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We study the Anderson impurity problem in a mesoscopic setting, namely the “Anderson box,” in which
the impurity is coupled to finite reservoir having a discrete spectrum and large sample-to-sample mesoscopic
fluctuations. Note that both the weakly coupled and strong coupling Anderson impurity problems are characterized
by a Fermi-liquid theory with weakly interacting quasiparticles. We study how the statistical fluctuations in
these two problems are connected, using random matrix theory and the slave boson mean-field approximation
(SBMFA). First, for a resonant level model such as results from the SBMFA, we find the joint distribution
of energy levels with and without the resonant level present. Second, if only energy levels within the Kondo
resonance are considered, the distributions of perturbed levels collapse to universal forms for both orthogonal
and unitary ensembles for all values of the coupling. These universal curves are described well by a simple
Wigner-surmise-type toy model. Third, we study the fluctuations of the mean-field parameters in the SBMFA,
finding that they are small. Finally, the change in the intensity of an eigenfunction at an arbitrary point is studied,
such as is relevant in conductance measurements. We find that the introduction of the strongly coupled impurity
considerably changes the wave function but that a substantial correlation remains.
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I. INTRODUCTION

The Kondo problem,1,2 namely the physics of a magnetic
impurity weakly coupled to a sea of otherwise noninteracting
electrons, is one of the most thoroughly studied questions of
many-body solid-state physics. One reason for this ongoing
interest is that the Kondo problem is a deceptively simple
model system that nevertheless displays very nontrivial be-
havior and so requires the use of a large variety of theoretical
tools to be thoroughly understood, including exact approaches
(e.g., the numerical renormalization group,3,4 Bethe ansatz
techniques,5,6 and bosonization)7–10 as well as various ap-
proximation schemes (perturbative renormalization11,12 and
mean-field theories).13–16

In its original form, the Kondo problem refers to a dilute
set of real magnetic impurities (e.g., Fe) in some macroscopic
metallic host (say Au). In such circumstances, the density
of states of the metallic host can be considered as flat and
featureless within the energy scale at which the Kondo physics
takes place. Modeling that case with a simple impurity model
such as either the s-d model or the Anderson impurity model,2

one finds that a single energy scale, the Kondo temperature TK ,
emerges and distinguishes two rather different temperature
regimes. For temperatures T much larger than TK , the
magnetic impurity behaves as a free moment with an effective
coupling which, although renormalized to a larger value than
the (bare) microscopic one, remains small. For T � TK , on the
other hand, the magnetic impurity is screened by the electron
gas and the system behaves as a Fermi liquid17 characterized
by a phase shift and a residual interaction associated with
virtual breaking of the Kondo singlet.

That the Kondo effect is in some circumstances rele-
vant to the physics of quantum dots was first theoreti-
cally predicted18,19 and then, considerably later, confirmed

experimentally.20–22 Indeed, for temperatures much lower than
both the mean level spacing and the charging energy, a small
quantum dot in the Coulomb blockade regime can be described
by the Anderson impurity model, with the dots playing the role
of the magnetic impurity and the leads the role of the electron
sea. Quantum dots, however, bring the possibility of two novel
twists to the traditional Kondo problem. The first follows from
the unprecedented control over the shape, parameters, and
spatial organization of quantum dots: Such control makes
it possible to design and study more complex “quantum
impurities” such as the two-channel, two impurity, or SU(4)
Kondo problems.23,24 The second twist, which shall be our
main concern here, is that the density of states in the electron
sea may have low energy structure and features, in contrast to
the flat band typical of the original Kondo effect in metals.

Indeed, the small dot playing the role of the quantum
impurity need not be connected to macroscopic leads but rather
may interact instead with a larger dot. The larger dot may
itself be large enough to be modeled by a sea of noninteracting
electrons (perhaps with a constant charging energy term) but,
on the other hand, be small enough to be fully coherent and
display finite-size effects.25 These finite-size effects introduce
two additional energy scales into the Kondo problem. The first
is simply the existence of a finite mean level spacing, leading to
what has been called the “Kondo box” problem by Thimm and
coworkers.26 The other energy scale introduced by the finite
electron sea is the Thouless energy ETh = h̄/τc, where τc is
the typical time to travel across the “electron-reservoir” dot.
When probed with an energy resolution smaller than ETh, both
the spectrum and the wave functions of the electron sea display
mesoscopic fluctuations,25 which will affect the Kondo physics
and, hence, lead to what has been called the “mesoscopic
Kondo problem.”27 Similar studies were also conducted in the
context of disordered systems.28,29
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Both the Kondo box problem and the high-temperature
regime of the mesoscopic Kondo problem are by now reason-
ably well understood. For a finite but constant level spacing
in the large dot, various theoretical approaches ranging from
the noncrossing approximation26 and slave boson mean-field
theory30 to exact quantum Monte Carlo31–33 and numerical
renormalization group methods34–36 have been used to map
out the effect on the spectral function,35 persistent current,37,38

