
HAL Id: hal-00702196
https://hal.science/hal-00702196v1

Submitted on 3 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting Missing Method Calls as Violations of the
Majority Rule

Martin Monperrus, Mira Mezini

To cite this version:
Martin Monperrus, Mira Mezini. Detecting Missing Method Calls as Violations of the Major-
ity Rule. ACM Transactions on Software Engineering and Methodology, 2013, 22 (1), pp.1-25.
�10.1145/2430536.2430541�. �hal-00702196�

https://hal.science/hal-00702196v1
https://hal.archives-ouvertes.fr

Detecting Missing Method Calls As Violations of
the Majority Rule

Martin Monperrus, Mira Mezini
Technische Universität Darmstadt1

When using object-oriented frameworks it is easy to overlook certain important method calls
that are required at particular places in code. In this paper, we provide a comprehensive set of
empirical facts on this problem, starting from traces of missing method calls in a bug repository.
We propose a new system that searches for missing method calls in software based on the other
method calls that are observable. Our key insight is that the voting theory concept of majority
rule holds for method calls: a call is likely to be missing if there is a majority of similar pieces
of code where this call is present. The evaluation shows that the system predictions go further
missing method calls and often reveal different kinds of code smells (e.g. violations of API best
practices).

Categories and Subject Descriptors: D 2.3 [Software Engineering]: Coding Tools and Techniques

1. INTRODUCTION

“Thanks for letting me know about [...] the missing method call”. This was written
by a programmer on an Internet forum2. This quote indicates that missing method
calls may be the source of software defects that are not easy to detect without
assistance. Actually, problems related to missing method calls pop up in forums1,
in newsgroups3, in bug reports4, in commit texts5, and in source code6. For a
more systematic analysis of the problem, we performed a comprehensive study in a
well-delimited scope: the Eclipse Bug Repository contains at least 115 bug reports
related to missing method calls (cf. section 2.2). The analysis shows that issues
caused by missing method calls are manifold7: they can produce obscure runtime
exceptions at development time, they can be responsible of defects in limit cases,
and they generally reveal code smells. These observations have motivated the work
presented in this paper.

Our intuition is that missing method calls are a kind of deviant code. Previous
research proposed different characterizations of deviant code. Engler et al. [Engler
et al. 2001] and Li et al. [Li and Zhou 2005] proposed two different character-
izations for procedural system-level code. Livshits et al. [Livshits and Zimmer-
mann 2005] characterized deviant code as instance of error patterns highlighted
by software revisions. Wasylkowski et al. [Wasylkowski et al. 2007] described an

1Martin Monperrus is now with the University of Lille and INRIA.
2http://www.velocityreviews.com/forums/t111943-customvalidator-for-checkboxes.html
3http://dev.eclipse.org/mhonarc/newsLists/news.eclipse.tools/msg46455.html
4https://bugs.eclipse.org/bugs/show_bug.cgi?id=222305
5http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.team.core/src/org/eclipse/team/core/
mapping/provider/MergeContext.java?view=log
6http://dev.eclipse.org/viewcvs/index.cgi/equinox-incubator/security/org.eclipse.equinox.
security.junit/src/org/eclipse/equinox/security/junit/KeyStoreProxyTest.java?view=co
7These issues are further discussed later in sections 2 and 5.

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

http://www.velocityreviews.com/forums/t111943-customvalidator-for-checkboxes.html
http://dev.eclipse.org/mhonarc/newsLists/news.eclipse.tools/msg46455.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=222305
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.team.core/src/org/eclipse/team/core/mapping/provider/MergeContext.java?view=log
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.team.core/src/org/eclipse/team/core/mapping/provider/MergeContext.java?view=log
http://dev.eclipse.org/viewcvs/index.cgi/equinox-incubator/security/org.eclipse.equinox.security.junit/src/org/eclipse/equinox/security/junit/KeyStoreProxyTest.java?view=co
http://dev.eclipse.org/viewcvs/index.cgi/equinox-incubator/security/org.eclipse.equinox.security.junit/src/org/eclipse/equinox/security/junit/KeyStoreProxyTest.java?view=co

2 ·

approach based on mining usage patterns and their violations. However, as we will
further elaborate in section 6, the aforementioned proposals either are not dedi-
cated to object-oriented code and subsequently to missing method calls, or suffer
from precision or scalability issues.

This paper presents a new characterization of deviant code suitable to detect miss-
ing method calls. The pieces of code that we consider are type-usages. A type-usage
is a list of method calls on a variable of a given type occurring somewhere within
the context of a particular method body. In voting theory, the majority rule is the
concept underlying most democratic electoral methods [p .3][Coughlin 1992], stat-
ing that what the majority chooses is the best. Our intuition is that the concept of
majority rule holds for type-usages: a type-usage is likely to host defects if there
are few similar pieces of code and a majority of slightly different pieces of code.

We design a new metric called S-score, which applies the concept of majority rule
to type-usages of object-oriented programs. Eventually, the S-score measures the
degree of deviance of type-usages: the higher the S-score, the higher the type-usage
smells. Indeed, our approach produces warnings for type-usages whose S-score is
high. The implementation of the approach is a Detector of Missing Method Call,
which grounds its acronymic name: DMMC.

We use different techniques to evaluate the proposed approach. First, statistical
methods are used to show that our characterization of deviant code makes sense
for detecting missing method calls. Second, we propose and perform a quantitative
evaluation based on the simulation of defects by degrading real software. The
advantage of this evaluation technique is that it can be fully automated on a large
scale while still involving likely defects. Our last evaluation technique uses our tool
for revealing problems related to missing method calls in real software: the user-
interface part of the Eclipse IDE codebase. We present a set of case-studies that
help to understand the value and the meaning of missing method calls predicted
by our approach.

To summarize, the contributions of this paper are:

—A comprehensive set of empirical facts on the problems caused by missing method
calls. We present +30 examples of real software artifacts affected by missing
method calls, a comprehensive study of this problem in the Eclipse Bug Reposi-
tory, and an extensive analysis of the missing calls that our tool found in Eclipse.

—A new characterization of deviant code. This new characterization is built on
observed method calls in real software. We also propose a technique to transform
deviance data as concrete recommendations: the system tells the developer what
methods seem to be missing at a particular place in code.

—A new strategy to evaluate code warning tools, based on the simulation of defects
by degrading real software.

This article is a follow-up of a paper published at ECOOP’2010 [Monperrus et al.
2010]. It deepens the evaluation with new datasets (5 datasets while there was only
one considered in [Monperrus et al. 2010]). The new experiments show that the
results hold in different contexts, hence improve the external validity (the general-
izability) of our evaluation. Also, when replicating the experiments, we obtained
new insights into our evaluation process and improved it (further discussed in 4),

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 3

leading to more accurate results.
The reminder of the paper is structured as follows. In section 2, we elaborate

on empirical facts about missing method calls. Section 3 presents our approach
and the underlying algorithm. Section 4 presents a quantitative evaluation of our
system. Section 5 contains qualitative case-studies, and shows that our system goes
further missing method calls. Related work is discussed in section 6. Section 7
concludes the paper and sketches areas of future work.

2. THE IMPORTANCE OF DETECTING MISSING METHOD CALLS

This section presents empirical facts supporting the following claims: (a) problems
related to missing method calls do happen in practice and can be difficult to under-
stand, and (b) they are checked-in to the source code repository.

2.1 Problems Related to Missing Calls are Real and Hard to Understand

Let us tell a little story that shows that missing method calls are likely and can be
the source of real problems. The story is inspired from several real world posts
to Internet forums and mailing lists8. Sandra is a developer who wants to create
a dialog page in Eclipse. She finds a class corresponding to her needs in the API
named DialogPage. Using the new-class-wizard of Eclipse, she automatically gets
a code snippet containing the methods to override, shown below:

public class MyPage extends DialogPage {
@Override
public void createControl(Composite parent) {
// TODO Auto-generated method stub

}
}

Since the API documentation of DialogPage does not mention special things to
do, Sandra writes the code for creating a control, a Composite, containing all the
widgets of her own page. Sandra knows that to register a new widget on the UI,
one passes the parent as parameter to the Composite constructor.

public void createControl(Composite parent) {
Composite mycomp = new Composite(parent);
....

}

Sandra get the following error message at the first run of her code (the error log
is unfortunately empty)!

An error has occurred. See error log for more details.
org.eclipse.core.runtime.AssertionFailedException
null argument:

When extending a framework class, there are often some contracts of the form
"call method x when you override method y", which need to be followed. The

8e.g. http://dev.eclipse.org/mhonarc/newsLists/news.eclipse.tools/msg46455.html and http://dev.
eclipse.org/newslists/news.eclipse.platform.rcp/msg10075.html

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

http://dev.eclipse.org/mhonarc/newsLists/news.eclipse.tools/msg46455.html
http://dev.eclipse.org/newslists/news.eclipse.platform.rcp/msg10075.html
http://dev.eclipse.org/newslists/news.eclipse.platform.rcp/msg10075.html

4 ·

Eclipse JFace user-interface framework expects that an application class extend-
ing DialogPage calls the method setControl within the method that overrides the
framework method createControl. However, the documentation of DialogPage
does not mention this implicit contract; Sandra thought that registering the new
composite with the parent is sufficient.

