bound. We want to apply Delsarte's linear programming bound of Theorem 3.4 with a function F of degree 1, i.e.

F (u) = f 0 Q 0 (u) + f 1 Q 1 (u).
According to [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF] the first q-Hahn polynomials are

Q 0 (u) = 1 , Q 1 (u) = 1 - (q n -1)(1 -q -u ) (q k -1)(q n-k -1)
.

In order to construct a feasible solution of the linear program, we need

f 0 , f 1 ≥ 0 for which F (u) = f 0 + f 1 Q 1 (u) is non-positive for u = δ, . . . , k.
Then 1 + f 1 /f 0 will be an upper bound for A q (n, k, 2δ). As Q 1 (u) is decreasing, the optimal choice of (f 0 , f 1 ) satisfies

F (δ) = 0. So f 1 /f 0 = -1/Q 1 (δ)
and we need Q 1 (δ) < 0. We obtain (4):

A q (n, k, 2δ) ≤ 1 + f 1 f 0 = 1 - 1 Q 1 (δ) = (q n -1)(q k -q k-δ ) (q k -1) 2 -(q n -1)(q k-δ -1)
.

Second Johnson-type bound.

Here we find an inequality for the optimal value B q (n, k, 2δ) of the semidefinite program [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] in the case X = G q (n, k) (with the subspace distance) which resembles (5):

B q (n, k, 2δ) ≤ q n -1 q k -1 B q (n -1, k -1, 2δ).
Let (F, t, λ) be an optimal solution for the program [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] in G q (n -1, k -1) relative to the minimal distance 2δ, i.e. F satisfies the conditions: F λ, F (x, x) ≤ t, F (x, y) ≤ 0 if d(x, y) ≥ 2δ, and t/λ = B q (n -1, k -1, 2δ). We consider the function G on G q (n, k) × G q (n, k) given by

G(x, y) = dim(D)=1 1(D ⊂ x)1(D ⊂ y)F (x ∩ H D , y ∩ H D ),
where, for every one-dimensional space D, H D is an arbitrary hyperplane such that D ⊕ H D = F n q . It can be verified that the triple (G, t ′ , λ ′ ) is a feasible solution of the program [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] in G q (n, k) for the minimal distance 2δ, where t ′ = t k 1 q and λ ′ = λ k 1 2 q / n 1 q , thus leading to the upper bound

B q (n, k, 2δ) ≤ t ′ λ ′ = t λ q n -1 q k -1 = q n -1 q k -1 B q (n -1, k -1, 2δ).
Remark 3.5. In [START_REF] Etzion | Error-correcting codes in projective space[END_REF] another Johnson-type bound is given:

A q (n, k, 2δ) ≤ q n -1 q n-k -1 A q (n -1, k, 2δ),
which follows easily from the second Johnson-type bound combined with the equality A q (n, k, 2δ) = A q (n, n -k, 2δ). Similarly to above, an analogous inequality holds for the semidefinite programming bound B q (n, k, 2δ).

Semidefinite programming bounds for projective codes

In this section we perform a symmetry reduction of the semidefinite programs [START_REF] Etzion | Error-correcting codes in projective space[END_REF] and [START_REF] Frankl | The Erdős-Ko-Rado theorem for vector spaces[END_REF] in the case of projective space, under the action of the group G = GL n (F q ). We follow the general method described in [START_REF] Bachoc | Invariant semidefinite programs[END_REF]. The key point is that these semidefinite programs are left invariant under the action of G so the set of feasible solutions can be restricted to G-invariant functions F . The main work is to compute an explicit description of the G-invariant positive semidefinite functions on the projective space.

G-invariant positive semidefinite functions on projective spaces.