conductance,39–41 and magnetization.32–34 In the same way, a
mix of perturbative renormalization group analysis27,42,43 and
quantum Monte Carlo27 have made it possible to understand
the high-temperature regime of the mesoscopic problem (see
also Refs. 28,29,44 and 45 for treatment of disordered sys-
tems). The picture that emerges is that mesoscopic fluctuations
of the density of states translate into mesoscopic fluctuations
of the Kondo temperature but that once this translation
has been properly taken into account, the high-temperature
physics remains essentially the same as in the flat band
case. In particular, physical properties can be written as the
same universal function of the ratio T/TK as in the bulk
flat-band case, as long as TK is understood as a realization
dependent parameter.27 In this sense, the Kondo temperature
remains a perfectly well-defined concept (and quantity) in
the mesoscopic regime, as long as it is defined from the
high-temperature behavior.

In contrast, the consequences of mesoscopic fluctuations on
Kondo physics in the low-temperature regime, T �TK , remain
largely unexplored. A few things are nevertheless known:
For instance, using the example of the local susceptibility,
exact Monte Carlo calculations have confirmed that below TK

physical quantities do not have the universal character typical
of the traditional (flat band) Kondo problem.27 This result is
not surprising since the mesoscopic fluctuations existing at all
scales between the mean level spacing � and ETh introduce in
some sense a much larger set of parameters in the definition
of the problem, leaving no particular reason why all physical
quantities should be expressed in terms of T/TK . Thus, the
low-temperature regime of the mesoscopic Kondo problem
should display nontrivial but interesting features. On the other
hand, it seems reasonably clear that the very low temperature
regime should be described by a Nozières-Landau Fermi
liquid, as in the original Kondo problem. Indeed, the physical
reasoning behind the emergence of Fermi liquid behavior at
low temperatures, namely that for energies much lower than
TK the impurity spin has to be completely screened, applies as
well in the mesoscopic case as long as T ,� � TK .

As a consequence, the mesoscopic Kondo problem provides
an interesting example of a system which, as the temperature
is lowered, starts as a (nearly) noninteracting electron gas with
some mesoscopic fluctuations when T � TK , goes through an
intrinsically correlated regime for T � TK , and then becomes
again a noninteracting electron gas (essentially) with a priori
different mesoscopic fluctuations as T becomes much smaller
than TK . A natural question, then, is to characterize the
correlation between the statistical fluctuations of the electron
gas corresponding to the two limiting regimes. The goal of
this paper is to address this issue (some preliminary results
were reported in Ref. 46). As an exact treatment of the low-
temperature mesoscopic Kondo problem is not an easy task,
we shall tackle this problem here in a simplified framework,

namely the one of slave boson/fermion mean-field theory,
within which a complete understanding can be obtained. We
shall, furthermore, limit our study to the case where the
dynamics in the finite “electron sea” reservoir is chaotic, and,
thus, the statistical fluctuations of the high-temperature Fermi
gas is described by random matrix theory.47

The structure of this paper is as follows. In Sec. II, we
introduce more formally the mesoscopic Kondo model under
study and describe the mean-field approach on which the
analysis is based. Section III is devoted to the fluctuations
of the mean-field parameters. Fluctuations of physical static
quantities are analyzed in Sec. IV. We then turn, in Sec. V,
to the study of the spectral fluctuations. For the resonant
level model arising from the mean-field treatment, we give,
in particular, a derivation of the spectral joint distribution
function, as well as a simplified analysis, in the spirit of the
Wigner surmise,47 of some correlation functions involving
the levels of the low- and high-temperature regimes. Wave-
function correlations are then considered in Sec. VI. Finally,
Sec. VII contains some discussion and conclusions.