The described scenario pops up regularly in the Eclipse newsgroup9 and shows
that one can easily fail to make important method calls. Furthermore, the resulting
runtime error that Sandra got is really cryptic and it may take time to understand
and solve it.

Sandra had to ask a question on a mailing list to discover that this problem
comes from a missing call to this.setControl. After the addition of this.set-
Control(mycomp) at the end of her code, Sandra could finally run the code and
commit it to the repository; yet, she lost 2 hours in solving this bug related to a
missing method call.

2.2 Missing Method Calls Are Checked-in to Repositories

Missing method calls that are not all detected before leaving the developer’s ma-
chine are actually committed code to the source code repository. To support this
claim, we have searched for bug descriptions related to missing method calls in the
Eclipse Bug Repository10.

Our search process went through the following steps: 1) establish a list of syn-
tactic patterns which could indicate a missing method call, 2) for each pattern of
the list created in the previous step, query the bug repository for bug descriptions
matching the pattern 3) read the complete description of each resulting bug report
to assess whether it is really related to missing method calls.

To know that a report is really due to a missing method call or not, we read the
whole sentence or paragraph containing the occurrence of the syntactic pattern.
This gives a clear hint to assess whether this report is really related to a missing
method call. For instance, bug #186962 states that “setFocus in ViewPart is not
called systematically”: it is validated as related to missing method call; bug #13478
mentions that “CVS perspective should be called CVS Repository Exploring”: it is not
related to our concern.

Table I summarizes the results. For illustration consider the numbers in the first
raw, which tell that 49 bug reports contain the syntactic pattern “should call”, and
26 of them are actually related to missing method calls. In the 211 bug reports
found by our syntactic patterns, 117 of them are actually related to missing method
calls. This number shows that missing method call survive development time, espe-
cially if we consider that the number is probably an underestimation, since we may
have missed other syntactic patterns. Indeed, we will also show in the evaluation
section that we are able to find other missing method calls in Eclipse.

2.3 Recapitulation

These empirical facts show that a detector of missing method calls: (a) can help
programmers like Sandra write better code in a shorter time, and (b) can help

9cf. the Google results of “setcontrol+site:http://dev.eclipse.org/mhonarc/newsLists/”)
10http://bugs.eclipse.org

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

setcontrol+site:http://dev.eclipse.org/mhonarc/newsLists/
http://bugs.eclipse.org

· 5

Table I. The number of bug reports in the Eclipse Bug Repository per syntactic pattern related to missing
method calls. The second column shows the number of occurrences of the pattern, the third one is the
number of bug reports that are actually related to missing method calls after manual inspection.

Pattern Matched Confirmed
“should call” 49 26 (53%)
“does not call” 39 28 (72%)
“is not called” 36 26 (72%)
“should be called” 34 9 (26%)
“doesn’t call” 16 13 (81%)
“do not call” 10 6 (60%)
“are not called” 7 0 (0%)
“must call” 7 4 (57%)
“don’t call” 6 2 (33%)
“missing call” 6 2 (33%)
“missing method call” 1 1 (100%)
Total 211 117 (55%)

maintainers solve and fix bugs related to missing method calls. Also, from a quality
assurance perspective, such a code warning tool lists places in code that are likely
to contain missing method calls and that are worth being investigated before they
produce a real bug or hinder maintenance.

3. FROM TYPE-USAGES TO MISSING METHOD CALLS

This section presents an approach to qualify missing method calls as violations of
the majority rule in object-oriented software.

The historical rationale behind this approach is that, in our previous work, we
came to the point that we should have a radically new viewpoint over code to lower
the curse of high false positive rate (noted by Kim and Ernst in [Kim and Ernst
2007]). Especially, we assumed that we need a move abstract viewpoint over code
compared to related work (for instance abstracting over call ordering and control
flow). Our proposal of abstraction over code is called type-usage and is presented
in section 3.1 below. and section 3.2 introduces two relations between type-usages.
Then, section 3.3 leverages those relations to define a measure of strangeness for
type-usages. Finally, section 3.4 uses all these concepts in an algorithm that predicts
missing method calls.

3.1 Type-Usage

Our approach is grounded on the concept of type-usage, that can be defined as
follows:

DEFINITION 1. A type-usage is a list of method calls on a variable of a given type
occurring in the body of a particular method.

Figure 1 shows a code excerpt to illustrate this definition. In a method create-
Button, there is one type-usage of type Button, which contains three method calls
Button.<init>, Button.setText(), Button.setColor(). There is exactly one
type-usage per variable x in source code, and a type-usage can be completely ex-
pressed by the following descriptors:

—T (x) is the type of the variable containing the type-usage. If there are two vari-

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

6 ·

Fig. 1. Extraction Process of Type-Usages in Object-Oriented Software.

c lass A extends Page {
Button b ;

Button crea teBut ton () {
b = new Button () ;
b . se tTex t (" h e l l o ") ;
b . s e tCo lo r (GREEN) ;
. . . (other code)
Text t = new Text () ;
return b ;

}
}

T(b) = ’Button’
C(b) = ’Page.createButton()’
M(b) = {<init>, setText, setColor}

T(t) = ’Text’
C(t) = ’Page.createButton()’
M(t) = {<init>}

ables of the same type in the scope of a method, they are two type-usages ex-
tracted.

—C(x) is the context of x, which we define as the signature of the containing
method (i.e. name, and ordered parameter types in Java)

—M(x) is the set of methods invoked on x within C(x).

Figure 1 illustrates the conversion of Java code to type-usages. A code snippet is
shown on the left-hand side of the figure; the corresponding extracted type-usages
are shown on the right-hand side of the figure. There are two extracted type-usages,
for Button b and for Text t. The context is the method createButton for both. The
set of invoked methods on b is M(b) = {< init >, setText, setColor}, t is just
instantiated (M(t) = {< init >}).

The main insight behind our definition of type-usage is that it is a strong ab-
straction over code. In particular, it abstracts over call ordering and control flow
as opposed to for example Anmons et al.’s “scenario” [Ammons et al. 2002] or
Nguyen et al.’s “groums” [Nguyen et al. 2009b]. For instance, let us consider that
in the majority of cases, one has a call to setText before setColor. This does not
mean that the opposite would be an anomaly, a deviation to correct usage. Our
definition removes a sufficient amount of application-specific details and focuses
on the core of using an API class: calling methods. That said, we don’t claim that
all bugs related to method calls can be caught by this abstraction. In particular,
bugs related to object protocols are not addressed in our approach.

3.2 Binary Relations between Type-Usages

Let us now informally define two binary relations between type-usages: exact-
similarity and almost-similarity.

A type-usage is exactly-similar to another type-usage if it has the same type, and is
used in the method body of a similar method containing the same method calls. For
instance, in Figure 2 the type-usage in class B (top-right snippet) is exactly-similar
to the type-usage of class A (top-left snippet): (a) they both occur in the body of
the method Button createButton(), i.e. they are used in the same context (the
notion of “context” is defined in 3.1 as the signature of the containing method),
and (b) they both have the same set of method calls. We use the term "similar" to

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 7

Fig. 2. Examples of Exactly-Similar and Almost-Similar Relations. b and aBut are exactly-similar,
myBut is almost-similar to b.

c lass A extends Page {
Button crea teBut ton () {

Button b = new Button () ;
. . . (i n t e r l a c e d code)
b . se tTex t (" h e l l o ") ;
. . . (i n t e r l a c e d code)
b . s e tCo lo r (GREEN) ;
return b ;

}
}

c lass B extends Page {
Button void crea teBut ton () {

. . . (code before)
Button aBut = new Button () ;
. . .
aBut . s e tTex t (" g rea t ") ;
aBut . s e tCo lo r (RED) ;
return aBut ;

}
}

c lass C extends Page {
Button myBut ;
Button void crea teBut ton () {

myBut = new Button () ;
myBut . s e tCo lo r (PINK)
nyButton . se tTex t (" world ") ;
myBut . s e t L ink (" h t tp :// b i t . l y ") ;
. . . (code a f t e r)
return myBut ;

}
}

highlight that at a certain level of detail the type-usages related by exact-similarity
are different: variables names may be different, interlaced and surrounding code
as well.

A type-usage is almost-similar to another type-usage if it has the same type, is
used in a similar context and contains the same method calls plus another one. In
figure 2 the type-usage in class C (bottom snippet) is almost-similar to the type-
usage of class A (top-left snippet): they are used in the same context, but the
type-usage in class C contains all methods of A plus another one: setLink. We
need the term almost-similar to denote that the relationship between two type-
usages is more similar than different, i.e., there is some similarity, while being not
exactly-similar.

Those relations can be formalized as follows:

DEFINITION 2. The relation exactly-similar (noted E) is a relation between two
type-usages x and y of object-oriented software if and only if:

xEy ⇐⇒ T (x) = T (y)

∧ C(x) = C(y)

∧M(x) =M(y)

We also define for each type-usage x the set E(x) of all exactly-similar type-
usages: E(x) = {y|xEy}.