In order to compute these functions, we use the decomposition of the space of real-valued functions under the action of G. We take the following notations:

X = P(F n q ), X k = G q (n, k), R X = {f : X → R}.
The space R X is endowed with the inner product (, ) defined by:

(f, g) = 1 |X| x∈X f (x)g(x).
For k = 0, . . . , n, an element of R X k := {f : X k → R} is identified with the element of R X that takes the same value on X k and the value 0 outside of X k . In this way, we see the spaces R X k as pairwise orthogonal subspaces of R X . Delsarte [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF] showed that the irreducible decomposition of the R X k under the action of G is given by the harmonic subspaces H k,i :

(12) R X k = H 0,k ⊕ H 1,k ⊕ • • • ⊕ H min{k,n-k},k
Here, H k,k is the kernel of the differentiation operator

δ k : R X k -→ R X k-1 f -→ [ x → {f (y) : dim(y) = k, x ⊂ y} ]
and H k,i is the image of H k,k under the valuation operator

ψ ki : R X k -→ R X i f -→ [ x → {f (y) : dim(y) = k, y ⊂ x} ] for k ≤ i ≤ n -k. Because δ k is surjective, we have h k := dim(H k,k ) = n k q -n k-1 q .
Moreover, ψ ki commutes with the action of G, so H k,i is isomorphic to H k,k . Putting together the spaces R X k one gets the global picture:

R X = R X0 ⊕ R X1 ⊕ • • • ⊕ R X ⌊ n 2 ⌋ ⊕ • • • ⊕ R Xn-1 ⊕ R Xn I 0 = H 0,0 ⊕ H 0,1 ⊕ • • • ⊕ H 0,⌊ n 2 ⌋ ⊕ • • • ⊕ H 0,(n-1) ⊕ H 0,n I 1 = H 1,1 ⊕ • • • ⊕ H 1,⌊ n 2 ⌋ ⊕ • • • ⊕ H 1,(n-1) I 2 = • • • ⊕ H 2,⌊ n 2 ⌋ ⊕ • • • . . . = . . . . . . = . . . I ⌊ n 2 ⌋ = H ⌊ n 2 ⌋,⌊ n 2 ⌋ ⊕ • • •
Here, the columns give the irreducible decomposition (12) of the spaces R X k . The irreducible components which lie in the same row are all isomorphic, and together they form the isotypic components

I m := H m,m ⊕ H m,m+1 ⊕ • • • ⊕ H m,n-m ≃ H n-2m+1 m,m
.

Starting from this decomposition, one builds the zonal matrices E k (x, y) [3, Section 3.3] in the following way. We take an isotypic component I k and we fix an orthonormal basis (e kk1 , . . . , e kkh k ) of H k,k . Let e ksi := ψ ks (e kki ). It follows from [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF]Theorem 3] that (e ks1 , . . . , e ksh k ) is an orthogonal basis of H k,s and that ( 13) (e ksi , e ksi ) = n -2k s -k q q k(s-k) .

Then we define E k (x, y) ∈ R (n-2k+1)×(n-2k+1) entrywise by ( 14)

E kst (x, y) = h k i=1
e ksi (x)e kti (y).

We note that [3, Theorem 3.3] requires orthonormal basis in every subspace, while in the definition ( 14) of E kst we do not normalize the vectors e ksi .

Because the norms [START_REF] Ho | The benefits of coding over routing in a randomized setting[END_REF] do not depend on i, but only on k, s, the matrix (E ′ k (x, y)) s,t associated to the normalized basis is obtained from (E k (x, y)) s,t by left and right multiplication by a diagonal matrix. So the characterization of the G-invariant positive semidefinite functions given in [START_REF] Bachoc | Invariant semidefinite programs[END_REF]Theorem 3.3] holds aswell with ( 14): Theorem 4.1. F ∈ R X×X is positive semidefinite and G-invariant if and only if it can be written as

(15) F (x, y) = ⌊n/2⌋ k=0 F k , E k (x, y)
where

F k ∈ R (n-2k+1)×(n-2k+1
) and F 0 , . . . , F ⌊n/2⌋ are positive semidefinite.