II. MODEL

A. Mesoscopic bath plus Anderson impurity

We investigate the low-temperature properties of a meso-
scopic bath of electrons (e.g., a big quantum dot) coupled to
a magnetic impurity (e.g., a small quantum dot or a magnetic
ion). The Hamiltonian of the system is

H = Hbath + Himp, (1)

where Hbath describes the mesoscopic electronic bath and
Himp describes the interaction between the bath and the
local magnetic impurity. Here, in a particular realization of
this general model, the mesoscopic bath is described by the
noninteracting (i.e., quadratic) Hamiltonian

Hbath ≡
∑
i,σ

(εi − μ)c†iσ ciσ , (2)

where i = 1, . . . ,N indexes the level, σ = ↑,↓ is the spin
component, and μ is the chemical potential. We assume that,
in Himp, the local Coulomb interaction Und↑nd↓ between d

electrons is such that U = ∞, so states with two d electrons
on the impurity must be projected out. With this constraint
implemented, the local impurity term is taken as

Himp = V0

∑
σ

[c†0σ dσ + d†
σ c0σ ] + Ed

∑
σ

d†
σ dσ , (3)

where the annihilation and creation operators dσ and d†
σ act

on the states of the impurity (small dot). The state in the
reservoir to which the d electrons couple is labeled r = 0 with
the corresponding operator c0σ related to the bath eigenstate
operators ciσ through

c0σ =
N∑

i=1

φ�
i (0)ciσ , (4)

where φi(r) = 〈r|i〉 denotes the one-body wave functions of
the Hbath. The local normalization relation

∑
i |φi(0)|2 = 1

implies that the average intensity is |φi(0)|2 = 1/N , where (·)
denotes the configuration average. Finally, the width of the d
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state, �0, because of coupling to the reservoir is given in terms
of the mean density of states, ρ0, by

�0 ≡ πρ0V
2

0 , ρ0 ≡ |φi(0)|2
�

= 1

D
, (5)

where D = N� is the bandwidth of the electron bath.
To be in the “Kondo regime,” some assumptions are made

about the parameters of the Hamiltonians of Eqs. (2) and (3).
To start, the dimensionless parameter obtained as the product
of the Kondo coupling,

JK ≡ 2V 2
0

|Ed | , (6)

and the local density of states, ρ0, should be assumed
small: ρ0JK � 1 or, equivalently, �0/Ed � 1. Indeed, this
condition implies that the strength V 2

0 /NEd of the second-
order processes involving an empty-impurity virtual state is
much smaller than the mean level spacing �. Furthermore,
as we discuss in more detail in Sec. III, the Kondo regime is
characterized by TK � �0, for which the fluctuations of the
number of particles on the impurity is weak. If TK increases to
the point that TK � �0, one enters the mixed valence regime
where these fluctuations become important.

B. Random matrix model

To study the mesoscopic fluctuations of our impurity model,
we assume chaotic motion in the reservoir in the classical limit.
Random matrix theory (RMT) provides a good model of the
quantum energy levels and wave functions in this situation:25,47

We use the Gaussian orthogonal ensemble (GOE, β = 1) for
time-reversal symmetric systems and the Gaussian unitary
ensemble (GUE, β = 2) for nonsymmetric systems.47,48 The
joint distribution function of the unperturbed reservoir-dot
energy levels is, therefore, given by48

Pβ(ε1,ε2, . . . ,εN ) ∝
∏
i>j

|εi − εj |β exp

(
− 1

4α2

∑
i

ε2
i

)
,

(7)

with α = √
N�/π , where � is the mean level spacing in

the center of the semicircle. The corresponding distribution of
values of the wave function at r = 0, the site in the reservoir
to which the impurity is connected, is the Porter-Thomas
distribution,

pβ(xi = N |φi(0)|2) = 1

(2πxi)1−β/2
exp

(
−β

2
xi

)
. (8)

Furthermore, in the GOE and GUE, the eigenvalues and
eigenvectors are uncorrelated.

For the GOE and GUE, the mean density of states follows
a semicircular law—a result that is rather unphysical. Except
when explicitly specified, we assume either that we consider
only the center of the semicircle or that some rectification
procedure has been applied, so we effectively work with a flat
mean density of states.