DEFINITION 3. The relation almost-similar (noted A) is a relation between two
Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

8 ·

type-usages x and y if and only if:

xAy ⇐⇒ T (x) = T (y)

∧ C(x) = C(y)

∧M(x) ⊂M(y)

∧ |M(y)| = |M(x)|+ 1

For each type-usage x of the codebase, the set A(x) of almost-similar type-usages
is noted:

A(x) = {y|xAy}

It is possible to parameterize the definition of almost-similarity by allowing a
bigger amount of difference, i.e. |M(y)| = |M(x)|+k, k ≥ 1. However, our intuition
is that k=1 is the best value because developers are more likely to write and commit
code with a small deviation to standard usage. Indeed, committing code with large
deviations from correct would produce more visible bugs much faster. We will also
present empirical evidence supporting this assumption in 4.8.

Furthermore, we can see that we obtain no exactly-similar or almost-similar type-
usages if the set of methods are not used in similar contexts. Hence, for our ap-
proach to be applicable, for a given type, we need to have several usages of the
type in the same context. Consequently, we define a “redundancy” relation be-
tween type-usages. Two type-usages are said redundant if they have the same type
and the same context. We will see in the evaluation that this redundancy condition
is largely met in real software.

Finally, note that computing E(x) and A(x) for a type-usage x with respect to a
given codebase Y of n type-usages is done in linear time O(n).

3.3 S-score: A Measure of Strangeness for Type-usages

Our approach is grounded on the assumption that the majority rule holds for type-
usages too, i.e. that a type-usage is deviant if: 1) it has a small number of other
type-usages that are exactly-similar. and 2) it has a large number of other type-
usages that are almost-similar. Informally, a small number of exactly-similar means
“only few other places do the same thing” and a large number of almost-similar
means “the majority does something slightly different”. Assuming that the majority
is right, the type-usage under inspection seems deviant and may reveal an issue in
software.

Now, let us express this idea as a measure of strangeness for type-usages, which
we call S-score. This measure will allow us to order all the type-usages of a codebase
so as to identify the strange type-usages that are worth being manually analyzed
by a software engineer.

DEFINITION 4. The S-score is:

S-score(x) = 1− |E(x)|
|E(x)|+ |A(x)|

This definition correctly handles extreme cases: if there are no exactly-similar
type-usages and no almost-similar type-usages for a type-usage a, i.e. |E(a)| = 1
(E(x) always contains x by definition) and |A(a)| = 0, then S-score(a) is zero,

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 9

which means that a unique type-usage is not a strange type-usage at all. On the
other extreme, consider a type-usage b with |E(b)| = 1 (no other similar type-
usages) and |A(b)| = 99 (99 almost-similar type-usages). Intuitively, a developer
expects that this type-usage is very strange, may contain a bug, and should be
investigated. The corresponding S-score is 0.99 and supports the intuition.

3.4 Predicting Missing Method Calls

Let us consider a strange type-usage x (i.e. with at least one almost-similar type-
usage). Once A(x) is computed, we compute missing method call predictions as
follows. First, we collect the set R of all calls that are present in almost-similar
type-usages but missing in x. In other terms:

R(x) = {m|m /∈M(x) ∧m ∈
⋃

z∈A(x)

M(z)}

For each recommended method in R(x), we compute a likelihood value φ(m,x).
The likelihood is the frequency of the missing method in the set of almost-similar
type-usages:

φ(m,x) =
|{z|z ∈ A(x) ∧m ∈M(z)}|

|A(x)|

Eventually, predicting missing method calls for a type-usage x consists of listing
calls that are in R, and that have a likelihood value greater than a threshold t.

missing(x, t) = {m|m ∈ R(x) ∧ φ(m,x) > t}

For illustration, consider the example in figure 3. The type-usage under study is
x of type Button, it has a unique call to the constructor. There are 5 almost-similar
type-usages in the source code (a, b, c, d, e). They contain method calls to setText
and setFont. setText is present in 4 almost-similar type-usages out of a total of 5.
Hence, its likelihood is 4/5 = 80%. For setFont, the computed likelihood is 20%.
Given a threshold of 75%, the system recommends to the developer setText as a
missing method call. Finally, we emphasize that t is the only tuning parameter of
the overall approach. The sensitivity of this parameter will be studied in the next
section.

Note that the prediction of missing method calls is based upon the majority rule
(the majority being A(x)), hence it is only effective to detect missing calls in the
types that are extensively used in the source code. If a method call is missing in a
type-usage of a rarely used type or in an uncommon context, our approach is not
effective.

4. QUANTITATIVE EVALUATION

This section gives experimental results to validate our approach to detecting miss-
ing method calls. It combines different quantitative techniques to validate the ap-
proach from different perspectives:

—We show that our approach could help in Sandra’s case (presented in 4.1).

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

10 ·

Fig. 3. An example computation of the likelihoods of missing method calls

T (x) =Button

M(x) ={< init >}
A(x) ={a, b, c, d}
M(a) ={< init >, setText}
M(b) ={< init >, setText}
M(c) ={< init >, setText}
M(d) ={< init >, setText}
M(e) ={< init >, setFont}

R(x) = setText, setFont

φ(setText) =
4

5
= 0.80

φ(setFont) =
1

5
= 0.20

—We show that in real-software (presented in 4.2) (a) the S-score is low for most
type-usages of real software, i.e. the majority of real type-usages is not strange
(see 4.3), and (b) the S-score is able to catch type-usages with a missing method
call, i.e. that the S-score of such type-usages is on average higher than the S-score
of normal type-usages (see 4.4).

—We show that our algorithm is able to predict missing method calls that are actu-
ally missing (see 4.5).

4.1 Helping Sandra

Let us go back to Sandra’s problem presented in 2.1. If one assumes that Sandra
makes no call at all on this, then the almost similar type-usages are those of type
DialogPage, in the context of createControl, with one single method call on this.
In the Eclipse codebase v3.5, there are 16 such type-usages, all containing a single
call to setControl (the other instances of DialogPage have more calls on this).
Hence, in this case, the system predicts a S-score of 16/17 = 0.94, which means
very strange, and recommend a call to setControl with a likelihood of 100%.
Eventually, based on the high S-score value and the high likelihood value, Sandra
adds the missing method call, solves her bug, and continues her implementation
task.

However, note that our technique provides the name of the missing method
but not its parameters or its relative position in code. Hence, before adding the
call, Sandra has to read the appropriate documentation about the parameters of
setControl, and to decide where to place the missing method call. Predicting the
exact location (e.g. the line number of the missing method call) or the parameters
to the missing call are beyond the scope of this paper.

4.2 Datasets

We have implemented an extractor of type-usages for Java bytecode using the Soot
bytecode analysis toolkit [Vallée-Rai et al. 1999]. In Appendix A, replication guide-
lines are given (including datasets and software). In all, we mined 5 different
large-scale datasets:

eclipse-swt. All type-usages of the Eclipse development environment version 3.5
related to SWT types (SWT is the graphical user-interface library underlying Eclipse)

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 11

Table II. Descriptive Statistics of the Datasets. They all have an order of magnitude of 104 type-usages.
Datasets #types #contexts #type-usages #redundant
eclipse-swt 389 7839 41193 28306 (68%)
eclipse-java.io 54 3300 9765 6820 (70%)
eclipse-java.util 70 14536 40251 21780 (54%)
derby 1848 10218 36732 11164 (30%)
tomcat 1355 3891 18904 8467 (45%)

eclipse-java.util. All type-usages of the Eclipse development environment version
3.5 related to standard Java types from package java.util.

eclipse-java.io. All type-usages of the Eclipse development environment version
3.5 related to standard Java types from package java.io.

apache-tomcat. All type-usages of the Apache Tomcat web application server re-
lated to domain types (i.e. org.apache.tomcat.*).

apache-derby. All type-usages of the Apache Derby database system related to
domain types (i.e. org.apache.derby.*).

The programs pairs were selected to cover different application domains (IDE, web
server, database) and libraries (GUI, IO).

Table II presents descriptive statistics for the datasets. The first column gives the
number of different types in the datasets and the second the number of different
contexts (the number of different method signatures, see 3.1). For instance, in the
Eclipse codebase, there are 389 different types from SWT that are used in 7839
different methods. The third column gives the overall number of type-usages ex-
tracted and the last one the number of redundant type-usages (at least one other
type-usage with same context and same type, see 3.2) associated with the ratio of
redundant type-usages. Those statistics support the following interpretations:

First, the shape of each dataset is quite different, both in terms of types and in
terms of contexts. For instance, the number of types of eclipse-java.io is only 54
because this library is used for input input/output, whose logic can be encapsulated
in a few types (e.g. File and PrintStream). On the contrary, the whole application
logic of the Derby database system is spread over 1848 different types. Hence, the
more complex the logic, the more classes are used to express it.

Second, we note that the distributions of type-usages per type and type-usages
per context follow a power-law distribution, which means that a few types and a
few contexts trust a large number of type-usages. For instance, for eclipse-swt, the
top-20 most popular types (out of 389) cover 62% of the type-usages. This goes
along the same line as the results of Baxter et al. [Baxter et al. 2006].