Now we compute the E k 's explicitly. They are zonal matrices: in other words, for all k ≤ s, t ≤ n -k, for all g ∈ G, E kst (x, y) = E kst (gx, gy). This means that E kst is a function of the variables which parametrize the orbits of G on X × X. It is easy to see that the orbit of the pair (x, y) is characterized by the triple (dim(x), dim(y), dim(x ∩ y)).

The next theorem gives an explicit expression of E kst , in terms of the polynomials Q k of Definition 3.3.

Theorem 4.2. If k ≤ s ≤ t ≤ n -k, dim(x) = s, dim(y) = t, E kst (x, y) = |X|h k t-k s-k q n-2k t-k q n t q t s q q k(t-k) Q k (n, s, t; s -dim(x ∩ y)) If dim(x) = s or dim(y) = t, E kst (x, y) = 0.
We note that the weights involved in the orthogonality relations of the polynomials Q k have a combinatorial meaning:

Lemma 4.3 ([8]). Given x ∈ X s , the number of elements y ∈ X t such that dim(x ∩ y) = s -i is equal to w(n, s, t; i).
Proof of Theorem 4.2. By construction, E kst (x, y) = 0 only if dim(x) = s and dim(y) = t, so in this case E kst is a function of (s -dim(x ∩ y)). Accordingly, for k ≤ s ≤ t ≤ n -k, we introduce P kst such that E kst (x, y) = P kst (s -dim(x ∩ y)). Now we want to relate P kst to the q-Hahn polynomials. We start with two lemmas: one obtains the orthogonality relations satisfied by P kst and the other computes P kst (0). 

P kst (0) = |X|h k t-k s-k q n-2k t-k q n t q t s q q k(t-k) .
Proof. We have P kst (0) = E kst (x, y) for all x, y with dim(x) = s, dim(y) = t, x ⊂ y. Hence,

P kst (0) = 1 n t q t s q dim(x)=s dim(y)=t x⊂y E kst (x, y) = 1 n t q t s q dim(x)=s dim(y)=t x⊂y h k i=1
e ksi (x)e kti (y)

P kst (0) = 1 n t q t s q h k i=1 dim(y)=t dim(x)=s x⊂y e ksi (x) e kti (y) = 1 n t q t s q h k i=1 dim(y)=t
ψ s,t (e ksi )(y)e kti (y).

With the relation

ψ st • ψ ks = t-k s-k q ψ kt , ψ st (e ksi ) = ψ st • ψ ks (e kki ) = t -k s -k q ψ kt (e kki ) = t -k s -k q e kti ,
and we obtain 

P kst (0) = 1 n t q t s q h k i=1 dim(y)=t t -k s -k q e kti (y)e kti (y) = t-k s-k q n t q t s q h k i=1 |X|(e kti , e kti ) = |X|h k t-k s-k q n-2k t-k q n t q t s q q k(t-k) .
s i=0 w(n, s, t; i)P kst (i)P ℓst (i) = δ k,ℓ |X| 2 h k n-2k s-k q n-2k t-k q q k(s+t-2k) n s q . Proof. We compute Σ := y∈X E kst (x, y)E ℓ,s ′ ,t ′ (y, z). Σ = y∈X h k i=1 h ℓ j=1 e ksi (x)e kti (y)e ℓs ′ j (y)e ℓt ′ j (z) = h k i=1 h ℓ j=1 e ksi (x)e ℓt ′ j (z) y∈X e kti (y)e ℓs ′ j (y) = h k i=1 h ℓ j=1 e ksi (x)e ℓt ′ j (z)|X|(e kti , e ℓs ′ j ) = h k i=1 h ℓ j=1 e ksi (x)e ℓt ′ j (z)|X|δ kℓ δ ts ′ δ ij n -2k t -k q q k(t-k) = δ kℓ δ ts ′ |X| n -2k t -k q q k(t-k) h k i=1 e ksi (x)e kt ′ i (z) = δ kℓ δ ts ′ |X| n -2k t -k q q k(t-k) E kst ′ (x, z). (17) 
We obtain, with t = s ′ , t ′ = s, x = z ∈ X s , and taking

E ℓts (y, x) = E ℓst (x, y) into account, y∈Xt E kst (x, y)E ℓst (x, y) = δ kℓ |X| n -2k t -k q q k(t-k) E kss (x, x).
The above identity becomes in terms of P kst y∈Xt

P kst (s-dim(x∩y))P ℓst (s-dim(x∩y)) = δ kℓ |X| n -2k t -k q q k(t-k) P kss (0).
Now we obtain ( 17) by ( 16) and Lemma 4.3.