C. Slave boson mean-field approximation

Following the standard procedure,13,15,16,49–51 we introduce
auxiliary boson b(†) and fermion f (†)

σ annihilation (creation)

operators, such that dσ = b†fσ , with the constraint

b†b +
∑

σ

f †
σ fσ = 1. (9)

The impurity interaction of Eq. (3) is rewritten as

Himp = V0

∑
σ

[b†c†0σ fσ + bf †
σ c0σ ] + Ed

∑
σ

f †
σ fσ . (10)

The mapping between physical states and auxiliary states of
the impurity is

Physicalstate → Auxiliarystate

|∅〉 → b†|∅〉
|σ 〉 → f †

σ |∅〉
|↑↓〉 → projected out.

This auxiliary operator representation is exact in the limit U =
∞ as long as the constraint of Eq. (9) is satisfied and the
bosonic term in Himp is treated exactly.

Note that we use here a slave boson formalism with U(1)
gauge symmetry. Generalized slave boson fields have been
introduced in order to preserve the SU(2) symmetry of the
model, as discussed in Refs. 13 and 52. Such a generalized
SU(2) slave boson approach would not change crucially
the physics of the single impurity mean-field solution, but
it may become relevent for models with more than one
impurity.

The mean-field treatment of the Anderson box Hamiltonian
invokes two complementary approximations: (i) The bosonic
operator b is considered a complex field, with an amplitude η

and a phase θ . Since the Hamiltonian is invariant with respect
to the U(1) gauge transformation b → beiθ and fσ → fσ eiθ ,
the phase θ is not a physical observable, and we choose θ = 0:

b,b† �→ η, (11)

where η is a positive real number. This approximation corre-
sponds to assuming that the bosonic field condenses. (ii) The
constraint of Eq. (9) is satisfied, on average, by introducing
a static Lagrange multiplier, ξ . The Hamiltonian of Eq. (1)
treated within the slave boson mean-field approximation thus
reads,

HMF =
∑

σ

(
N∑

i=1

[(εi − μ)c†iσ ciσ + ηV0φ
�
i (0)f †

σ ciσ

+ ηV0φi(0)c†iσ fσ ] + (Ed − ξ )f †
σ fσ

)
+ ξ (1 − η2).

(12)

The mean-field parameters η and ξ must be chosen to minimize
the free energy of the system, F = −T ln(Tr[e−HMF/T ]),
yielding the saddle point relations

2ηξ = V0

∑
σ

[〈f †
σ c0σ 〉 + 〈c†0σ fσ 〉], (13)

1 − η2 =
∑

σ

〈f †
σ fσ 〉, (14)

where the thermal averages 〈· · ·〉 have to be computed self-
consistently from the mean-field Hamiltonian.53
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D. Method for solving the mean-field equations

In this section, we explain how to solve the self-
consistent equations for the effective parameters, η and ξ .
We start by introducing the imaginary-time equilibrium Green
functions

Gff (τ − τ ′) ≡ 〈〈fσ (τ ); f †
σ (τ ′)〉〉, (15)

Gf i(τ − τ ′) ≡ 〈〈fσ (τ ); c†iσ (τ ′)〉〉, (16)

Gif (τ − τ ′) ≡ 〈〈ciσ (τ ); f †
σ (τ ′)〉〉, (17)

Gij (τ − τ ′) ≡ 〈〈ciσ (τ ); c†jσ (τ ′)〉〉. (18)

Using the equations of motion from the mean-field
Hamiltonian Eq. (12) and after straightforward algebra, we
find

Gff (iωn) =
[
iωn + ξ − Ed − η2V 2

0

N∑
i=1

|φi(0)|2
iωn + μ − εi

]−1

,

(19)

Gif (iωn) = ηV0φi(0)

iωn + μ − εi

Gff (iωn), (20)

Gf i(iωn) = ηV0φ
�
i (0)

iωn + μ − εi

Gff (iωn), (21)

Gij (iωn) = δij

iωn + μ − εi

+ ηV0φ
�
j (0)

iωn + μ − εj

Gff (iωn)
ηV0φi(0)

iωn + μ − εi

, (22)

where ωn ≡ (2n + 1)πT are the fermionic Matsubara frequen-
cies. Finally, the mean-field equations (13) and (14) for η and
ξ can be rewritten as

ηξ = V0T

N∑
i=1

+∞∑
n=−∞

[φ�
i (0)Gif (iωn) + φi(0)Gf i(iωn)],

(23)

1 = η2 + 2T

+∞∑
n=−∞

Gff (iωn). (24)

Self-consistency therefore can be achieved by iterating suc-
cessively Eqs. (19)–(21), which define the Green functions in
terms of the parameters ξ and η, and Eqs. (23) and (24), which
fix ξ and η from the Green functions.