Third, since our approach requires equality of type-usage contexts (the signature
of the enclosing method) to build the set of almost-similar type-usages, it is appli-
cable only when one can observe at least two type-usages for a given context (this
is the key part of the definition of redundant type-usages). Since the number of
redundant type-usages is high (up to 68% as shown by the last column of table II),
the overall applicability of our approach is validated.

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

12 ·

Table III. Distribution of the S-score on different datasets
Datasets #type-

usages
Median
S-score

Mean
S-score

S-score<0.1 S-score>0.5 S-score>0.9

eclipse-swt 41193 0 0.04 89% 2.7% 0.1%
eclipse-java.io 9765 0 0.03 92% 0.7% 0%
eclipse-java.util 40251 0 0.02 94% 0.8% 0.003%
derby 36732 0 0.01 98% 0.3% 0%
tomcat 18904 0 0.01 98% 0.1% 0%

4.3 The Correctness of the Distribution of the S-score

For each dataset and for each type-usage, we have computed the sets of exactly and
almost-similar type-usages (E(x) and A(x)) and the corresponding S-score. Since
all datasets are extracted from widely used and mature software, we assume that
most of the type-usages have a low degree of strangeness, i.e. a low S-score.

Table III validates the assumption: the median S-score is 0 for all datasets (i.e.
more than 50% of all type-usages have a S-Score of 0). Furthermore, there is always
a very small proportion of strange and very strange type-usages (S-score>0.5 and
S-score>0.9). Figure 4 shows the complete distribution of the S-score for dataset
eclipse-swt. This figure graphically shows that a large majority of type-usages has a
low S-score and that the distribution is exponential. This kind of distribution shape
holds for all datasets.

Fig. 4. Distribution of the S-score based on the type-usages of type SWT.* in the Eclipse codebase. Most
type-usages have a low S-score, i.e. are not strange.

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
S- score

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 13

Listing 1. An Algorithm to Simulate Missing Method Calls
1 $L = {} // the s e t of degraded type−usages
2 foreach type−usage $t
3 check tha t $t has redundant type−usages
4 foreach method−c a l l $m of $t
5 $o = clone ($t)
6 remove $m from $o
7 add $o to $L
8 end
9 end

10 return $L

4.4 The Ability of S-score to Catch Degraded Code

Now, we show that a faulty type-usage would be caught by the S-score (faulty in
the sense of suffering from a missing method call). For this to be true, a type-usage
with a missing method call should have a higher S-score than a normal type-usage.

To assess the validity of this assumption, our key insight is to simulate missing
method calls. Given a type-usage from real software with n method calls, our idea
is to create n degraded type-usages by removing one by one each method call. This
strategy to create validation input data has several advantages: (a) there is no need
to manually assess whether a type-usage is faulty, we know it by construction, (b)
it is based on real data (the type-usages come from real software) and (c) it yields
a large-scale evaluation with a large number of evaluation cases.

Listing 1 presents this algorithm as pseudo-code. Two for-loops traverse the
whole dataset for each type-usage and for each method calls. Line 3 filters the type-
usages that have no redundant type-usages. The rationale of this filtering is that if a
type-usage is already the only one of a given type in a given context, i.e. is already
an outlier in the dataset, it does not make sense to degrade it further (because
by construction, all resulting degraded type-usages would have no almost-similar
type-usages).

Once we have a set of artificial degraded type-usages, we can analyze the dis-
tribution of their S-score and compare it with the distribution of real type-usages
computed in 4.3. Although the S-score has been designed to reveal missing method
calls, it may be inefficient due to the peculiarities of real data. The comparison en-
ables us to assess that the S-score is actually well-designed.

We have conducted this evaluation for all datasets. Table IV gives the results.
For all datasets, the median S-score of degraded type-usages is 1 (recall that a S-
score of 1 means that there is no exactly-similar type-usages) and the mean S-score
always greater than 0.60. A significant proportion of degraded type-usages has
a S-score greater than 0.9 (from 60% for derby to 78% for tomcat). Also, there
is always some degraded data that cannot be recognized as problematic (S-score
lesser than 0.1), up to 38% for derby.

Finally, let us discuss the number of simulated missing method calls (the first
column in table IV). Since there is on average two method calls per type-usage, the

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

14 ·

Table IV. Distribution of the S-score of Degraded Type-usages resulting from Algorithm 1. The S-score is
able to capture faulty type-usages.

Datasets #simulated
missing calls

Median
S-score

Mean
S-score

S-
score<0.1

S-
score>0.5

S-
score>0.9

eclipse-swt 42845 1 0.78 18% 79% 73%
eclipse-java.io 9698 1 0.69 30% 68% 67%
eclipse-java.util 34049 1 0.76 22% 76% 74%
derby 16254 1 0.61 38% 61 % 60%
tomcat 10589 1 0.78 22% 78 % 78%

number of simulated missing calls should be of the same order of magnitude as two-
times the number of redundant type-usages. The comparison of table II and table
IV validates this assumption. For instance, there are 22673 redundant type-usages
in eclipse-swt and 42845 degraded type-usages resulting from algorithm 1.

4.5 The Performance of Missing Method Calls Prediction

The third evaluation of our system measures its ability to guess missing method
calls. The assumption underlying this evaluation is that our approach to detect
missing method calls (presented in 3.4) should be able to predict calls that were
artificially removed.

For this, we have used the same setup used for evaluating the characteristics
of the S-score (see 4.4) but instead of looking at the distribution of the S-score of
degraded data, we have tried to guess the method call that was artificially removed.

For instance, given a real type-usage of the codebase representing a Button and
containing <init> and setText, we test the system with two different queries: 1)
<init> only and 2) setText only. The system may predict several missing method
calls, but a perfect prediction would be setText as missing method call for the first
query and <init> for the second query.

Hence, for each dataset, the system is evaluated with the same number of queries
as in 4.4. Then, we collect the following indicators for each query: correcti is true
if the removed method call is contained in the set of predicted missing method
calls; answeredi is true if the system predicts at least one missing method call (we
recall that the system predicts a missing method call if there is at least one almost-
similar type-usage); sizeansweri is the number of predicted missing method calls;
prefecti is true if the system predicts only one missing method call and it’s the one
that was removed, i.e. perfecti =⇒ correcti ∧ (answeredi = 1).

For N queries, we measure the overall performance of the system using the fol-
lowing metrics:

—ANSWERED is the percentage of answered queries. A query is considered as
answered if the system outputs at least one missing method call.

ANSWERED =
|{i|answeredi}|

N

—CORRECT is the percentage of correctly answered queries.

—FALSE is the percentage of incorrectly answered queries, i.e. queries without the
removed method call in the predicted missing ones.

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 15

Table V. Performance metrics the DMMC system for different datasets for threshold t = 0.9.
Dataset Nquery ANSWERED CORRECT FALSE PRECISION RECALL
eclipse-swt 42845 76% 89% 11% 77% 68%
eclipse-java.io 9698 66% 87% 13% 83% 58%
eclipse-java.util 34049 75% 98% 12% 81% 66%
derby 16254 54% 76% 24% 72% 41 %
tomcat 10589 67% 73% 27% 59% 49%

—PRECISION is the classical information retrieval precision measure. Since the
precision is not computable for empty recommendations (i.e. unanswered queries),

PRECISION =

∑
i|correcti 1/sizeansweri

|{i|answeredi}|

—RECALL is the classical information retrieval recall measure:

RECALL =
|{i|correcti}|

N

For each dataset, we evaluated the DMMC system based on the evaluation pro-
cess and performance metrics presented above. Table V presents the results. The
system is able to answer from 54% to 76 % of the queries depending on the dataset,
and when it answers, it’s usually correct (CORRECT varies from 73% to 89%). Fur-
thermore, the correct missing method call is not lost among a large number of
wrong predictions, since the PRECISION value remains high, from 59% to 83%.

The precision and recall values presented here are lower than those presented in
our conference paper [Monperrus et al. 2010] because we have changed the evalu-
ation strategy. In the previous version of the evaluation algorithm which simulates
missing method calls, we discarded type-usages that have only one call to be the
seed of degraded type-usages (meaning we discarded all artificial queries with no
calls). We discovered that those queries are actually the most difficult to answer,
yielding to lower precision and recall. Since it’s often the case that real type-usages
contain no call (objects simply passed as parameter to other methods), our new
evaluation strategy is more realistic, but also decreases the measured performance.

4.6 Influence of the Filtering Threshold

As said in 3.4, our approach is only dependent on one single tuning parameter: the
threshold value to recommend missing method calls. In this section we study the
sensitivity of the performance of our system with respect to this parameter.