We showed that the functions P kst satisfy the same orthogonality relations as the q-Hahn polynomials. So we are done if P kst is a polynomial of degree at most k in the variable [u] = [dim(x ∩ y)]. This property is proved in the case s = t in [7, Theorem 5] and extends to s ≤ t with a similar line of reasoning. The multiplicative factor between P kst (u) and Q k (n, s, t; u) is then given by P kst (0) and the proof of Theorem 4.2 is completed. 4.2. Symmetry reduction of the semidefinite program (10) for projective codes. Clearly, [START_REF] Etzion | Error-correcting codes in projective space[END_REF] is G-invariant: this means that for every feasible solution F and for every g ∈ G, also gF is feasible with the same objective value. Hence, we can average every feasible solution over G. In particular, the optimal value of ( 10) is attained by a function F which is G-invariant and so we can restrict the optimization variable in [START_REF] Etzion | Error-correcting codes in projective space[END_REF] to be a G-invariant function.

A function F (x, y) ∈ R X×X is G-invariant if it depends only on dim(x), dim(y), and dim(x ∩ y). So we introduce F , such that F (x, y) = F (s, t, i) for x, y ∈ X with dim(x) = s, dim(y) = t, dim(x ∩ y) = i. Let

N sti := |{(x, y) ∈ X × X : dim(x) = s, dim(y) = t, dim(x ∩ y) = i}| and Ω(d) := {(s, t, i) : 0 ≤ s, t ≤ n, 0 ≤ i ≤ min(s, t), s + t ≤ n + i, (18) 
either s = t = i or s + t -2i ≥ d}.
Then, [START_REF] Etzion | Error-correcting codes in projective space[END_REF] becomes:

A q (n, d) ≤ max s,t,i N sti F (s, t, i) : F ∈ R [n] 3 , F 0, F ≥ 0, n s=0 N sss F (s, s, s) = 1, F (s, t, i) = 0 if (s, t, i) / ∈ Ω(d) ,
where F 0 means that the corresponding F is positive semidefinite. Then, we introduce the variables x sti := N sti F (s, t, i). It is straightforward to rewrite the program in terms of these variables, except for the condition F 0. From Theorem 4.1, this is equivalent to the semidefinite conditions F k 0, where the matrices F k are given by the scalar product of F and E k :

(F k ) st = 1 |X| 2 h k n-2k
s-k q q k(s-k) n-2k t-k q q k(t-k)

(x,y)∈X 2 F (x, y)E kst (x, y) = 1 |X| 2 h k n-2k s-k q q k(s-k) n-2k t-k q q k(t-k) u,v,i
x uvi Ẽkst (u, v, i)

We can substitute the value of Ẽkst (u, v, i) using Theorem 4.2; in particular it vanishes when (u, v) = (s, t), and, when (u, v) = (s, t) and s ≤ t:

(19) (F k ) st = 1 |X| i x sti t-k s-k q n t q t s q n-2k s-k q q -k(s-k) Q k (n, s, t; s -i).
Theorem 4.6.

A q (n, d) ≤ max (s,t,i)∈Ω(d)
x sti : (x sti ) (s,t,i)∈Ω(d) , x sti ≥ 0, n s=0

x sss = 1, F k 0 for all k = 0, . . . , ⌊n/2⌋ , where Ω(d) is defined in [START_REF] Lovász | On the Shannon capacity of a graph[END_REF] and the matrices F k are given in [START_REF] Manganiello | Spread codes and spread decoding in network coding[END_REF]. Remark 4.7. A projective code C with minimal distance d provides a feasible solution of the above program, given by:

x sti = 1 |C| |{(x, y) ∈ C : dim(x) = s, dim(y) = t, dim(x ∩ y) = i}.
In particular, we have t,i

x sti = |C ∩ G q (n, s)|, so, we can add the valid inequality t,i

x sti ≤ A q (n, s, 2⌈d/2⌉)

to the semidefinite program of Theorem 4.6 in order to tighten it. Following the same line of reasoning, we could also add the linear inequalities

n s=0 c(s, k, e) t,i x sti ≤ n k q , k = 0, . . . , n
where e = ⌊(d -1)/2⌋, to the semidefinite program of Theorem 4.6, so that the resulting semidefinite program contains all the constraints of the linear program of Theorem 2.3. It turns out that this semidefinite program behaves numerically badly, and that, when it can be computed, its optimal value is equal to the minimum of the optimal values of the initial semidefinite program and of the linear program.

Numerical results

In this section we report the numerical results obtained for the binary case q = 2. Table 1 1 displays the upper bound obtained from Etzion-Vardy's linear program, Theorem 2.3. Observing that the variables x k in this program represent integers, its optimal value as an integer program gives an upper bound for A q (n, 2e + 1) that may improve on the optimal value of the linear program in real variables. However, we observed a difference with the optimal value of the linear program in real variables of at most 1. In Table 1, we display the bound obtained with the optimal value of the linear program in real variables, and indicate with a superscript * the cases when the integer program gives a better bound (of one less).

The second column contains the upper bound from the semidefinite program of Theorem 4.6, strengthened by the inequalities (see Remark 4.7):

t,i
x sti ≤ A 2 (n, s, 2⌈d/2⌉) for all s = 0, . . . , n. 1. Bounds for the subspace distance 5.2. Additional inequalities. Etzion and Vardy [START_REF] Etzion | Error-correcting codes in projective space[END_REF] found additional valid inequalities for their linear program in the special case of n = 5 and d = 3. With this, they could improve their bound to the exact value A 2 (5, 3) = 18. In this section we establish analogous inequalities for other parameters (n, d).

Theorem 5.1. Let C ⊂ P(F n q ), of minimal subspace distance d, and let

D k := |C ∩ G q (n, k)|. Then, if d + 2 ⌈d/2⌉ + 2 < 2n < 2d + 2 ⌈d/2⌉ + 2,
we have:

• D 2n-d-⌈d/2⌉-1 ≤ 1; • if D 2n-d-⌈d/2⌉-1 = 1 then D ⌈d/2⌉ ≤ q n -q 2n-d-⌈d/2⌉-1 q ⌈d/2⌉ -q n-d-1 .
Proof. It is clear that D i ≤ 1 for 0 ≤ i < ⌈d/2⌉. Moreover, for all x, y ∈ C ∩ G(n, ⌈d/2⌉), x = y, dim(x∩y) = 0. We want to show that D 2n-d-⌈d/2⌉-1 ≤ 1. Indeed assume by contradiction

x = y ∈ C ∩ G(n, 2n -d -⌈d/2⌉ -1), we have 4n -2d -2 ⌈d/2⌉ -2 ≤ n + dim(x ∩ y) d ≤ 4n -2d -2 ⌈d/2⌉ -2 -2 dim(x ∩ y) leading to 2 dim(x ∩ y) ≥ 6n -4d -4 ⌈d/2⌉ -4 ( * ) 2 dim(x ∩ y) ≤ 4n -3d -2 ⌈d/2⌉ -2 ( * * )
To obtain a contradiction, we must have ( * ) > ( * * ) which is equivalent to the hypothesis 2n > d + 2 ⌈d/2⌉ + 2.