For the dataset eclipse-swt, we have computed all performance metrics for differ-
ent values of the threshold. Table VI gives the result of this experiment. We can see
that all metrics vary in an interval of 2% for CORRECT to 10% for PRECISION. We
consider that this small variance shows that the our system is not crucially sensitive
to this tuning parameter. Note that the threshold – by removing some method calls
from the recommendations – mechanically decreases ANSWERED, CORRECT and
RECALL. Logically, the higher the threshold is, the higher the precision. Interest-
ingly, setting the threshold to extreme values (0 or 1) is neither very good for the
precision nor very bad for the recall; this shows that much of the performance of
the approach comes from the definition of the exact-similarity and almost similarity

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

16 ·

Table VI. Experimental results on the influence of the filtering threshold for dataset eclipse-swt.
Threshold Nquery ANSWERED CORRECT FALSE PRECISION RECALL
0 42845 82% 91% 9% 67% 74%
0.2 42845 82% 90% 10% 68% 73%
0.4 42845 81% 89% 11% 71% 72%
0.6 42845 78% 88% 12% 74% 69%
0.8 42845 77% 88% 12% 76% 68%
0.9 42845 76% 89% 11% 77% 68%
1 42845 76% 89% 11% 77% 68%

Table VII. Experimental results on the influence of the context definition.
Dataset PRECISION (w/o

context)
PRECISION
(with context)

RECALL (w/o
context)

RECALL (with
context)

eclipse-swt 53% 77% 69% 68%
eclipse-java.io 33% 83% 75% 58%
eclipse-java.util 42% 81% 90% 66%
derby 43% 72% 40% 41 %
tomcat 35% 59% 62% 49%

themselves.
In this paper, we use the threshold for sake of evaluation, but in practice, devel-

oper actually inspect the recommended missing method calls in descending order
of likelihood to be missing.

4.7 Influence of the Context Equality Condition

While we saw in 4.6 that the filtering threshold is not crucial for the system perfor-
mance, we now evaluate the importance of our context definition with respect to
precision and recall. For all datasets, we apply exactly the same evaluation strategy
as in 4.5, keeping all settings equal but removing the necessary condition of context
equality that we defined for exact-similarity and almost similarity (see 3.2).

Table VII shows the results of this evaluation. Adding the context equality con-
dition in our approach has a significant impact on both precision and recall. For
instance, let us consider the eclipse-java.io dataset, the precision of the system in-
creases from 33% to 83% if we add the context equality condition in our algorithm.
An explanation is that Java.io classes (e.g. FileInputStream) highly depend on the
context (for example, one usually does not open and close a file stream in the same
method); hence taking the context into account highly increases the precision.

Overall, this experiment shows that the context equality condition is a crucial
part of our algorithm: removing the context introduces a lot of noise (not relevant
items in A(x) and E(x) in the predicted missing method calls) and hampers both
the precision and the recall of the system. This result is an empirical proof that the
signature of the enclosing method largely conditions correct API usages. This key
ingredient of your approach enables us to achieve a low level of false positives.

4.8 Influence of the Number of Method Calls in the Definition of Almost-Similarity

In the definition of almost-similarity presented in 3.2, we state that a type-usage is
almost-similar to another one if and only if it contains a single additional method

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 17

Table VIII. Experimental results on the influence of the number of additional method calls k (in the
definition of almost-similarity). Dataset considered: eclipse-swt, missing(x, t) = {m|φ(m,x) > 0.9}.
k=1 achieves the best precision, with no loss in recall.

k Avg
|E(x)|

Avg
|A(x)|

Avg
S-score

Avg
|R(x)|

Avg
φ(m,x)

Avg
|Miss(x)|

Precision Recall

1 1.75 38.75 0.78 1.85 0.71 1.03 77% 68%
2 1.75 45.18 0.85 2.86 0.67 1.22 70% 69%
3 1.75 48.22 0.87 3.46 0.67 1.27 69% 68%
4 1.75 49.11 0.87 3.75 0.33 1.28 68% 68%

call. In this section, we evaluate the effect of considering more additional method
calls to build the set of almost-similar type-usages. In the following, k refers to the
number of additional method calls.

For the dataset eclipse-swt, and the evaluation strategy of 4.5, we have computed
the following metrics for different values of k:

—The average number of exactly-similar type-usages, i.e. the average size of E(x).
This is independent of k and should remain constant.

—The average number of almost-similar type-usages, i.e. the average size of E(A).
The larger k, the more elements in A(x), so this should increase with k.

—The average S-score. By construction, since |E(x)| is constant and |A(x)| in-
creases, it should increase too.

—The average number of methods present in elements of A(x) but absent in E(x),
i.e. the number of potentially missing method calls (noted |R(x)| in 3.4). Since
A(x) is bigger when k increases, it should increase too.

—The average φ(m,x) of missing method calls. By construction of the formula of
φ, it should decrease when k increases.

—The average number of recommended missing method calls after filtering on
φ(m,x). We could not predict the impact on this number, because it results from
two opposite effects on the number of potentially missing method calls (that
increases) and on φ(m,x) (that decreases).

—The precision and recall as described previously.

Table VIII gives the result of this experiment. First, all our assumptions are
validated: the average |E(x)| is constant, the average |A(x)|, S-score, and num-
ber of potentially missing method calls |R(x)| increases with k, and the average
φ(m,x) decreases with k. Interestingly, the average number of recommended miss-
ing method calls after filtering on φ(m,x) increases with k. It means that the effect
of k on |R(x)| is more important than the effect on φ, and results in an increase
of recommended missing method calls. We also see that the precision decreases
with k. This is due to the larger number of recommended method calls. As we
assumed in 3.2, and according to this evaluation setup, the optimal value for k is
1. A remarkable effect is that the recall does not increase with k. This is due to the
filtering effect described above. The new missing method calls discovered in the
neighborhood when increasing k have a low φ(m,x), and they remain under the
threshold to be predicted as missing.

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

18 ·

Listing 2. Patch submitted to the Eclipse Bug Repository to Solve a Strange Type-
Usage (issue number #326504)

1 −−− s r c / org / e c l i p s e / equinox / . . . / NewNodeDialog . j ava 18 Apr 2008
2 +++ s r c / org / e c l i p s e / equinox / . . . / NewNodeDialog . j ava 29 Sep 2010
3 @@ −47,8 +47,7 @@
4 }
5

6 pro tec ted Contro l c rea teDia logArea (Composite parent) {
7 − Composite compositeTop = (Composite) super . c rea teDia logArea (parent) ;
8 − Composite composite = new Composite (compositeTop , SWT.NONE) ;
9 + Composite composite = (Composite) super . c rea teDia logArea (parent) ;

10

11 setMessage (SecUIMessages . newNodeMsg) ;

5. QUALITATIVE EVALUATION

The evaluation results presented in 4.4 and 4.5 suggest that a software engineer
should seriously consider analyzing a type-usage if it has a high S-score. However,
it may be the case that our process of artificially creating missing method calls does
not reflect real missing method calls that occur in real software.

As a counter-measure to this threat of validity, we used the DMMC system in a
real-world setting. We searched for missing method calls in the Eclipse, Apache
Tomcat and Apache Derby software packages. Finding missing method calls in
those packages is ambitious for the following reasons:

—since the community of users is large, the software is used daily in plenty of
different manners, and missing method calls have a chance to produce a strange
behavior and hence, are likely to be already repaired.

—since the community of developers is large and the codebase is several years
old, most of the code has been read by several developers, which increases the
probability of detecting suspicious code.

We analyzed approximately 30 very strange type-usages - 30 corresponding to
approximately 3 full days of analysis, because we were totally unfamiliar with the
Eclipse code base. For each of them, we analyzed the source code in order to
understand what the high S-score means. Then, we tried to formulate the problem
as an issue report and to write a patch that solves the issue.

For example, let us consider issue #32650411 in Eclipse. The system reports a
strange type-usage (S-score: 0.93, #almost-similar: 109) in NewNodeDialog.create-
DialogArea related to a composite. By reading the source code, it turns out that this
method does not comply with an API best practice. Then we reported the issue in
natural language (“There is a muddle of new, super and returned Composite in NewN-
odeDialog.createDialogArea”) and we attached a patch presented in listing 2.

In our previous report on this subject [Monperrus et al. 2010], we tried to present
quantitative arguments (such as the ratio of false positives) from this study. With
hindsight, we find today that those quantitative arguments were artificial because
the term “false positive” is too strict in this evaluation context. As discussed in
much detail below, a strange type-usage may have different meanings:

11https://bugs.eclipse.org/bugs/show_bug.cgi?id=326504

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

https://bugs.eclipse.org/bugs/show_bug.cgi?id=326504

· 19

Table IX. Issues reported based on the predictions of our system.
Issue identifier Outcome
Eclipse issue #296552 validated, patch accepted
Eclipse issue #297840 no answer
Eclipse issue #296554 code no longer maintained
Eclipse issue #296586 wrong analysis
Eclipse issue #296581 validated, patch accepted
Eclipse issue #296781 validated, patch accepted
Eclipse issue #296782 validated, patch accepted
Eclipse issue #296578 no answer
Eclipse issue #296784 validated, patch accepted
Eclipse issue #296481 validated, patch accepted
Eclipse issue #296483 validated, patch accepted
Eclipse issue #296568 validated
Eclipse issue #275891 validated
Eclipse issue #296560 code no longer maintained
Eclipse issue #326504 validated, patch accepted
Tomcat issue #50023 wrong analysis
Derby issue #DERBY-4822 validated, patch accepted

—the missing method call has to be added (e.g. discussion in 5.3);

—the containing method smells, it could be rewritten or refactored (e.g. discussion
in 5.7);

—the missing method call highlights a weakness of the API under consideration
(e.g. discussion in 5.5)

We now think that these kinds of strange type-usages cannot be meaningfully sum-
marized with a false/true positive classification. Hence, we rather discuss our find-
ings about the issues that a tool like ours reveals in software.

5.1 Finding: The S-score enables developers to find issues in mature software

Table IX presents our issue reports that are based on the predictions of our sys-
tem. In all, we reported 17 issues and got positive feedback for 11 of our reports,
including 9 accepted patches that are now in the HEAD version of the correspond-
ing revision control system. This shows that the S-score is able to reveal issues in
mature software. To really appreciate these numbers, consider this question: what
is the probability of submitting a valid patch on a very large unknown codebase
(between 105 and 106 lines of code)? We believe that the answer is “very low”.
However, with tool support, we were able to do so. Our system pointed us directly
to very strange pieces of code, and gave us sufficient information (what method
calls the majority does) to understand the issue and submit a patch.

5.2 Finding: Missing method calls may reveal software aging

Missing method calls may reveal problems related to software aging. Let us explain
this finding with two concrete cases.

According to the system, Eclipse’s ExpressionInputDialog contains strange code
related to closing and disposing the widgets of the dialog. We reported this issue as

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

20 ·

Listing 3. Software Aging: Unnecessary Code Related to a Past Version of the API
1 Contro l composite= super . c rea teDia logArea (parent) ;
2 // t h i s check i s not r e l e van t anymore
3 i f (! (composite i n s t a n c e o f Composite)) {
4 composite . d i spose () ;
5 composite= new Composite (parent , SWT.NONE) ;
6 }

issue #296552 12 and our patch was quickly accepted. Interestingly, by mining the
history of this class, we found a set of commits and a discussion around another
issue report 13. Even if this other issue report was closed as solved, the code was
never cleaned and the measures and counter-measures taken during the discussion
degraded the code quality and increased its strangeness.

The other example is in ChangeEncodingAction which contains defensive code
related to a very old version of the API (see listing 3). This check is completely un-
necessary with the current version. Our approach finds that having calls to super.-
createDialogArea, dispose and new Composite is really strange for a type-usage
of type Composite. Following our remark about this class to the Eclipse developers,
the code has been actualized. In this case, software aging comes from changes of
the API that were not reflected in client code.

5.3 Finding: Missing method calls may reveal violations of API best practices

Strange type-usages often reveal violations of API best practices. An API best prac-
tice is a programming rule which is not enforced by the framework code or the
programming language. In the following, we discuss several violations of different
API best practices of Eclipse which were detected by our system.

Best practice - setting fonts:
A best practice of Eclipse consists of setting the font of new widgets based on the

font of the parent widget and not on the system-wide font. Not following this best
practice may produce an inconsistent UI. To our knowledge, this API best practice is
not explicitly documented but pops up in diverse locations such as: newsgroups14,
issue reports15, and commit texts16.

The programming rule associated to this API best practice is to call getFont
on the parent widget and to call setFont on the newly created widget. Figure 5
illustrates this point by showing the result of a commit which solves a violation
of this best practice: the new code at the right hand side contains the previously
missing method calls. Our system automatically detects the missing calls related to
such violations.

Best practice - calling dispose:

12see https://bugs.eclipse.org/bugs/show_bug.cgi?id=296552
13see https://bugs.eclipse.org/bugs/show_bug.cgi?id=80068
14http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/
browser/BrowserDescriptorDialog.java
15https://bugs.eclipse.org/bugs/show_bug.cgi?id=175069 and https://bugs.eclipse.org/bugs/show_
bug.cgi?id=268816
16http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.ide/src/org/eclipse/ui/internal/ide/
dialogs/ResourceInfoPage.java?sortby=log&view=log and http://dev.eclipse.org/viewcvs/index.cgi/
org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

https://bugs.eclipse.org/bugs/show_bug.cgi?id=296552
https://bugs.eclipse.org/bugs/show_bug.cgi?id=80068
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
https://bugs.eclipse.org/bugs/show_bug.cgi?id=175069
https://bugs.eclipse.org/bugs/show_bug.cgi?id=268816
https://bugs.eclipse.org/bugs/show_bug.cgi?id=268816
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.ide/src/org/eclipse/ui/internal/ide/dialogs/ResourceInfoPage.java?sortby=log&view=log
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.ide/src/org/eclipse/ui/internal/ide/dialogs/ResourceInfoPage.java?sortby=log&view=log
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.browser/src/org/eclipse/ui/internal/browser/BrowserDescriptorDialog.java

· 21

Fig. 5. Excerpt of revision 1.5 of Apr. 10 2006 of BrowserDescriptorDialog.java. Two missing
method calls related to setting fonts are added.

Listing 4. API Documentation of an API Best Practice Related to a Method Call
1 Dialog . java , l i n e 780
2 ∗ Subc la s se s must ove r r ide t h i s method but may c a l l super as
3 ∗ in the fo l lowing example :
4 ∗
5 ∗ Composite composite = (Composite) super . c rea teDia logArea (parent) ;
6 ∗ //add c o n t r o l s to composite as necessary
7 ∗ re turn composite ;

The SWT toolkit uses operating system resources to deliver native graphics and
widget functionalities. While the Java garbage collector handles the memory man-
agement of Java objects, it cannot handle the memory management of operat-
ing system resources. Not disposing graphical objects is a memory leak, which
can be harmful for long-running applications. For instance, the following code of
ExpandableLayout produces a high S-score (0.96):

// Location: ExpandableLayout.layout
size= FormUtil.computeWrapSize(new GC(..),..)

The newly created graphical object (new GC()) is not assigned to a variable. How-
ever, the Java compiler inserts one in the Java bytecode. Since the method computeWrapSize,
which receives the new object as a parameter, does not dispose the new object, it
is never disposed. That’s why our system predicts a missing call to dispose. This
problem was filed and solved in the Eclipse Issue repository independently of our
work17.

5.4 Finding: Missing method calls are sometimes due to software cloning

A common problem revealed by the system is incorrect cloning of code (already
empirically identified by Thummalapenta et al. [Thummalapenta et al. 2010]). In a
particular context, most of the type-usages of a given type uses a certain procedure
to accomplish a task. Strange code uses a incorrect clone of the procedure code,
i.e. a clone with some missing method calls.

For instance, it is standard to create the new container widget of a dialog using
the framework method createDialogArea of the super class Dialog. This best
practice is documented in the API documentation of Dialog (see Listing 4). The
consequences of violating this API best practice are diverse: mainly UI weirdness
and code that is hard to understand and maintain.

However, certain type-usages do not follow this API best practice and clones the
functionality of the super implementation (of Dialog.createDialogArea). How-

17https://bugs.eclipse.org/bugs/show_bug.cgi?id=257327

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

https://bugs.eclipse.org/bugs/show_bug.cgi?id=257327

22 ·

ever, there is sometimes an important method call present in the super implemen-
tation but missing in the duplicated functionality.

For instance, in AddSourceContainerDialog the new Composite is instantiated
and incompletely initialized by hand, yielding to high S-score (that we reported
in Eclipse issue #296481, fixed). Similarly, a composite UpdateAndInstallDialog
is initialized using an internal private method and deserves a high S-score as well
(Eclipse issue #296554, fixed). In both cases, the duplicated clone is not 100%
compliant with Dialog.createDialogArea that should be called. A call that is
present in the super implementation is missing in the clone and triggers a very high
S-score.

To sum up, software cloning leads to slightly incorrect correct that is revealed by
missing method calls.

5.5 Finding: The core algorithm is sensible to the tyranny of the majority

The expression tyranny of the majority is sometimes used to refer to political and
decision systems in which minorities are not allowed to express their differences.
The concept applies very well to our system: if a type-usage has a small number
of exactly-similar other type-usages and a high number of almost-similar, the type-
usage is part of a minority (the exactly-similar type-usages) with respect to a large
majority (the almost-similar type-usages). By construction, the formula of the S-
score always yields high values for minorities, even if they are actually correct.

For instance, there is a couple of cases in Eclipse where an empty Label and an
empty Composite are used to create filler and spacers. Usually and conceptually,
labels are used to contain a text (and host a call to setText) and composite are used
to contain widgets organized with a layout strategy (and host a call to setLayout).
As a result, an empty Label and an empty Composite always trigger high S-scores
to the corresponding type-usages. To a certain extent, using an empty label or
composite is more a hack than a good practice. A better solution would be, for
instance, to configure the margins of the layout, or to introduce a Filler class in
the SWT library.

In those cases, there is a conjunction of three factors:

—the lack in the considered API of a class dedicated to a particular concern (e.g.
fillers in SWT).

—the developer choice to use a lightweight hack rather than a heavyweight strategy
(e.g. empty labels versus complex layout objects in SWT).

—the nature of the S-score that is sensible to the tyranny of the majority by con-
struction.

To sum up, the high S-Scores that are due the tyranny of the majority still give us
insights on the analyzed software.

5.6 Finding: Missing method calls are often grouped

When analyzing the issues raised by our system, it turns out that the strangest
type-usages are often instances of the same issue, i.e. are deviations to the same
the standard usage. For instance, in the Apache Derby database system, they are
2 type-usages with a S-score higher than 0.8. Both of them are related to the

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 23

same issue (a missing call to ”getTransactionExecute()”in the context of ”execute-
ConstantAction(Activation)”). This is logical property of our algorithm: if a given
type-usage has 5 exactly-similar type-usages and 100 almost-similar type-usages,
all exactly-similar type-usages share the same set of almost-similars. Hence, all
5 exactly-similar type-usages have the same high S-score and the same predicted
missing method calls.