With a similar reasoning, we prove that, for all x ∈ C ∩ G(n, ⌈d/2⌉) and

w ∈ C ∩ G(n, 2n -d -⌈d/2⌉ -1), dim(x ∩ w) = n -d -1. Indeed, 2n -d -1 ≤ n + dim(x ∩ w) d ≤ 2n -d -1 -2 dim(x ∩ w) so dim(x ∩ w) ≥ n -d -1 dim(x ∩ w) ≤ n -d -1/2 which yields the result.
Now we assume D 2n-d-⌈d/2⌉-1 = 1. Let w ∈ C ∩ G(n, 2n -d -⌈d/2⌉ -1). Let U denote the union of the subspaces x belonging to C ∩ G(n, ⌈d/2⌉). We have |U | = 1 + D ⌈d/2⌉ (q ⌈d/2⌉ -1) and |U ∩ w| = 1 + D ⌈d/2⌉ (q n-d-1 -1). On the other hand, |U \(U ∩ w))| ≤ |F n q \w|, leading to D ⌈d/2⌉ (q ⌈d/2⌉ -q n-d-1 ) ≤ q n -q 2n-d-⌈d/2⌉-1 .

In several cases, adding these inequalities led to a lower optimal value, however we found that only in one case other than (n, d) = (5, 3), the final result, after rounding down to an integer, is improved. It is the case (n, d) = [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF][START_REF] Bachoc | More semidefinite programming bounds (extended abstract)[END_REF], where D 3 ≤ 17 and, by Theorem 5.1, if D 5 = 1 then D 3 ≤ 16. So we can add D 3 + D 5 ≤ 17 and D 2 + D 4 ≤ 17, leading to: A 2 (7, 5) ≤ 34. This bound can be obtained with both the linear program of Theorem 2.3 and the semidefinite program of Theorem 4.6.

Injection distance.

Recently, a new metric has been considered in the framework of projective codes, the injection metric, introduced in [START_REF] Kschischang | On Metrics for Error Correction in Network Coding[END_REF]. The injection distance between two subspaces U, V ∈ P(F n q ) is defined by d i (U, V ) = max{dim(U ), dim(V )} -dim(U ∩ V ).

When restricted to the Grassmann space, i.e. when U, V have the same dimension, the new distance coincides with the subspace distance (up to multiplication by 2). In general we have the relation (see [START_REF] Kschischang | On Metrics for Error Correction in Network Coding[END_REF])

d i (U, V ) = 1 2 d S (U, V ) + 1 2 | dim(U ) -dim(V )|,
where d S denotes the subspace distance.

It is straightforward to modify the programs in order to produce bounds for codes on this new metric space (P(F n q ), d i ). Let

A inj q (n, d) = max{|C| : C ⊂ P(F n q ), d i (C) ≥ d}.

For constant dimension codes, we have A inj q (n, k, d) = A q (n, k, 2d). To modify the linear program of Etzion and Vardy for this new distance, we need to write down packing-constraints. The cardinality of balls in P(F n q ) for the injection distance can be found in [START_REF] Khaleghi | Projective space codes for the injection metric[END_REF]. Let B inj (V, e) be the ball with center V and radius e. If dim(V ) = i, we have |B inj (V, e)| = e r=0 q r 2 i r q n -i r q + e r=0 r α=1 q r(r-α) i r q n -i r -α q + i r -α q n -i r q .

We define c inj (i, k, e) := |B inj (V, e) ∩ G q (n, k)| where dim(V ) = i. We set α := |i -k|.

c inj (i, k, e) = e r=0 q r(r-α) i r q n-i r-α q if i ≥ k e r=0 q r(r-α) i r-α q n-i r q

if i ≤ k Theorem 5.2 (Linear programming bound for codes in P(F n q ) with injection distance).

A inj q (n, d) ≤ max n k=0 x k : x k ≤ A inj q (n, k, d) ∀ k = 0, . . . , n n i=0 c inj (i, k, e)x i ≤ n k q ∀ k = 0, . . . , n

For the semidefinite programming bound, we only need to change the definition of Ω(d) by Ω inj (d) := {(s, t, i) : 0 ≤ s, t ≤ n, i ≤ min(s, t), s + t ≤ n + i, [START_REF] Mceliece | The Lovász bound and some generalizations[END_REF] either s = t = i or max(s, t) -i ≥ d}.