5.7 Finding: Missing method calls may reveal encapsulation breaking

In three cases among the strangest type-usages, the system finds issues related to
object encapsulation, a particular case of the law of Demeter [Lienberherr 1989].
While our system is not designed to find such violations, it turns out that these
violations are also caught by the S-score. For instance, let us consider the following
excerpt of TrustCertificateDialog:

certificateChainViewer = new TreeViewer(composite, SWT.BORDER);
certificateChainViewer.getTree().setLayout(layout);
certificateChainViewer.getTree().setLayoutData(data);

This code sets two times a property of an internal object of the TreeViewer. This
is a a violation of the the encapsulation provided by a TreeViewer18. Our system
detects them because these two internal objects are reflected in bytecode with two
different type-usages containing a single method call each (resp. setLayout and
setLayoutData). However, the majority rule or Tree objects states that there is
never a single call to setLayout or setLayoutData.

5.8 Finding: Missing method calls may reveal dead code

Some missing method calls found by our system are related to type-usages that are
part of dead code. The reason is that dead code is neither used nor maintained,
hence doesn’t honor the latest method call protocols. Here are two concrete exam-
ples on Eclipse:

—In the class BuildOrderPreferencePage, the system misses the usual call to
setLayout on a Composite. Actually, this type-usage (called noteComposite)
is never used (line 225 of version I20080903-R34patches).

—In the class TableRenderingPreferencePage, the system finds two different
strange type-usages. We found out that: 1) this class is never used except in
another class that is also never used and that was last edited on March 27, 2005
(4 years ago). These classes are dead code.

Recapitulation: These qualitative case-studies shows that our approach to de-
tecting missing method calls as violations of the majority rule is efficient to find
different kinds of issues in object-oriented software.

6. RELATED WORK

The idea of finding almost similar but not exactly identical code has been explored
in depth in code clone research (see [Roy and Cordy 2007] and e.g. [Gabel et al.

18see https://bugs.eclipse.org/bugs/show_bug.cgi?id=296568

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

https://bugs.eclipse.org/bugs/show_bug.cgi?id=296568

24 ·

2008; Nguyen et al. 2009a]). However, there is a large gap to be filled between
finding code clones and predicting real bugs with a low false positive rate. For
instance, the specification of an algorithm that translates a set of code clones into
a valid missing method call is much work. This is what we do in this paper, on top
of a new definition of code similarity. Also, our approach works on the software
topology that we define in a similar way as Robillard et al. [Robillard 2008]. To
a certain extent, our approach proposes a definition of a certain kind of anomaly
in the software topology. Furthermore, the notion of “inconsistency” of the same
author [Robillard and Murphy 2007] concerns inconsistent software evolution and
not bugs as we consider in this paper.

Engler et al. [Engler et al. 2001] presented a generic approach to infer errors
in system code as violations of implicit contracts. Their approach is more general-
purpose than ours in the sense that we only detect a special kind of problems:
missing method calls. The corresponding advantage is that our approach is auto-
matic and does not require a template of deviant behavior and the implementation
of one checker per template. The same argument applies for FindBugs [Hovemeyer
and Pugh 2004], which also addresses low-level bugs and is successful only if an
error pattern can be formalized.

Other pattern-specific approaches to detecting deviant code include the one from
Williams and Hollingsworth [Williams and Hollingsworth 2005], who propose an
automatic checking of return values of function calls. Also, Chang et al. [Chang
et al. 2007] target neglected tests in conditional statements. Weimer and Necula
[Weimer and Necula 2004] detect failures to release resources or to clean up prop-
erly along all paths. Those approaches are not directly comparable to ours since
they search for different kinds of issues that are not directly related to missing
method calls.

Another interesting approach from the OS research community is PR-Miner [Li
and Zhou 2005]. PR-Miner addresses missing procedure calls in system code and
not API-specific bugs as we do at the scope of each type-usage. Further, PR-Miner
uses frequent item set mining, which is a NP-hard problem [Yang 2004]; on the
contrary, the computation of the sets of exactly-similar and almost-similar type-
usages is done in polynomial time (O(N2), where N is the total number of type-
usages).

There are several techniques for finding defects in programs based on the analy-
sis of execution traces. For instance, Ernst et al [Ernst et al. 2001], Hangal and Lam
[Hangal and Lam 2002], and Csallner et al. [Csallner et al. 2008] mine for undoc-
umented invariants. Yang et al [Yang et al. 2006] and Dallmeier et al. [Dallmeier
et al. 2005] mine traces for ordered sequences of functions. Since our approach is
based on the static analysis of source code, our approach requires less input data:
it needs neither large traces of real usages nor comprehensive test suites, which are
both difficult and costly to obtain.

There are a number of approaches to finding bugs using historical artifacts of soft-
ware (e.g. two different versions of the same software package or the full revision
control data) [Livshits and Zimmermann 2005; Zimmermann et al. 2005; Kim and
Notkin 2009; Nguyen et al. 2010]. An important difference with our approach is
that it does not have such requirements on the input artifacts. For instance, Livshits

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 25

et al. [Livshits and Zimmermann 2005] extract common patterns from software
revision histories. Hence, to be able to catch a defect, the repository must contain
1) a large number of occurrences of the same kind of bug and 2) a large number
of corrections of these bugs. Our approach does not have these requirements, it is
able to catch a strange type-usage even if this kind of strange code has occurred
only once in the whole software history. However, it is an interesting future work
direction to combine our approach with history-based bug detection techniques.

Wasylkowski et al. [Wasylkowski et al. 2007] searched for locations in programs
that deviate from normal object usage – that is, defect candidates. Their definition
of object usage anomalies is also based on method calls, but in a more complex
manner: they take into account method call ordering and object states. Also, a
major conceptual difference is that they mine explicit protocols, while our approach
relies on observations only in an agnostic manner. To our opinion, our approach
is conceptually simpler, which makes it easier to be implemented in static analysis
tools such as Coverity [Bessey et al. 2010].

Nguyen et al. [Nguyen et al. 2009b] introduced the concept of groum to refer
to graph-based representation of source code. Their paper contains a proposal
of using groums to detect anomalies. Our approach is conceptually completely
different: we do not use the same abstraction over code (we use type-usages while
they use groums), and our definition of anomaly and the intuition behind is much
different as well. Since their evaluation has a rather different scope than ours19, we
can not conclude on whether groums or type-usages are more appropriate to find
missing method calls, or whether one or the other has a less ratio of false positives
in certain contexts. A comparative, generalizable empirical evaluation on different
datasets is future work.

Finally, none of these related papers leverage the idea of simulating likely bugs to
extensively explore the prediction space of the approach and thus achieve a large-
scale evaluation.

7. CONCLUSION

In this paper, we have presented a system, called DMMC, to detect missing method
calls in object-oriented software. Providing automated support to find and solve
missing method calls is useful at all moments of the software lifetime, from devel-
opment of new software, to maintenance of old and mature software. In particular,
developers can use DMMC in three scenarios: at development time, to help him/her
solve certain bugs related to missing method calls (see Section 2.1 and 4.1); at code
review time, in batch mode, to find problematic, “strange” places in code (see Sec-
tion 5); at maintenance time, when a bug is reported that seems related to missing
method calls (see Section 2.2). In the first and the last case, knowing beforehand
that a bug is caused by a missing method call is impossible. In the presence of a
difficult bug, DMMC is one tool in the debugging toolbox: if DMMC yields a high

19Their main case study is on Fluid, which is a research prototype developed by the same authors in
the context of another research project. On the contrary, we applied our approach on Eclipse, which
has been developed by senior IBM programmers over several years, and a significant number of our
anomalies were validated and accepted as code patches by the Eclipse developers (which are not all
related to us).

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

26 ·

S-Score, the developer has a good chance to have at least a diagnostic and concrete
analysis data: the almost-similar type-usages and the missing method calls with
their likelihood.

The evaluation of the system showed that: 1) the system gives a majority of cor-
rect results; 2) the high confidence warnings produced by the system are related to
real missing method calls in mature software; 3) missing method calls often reveal
issues that are larger in scope including software aging, cloning, and violations of
API best practices.

One area of future work is to apply the concept of almost-similarity not only to
method calls but to other parts of software. For instance, searching for almost-
similar traces could yield major improvements in the area of runtime defect de-
tections. Also, searching for almost-similar conditional statements is worth further
investigation to improve the resilience of software with respect to incorrect input.

Acknowledgements

We would like to gratefully thank Marcel Bruch for his participation in the early
days of this work and Eric Bodden for his support in writing the static analysis
software.

REFERENCES

AMMONS, G., BODIK, R., AND LARUS, J. 2002. Mining specifications. In Proceedings of the 29th
Symposium on Principles of Programming Languages (POPL).