Theorem 5.3.

A inj q (n, d) ≤ max (s,t,i)∈Ω inj (d)

x sti : (x sti ) (s,t,i)∈Ω inj (d) , x sti ≥ 0, n s=0

x sss = 1, F k 0 for all k = 0, . . . , ⌊n/2⌋

where Ω inj (d) is defined in [START_REF] Mceliece | The Lovász bound and some generalizations[END_REF] and the matrices F k are given in [START_REF] Manganiello | Spread codes and spread decoding in network coding[END_REF].

Table 2 displays the numerical computations we obtained from the two programs.

  and then to derive linear constraints on the cardinality |C k |, coming from packing constraints. Let B(V, e) := {U ∈ P(F n q ) : d S (U, V ) ≤ e} denote the ball with center V and radius e. If dim V = i, we have |B(V, e)| =

3. 1 .

 1 Semidefinite programs. A (real) semidefinite program is an optimization problem of the form: sup C, Y : Y 0, A i , Y = b i for i = 1, . . . , m , where C, A 1 , . . . , A m are given real symmetric matrices, b 1 , . . . , b m are given real values, Y is a real symmetric matrix, which is the optimization variable, A, B = trace(AB) is the inner product between symmetric matrices, Y 0 denotes that Y is symmetric and positive semidefinite.

Lemma 4 . 4 .

 44 With the above notations,[START_REF] Kohnert | Construction of large constant dimension codes with a prescribed minimum distance[END_REF] 

Lemma 4 . 5 .

 45 With the above notation,

  contains upper bounds for A 2 (n, d) for the subspace distance d S while Table 2 contains upper bounds for A inj 2 (n, d) for the injection distance d i recently introduced in [17]. 5.1. Subspace distance. The first column of Table

  In both programs, A 2 (n, k, 2δ) was replaced by the upper bound from Theorem 2.2.

	parameter E-V LP	SDP
	A 2 (4, 3)	6	6
	A 2 (5, 3)	20	20
	A 2 (6, 3)	*124	124
	A 2 (7, 3)	832	776
	A 2 (7, 5)	36	35
	A 2 (8, 3)	9365	9268
	A 2 (8, 5)	361	360
	A 2 (9, 3) *114387 107419
	A 2 (9, 5)	*2531	2485
	A 2 (10, 3) *2543747 2532929
	A 2 (10, 5)	*49451	49394
	A 2 (10, 7)	*1224	1223
	A 2 (11, 5)	693240 660285
	A 2 (11, 7)	9120	8990
	A 2 (12, 7)	323475 323374
	A 2 (12, 9)	*4488	4487
	A 2 (13, 7) 4781932 4691980
	A 2 (13, 9)	*34591	34306
	A 2 (14, 9) 2334298 2334086
	A 2 (14, 11)	*17160	17159
	A 2 (15, 11) *134687 134095
	A 2 (16, 13)	*67080	67079
	Table		
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 2. Bounds for the injection distance Remark 5.4. We observe that the bound obtained for A inj 2 (n, 2e+1) is most of the time slightly larger than the one obtained for A 2 (n, 4e+1). In [START_REF] Khaleghi | Projective space codes for the injection metric[END_REF], the authors noticed that their constructions led to codes that are slightly better for the injection distance that for the subspace distance. So both experimental observations indicate that A 2 (n, 4e + 1) is larger than A inj 2 (n, 2e + 1).

The computational part of this research would not have been possible without the use of free software: We computed the values of the linear programs with Avis' lrs 4.2 available from http://cgm.cs.mcgill.ca/˜avis/C/lrs.html. The values of the semidefinite programs we computed with SDPA or SDPT3, available from the NEOS website http://www.neos-server.org/neos/.