BAXTER, G., FREAN, M., NOBLE, J., RICKERBY, M., SMITH, H., VISSER, M., MELTON, H., AND TEM-
PERO, E. 2006. Understanding the shape of java software. In Proceedings of Object-oriented Program-
ming Systems Languages and Applications (OOPSLA). ACM.

BESSEY, A., BLOCK, K., CHELF, B., CHOU, A., FULTON, B., HALLEM, S., HENRI-GROS, C., KAMSKY,
A., MCPEAK, S., AND ENGLER, D. 2010. A few billion lines of code later: Using static analysis to find
bugs in the real world. Communications of the ACM 53, 66–75.

CHANG, R.-Y., PODGURSKI, A., AND YANG, J. 2007. Finding what’s not there: A new approach to
revealing neglected conditions in software. In Proceedings of International Symposium on Software
Testing and Analysis (ISSTA). ACM.

COUGHLIN, P. J. 1992. Probabilistic voting theory. Cambridge University Press.

CSALLNER, C., SMARAGDAKIS, Y., AND XIE, T. 2008. Dsd-crasher: A hybrid analysis tool for bug
finding. ACM Trans. Softw. Eng. Methodol. 17, 2, 1–37.

DALLMEIER, V., LINDIG, C., AND ZELLER, A. 2005. Lightweight defect localization for java. In Pro-
ceedings of European Conference on Object-Oriented Programming (ECOOP). Springer.

ENGLER, D., CHEN, D., HALLEM, S., CHOU, A., AND CHELF, B. 2001. Bugs as deviant behavior:
A general approach to inferring errors in systems code. In Proceedings of Symposium on Operating
Systems Principles (SOSP). ACM.

ERNST, M. D., COCKRELL, J., GRISWOLD, W., AND NOTKIN, D. 2001. Dynamically discovering likely
program invariants to support program evolution. IEEE Transactions on Software Engineering 27, 2,
99–123.

GABEL, M., JIANG, L., AND SU, Z. 2008. Scalable detection of semantic clones. In Proceedings of the
30th International Conference on Software Engineering. ICSE ’08. ACM, 321–330.

HANGAL, S. AND LAM, M. S. 2002. Tracking down software bugs using automatic anomaly detection.
In Proceedings of International Conference on Software Engineering (ICSE). 291–301.

HOVEMEYER, D. AND PUGH, W. 2004. Finding bugs is easy. SIGPLAN Not. 39, 12, 92–106.

KIM, M. AND NOTKIN, D. 2009. Discovering and representing systematic code changes. In Proceedings
of the 31st International Conference on Software Engineering. IEEE Computer Society, 309–319.

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

· 27

KIM, S. AND ERNST, M. D. 2007. Which warnings should i fix first? In Proceedings of European
Software Engineering Conference / Foundations of Software Engineering (ESEC-FSE). ACM, New York,
NY, USA, 45–54.
LI, Z. AND ZHOU, Y. 2005. Pr-miner: automatically extracting implicit programming rules and de-
tecting violations in large software code. SIGSOFT Softw. Eng. Notes 30, 5, 306–315.
LIENBERHERR, K. 1989. Formulations and benefits of the law of demeter. ACM SIGPLAN Notices 24, 3,
67–78.
LIVSHITS, B. AND ZIMMERMANN, T. 2005. Dynamine: finding common error patterns by mining
software revision histories. SIGSOFT Softw. Eng. Notes 30, 5, 296–305.
MONPERRUS, M., BRUCH, M., AND MEZINI, M. 2010. Detecting missing method calls in object-
oriented software. In Proceedings of European Conference on Object-Oriented Programming (ECOOP).
Springer.
NGUYEN, H. A., NGUYEN, T. T., PHAM, N. H., AL-KOFAHI, J. M., AND NGUYEN, T. N. 2009a. Accurate
and efficient structural characteristic feature extraction for clone detection. In Proceedings of the 12th
International Conference on Fundamental Approaches to Software Engineering. 440–455.
NGUYEN, T. T., NGUYEN, H. A., PHAM, N. H., AL-KOFAHI, J., AND NGUYEN, T. N. 2010. Recurring
bug fixes in object-oriented programs. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering. ACM, 315–324.
NGUYEN, T. T., NGUYEN, H. A., PHAM, N. H., AL-KOFAHI, J. M., AND NGUYEN, T. N. 2009b. Graph-
based mining of multiple object usage patterns. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. 383–392.
ROBILLARD, M. P. 2008. Topology analysis of software dependencies. ACM Trans. Softw. Eng.
Methodol. 17, 4, 1–36.
ROBILLARD, M. P. AND MURPHY, G. C. 2007. Representing concerns in source code. ACM Transactions
Software Engineering and Methodology 16, 1.
ROY, C. AND CORDY, J. 2007. A survey on software clone detection research. Tech. rep., Queen’s
School of Computing.
THUMMALAPENTA, S., CERULO, L., AVERSANO, L., AND DI PENTA, M. 2010. An empirical study on the
maintenance of source code clones. Empirical Software Engineering 15, 1–34.
VALLÉE-RAI, R., CO, P., GAGNON, E., HENDREN, L., LAM, P., AND SUNDARESAN, V. 1999. Soot-a java
bytecode optimization framework. In Proceedings of the Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON). IBM Press, 13.
WASYLKOWSKI, A., ZELLER, A., AND LINDIG, C. 2007. Detecting object usage anomalies. In Proceed-
ings of European Software Engineering Conference / Foundations of Software Engineering (ESEC-FSE).
ACM, 35–44.
WEIMER, W. AND NECULA, G. C. 2004. Finding and preventing run-time error handling mistakes. In
Proceedings of the 19th annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. OOPSLA ’04. ACM, 419–431.
WILLIAMS, C. C. AND HOLLINGSWORTH, J. K. 2005. Automatic mining of source code repositories to
improve bug finding techniques. IEEE Transactions on Software Engineering 31, 6, 466–480.
YANG, G. 2004. The complexity of mining maximal frequent itemsets and maximal frequent patterns.
In Proceedings of Knowledge Discovery and Data Mining (KDD). ACM.
YANG, J., EVANS, D., BHARDWAJ, D., BHAT, T., AND DAS, M. 2006. Perracotta: mining temporal api
rules from imperfect traces. In Proceedings of International Conference on Software Engineering (ICSE).
ACM.
ZIMMERMANN, T., WEISSGERBER, P., DIEHL, S., AND ZELLER, A. 2005. Mining version histories to
guide software changes. IEEE Transactions on Software Engineering 31, 6 (June), 429–445.

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

28 ·

A. REPLICATION GUIDELINES

The datasets are based on:

(1) Eclipse Classic Distribution v3.5 (http://archive.eclipse.org/eclipse/downloads/
drops/R-3.5-200906111540/eclipse-SDK-3.5-linux-gtk.tar.gz)

(2) Apache Tomcat v6.0.20 (http://svn.apache.org/repos/asf/tomcat/tc6.0.
x/tags/TOMCAT_6_0_20)

(3) Apache Derby revision 10000811 (svn://svn.apache.org/repos/asf/db/derby/
code/trunk)

A copy of the datasets, as well as the type-usage extraction software and the
evaluation software is available at http://www.monperrus.net/martin/dmmc.

Accepted for publication on 9 Nov. 2011 in ACM Transactions on Software Engineering and Methodology

http://archive.eclipse.org/eclipse/downloads/drops/R-3.5-200906111540/eclipse-SDK-3.5-linux-gtk.tar.gz
http://archive.eclipse.org/eclipse/downloads/drops/R-3.5-200906111540/eclipse-SDK-3.5-linux-gtk.tar.gz
http://svn.apache.org/repos/asf/tomcat/tc6.0.x/tags/TOMCAT_6_0_20
http://svn.apache.org/repos/asf/tomcat/tc6.0.x/tags/TOMCAT_6_0_20
svn://svn.apache.org/repos/asf/db/derby/code/trunk
svn://svn.apache.org/repos/asf/db/derby/code/trunk
http://www.monperrus.net/martin/dmmc

	Introduction
	The Importance of Detecting Missing Method Calls
	Problems Related to Missing Calls are Real and Hard to Understand
	Missing Method Calls Are Checked-in to Repositories
	Recapitulation

	From Type-usages to Missing Method Calls
	Type-Usage
	Binary Relations between Type-Usages
	S-score: A Measure of Strangeness for Type-usages
	Predicting Missing Method Calls

	Quantitative Evaluation
	Helping Sandra
	Datasets
	The Correctness of the Distribution of the S-score
	The Ability of S-score to Catch Degraded Code
	The Performance of Missing Method Calls Prediction
	Influence of the Filtering Threshold
	Influence of the Context Equality Condition
	Influence of the Number of Method Calls in the Definition of Almost-Similarity

	Qualitative Evaluation
	Finding: The S-score enables developers to find issues in mature software
	Finding: Missing method calls may reveal software aging
	Finding: Missing method calls may reveal violations of API best practices
	Finding: Missing method calls are sometimes due to software cloning
	Finding: The core algorithm is sensible to the tyranny of the majority
	Finding: Missing method calls are often grouped
	Finding: Missing method calls may reveal encapsulation breaking
	Finding: Missing method calls may reveal dead code

	Related Work
	Conclusion
	References
	Replication Guidelines