As an example of the output from this procedure, we show
in Figs. 1 and 2, as a function of the strength of the coupling
V0, the one-body energy levels that result from a slave-boson
mean-field theory (SBMFT) treatment of the Anderson box for
a particular realization of the box. As we discuss in more detail
below (see Sec. IV B), a nontrivial solution of the SBMFT
equations exists only for JK above some critical value J c

K

or, equivalently [see Eq. (6)], for V0 larger than a threshold
V c

0 . We, thus, show the noninteracting levels below that value
and break the axis at that point [V c

0 � 0.423 (GOE) and V c
0 �

0.453 (GUE) for the realizations chosen]. Clearly, the levels do
indeed shift substantially as a function of coupling strength;
notice as well the additional level injected near the Fermi
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FIG. 1. (Color online) The evolution of the energy levels and
wave functions as a function of coupling strength for a realiza-
tion drawn from the GOE (calculated using infinite-U SBMFT).
(a) Energy levels near the Fermi energy μ = 0 for coupling V0 (from
0.423 to 1.0). (b) Zoom of a few levels above the Fermi energy.
(c) The wave function amplitudes |ψ(R)|2 corresponding to the
energy levels in (b) for an arbitrary position R �= 0. Parameters: band
width D = 3, Ed = −0.7, � = 0.0075, and T = 0.005.

energy. The change in the levels occurs more sharply and
for slightly smaller values of V0 in the GOE case than for
the GUE. Finally, we observe that, as one follows a level as
a function of V0, little change occurs after some point. The
coupling strength V0 at which levels reach their limiting value
depends on the distance to the Fermi energy; it corresponds to
the point where the Abrikosov-Suhl resonance becomes large
enough to include the considered level. These limiting values
of the energies are the SBMFT approximation to the single
quasiparticle levels of the Nozières Fermi liquid theory.
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FIG. 2. (Color online) The analog of Fig. 1 for the GUE;
parameters are the same. Note that the variation is smoother for these
GUE results than for the GOE in Fig. 1.
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E. Qualitative behavior

Before entering into the detailed quantitative analysis,
we describe here some simple general properties of the
mesoscopic Kondo problem within the SBMFT perspective.

We note, first, that the mean-field equations [Eqs. (23)
and (24)] have a trivial solution η = 0 and ξ = Ed . This
solution is actually the only one in the high-temperature
regime: The mesoscopic bath is effectively decoupled from
the local magnetic impurity, which can be considered a
free spin-1/2. The onset of a solution η �= 0 defines, in the
mean-field approach, the Kondo temperature TK .

Below TK , the self-consistent mean-field approach results
in an effective one-particle problem, specifically a resonant
level model with resonant energy Ed + μ − ξ and effective
coupling ηV0. This resonance is interpreted as the Abrikosov-
Suhl resonance characterizing the one-particle local energy
spectrum of the Kondo problem below TK . The width of this
resonance, �(η) = η2�0, vanishes for T = TK and quickly
reaches a value of order TK when T � TK (more detailed
analysis is in Sec. III B). Note that the mesoscopic Kondo
problem differs from the bulk case: Mesoscopic fluctuations
may affect the large but finite number of energy levels that lie
within the resonance.

The Anderson box is, however, a many-body problem.
Its ground state cannot be described too naively in terms
of one-body electronic wave functions, and, more gener-
ally, one should question the validity of the one-particle
description for each physical quantity under investigation. In
this respect, however, the configuration we consider, namely
the low-temperature regime of the Kondo box problem, is
particularly favorable. Indeed, the line of argument developed
by Nozières17 to show that the low-temperature regime of the
Kondo problem is a Fermi liquid applies equally well in the
mesoscopic case as in the bulk one for which it was originally
devised. Therefore, as long as both the temperature T and
the mean level spacing � are much smaller than the Kondo
temperature, we a priori expect the physics of the Kondo
box to be described in terms of fermionic quasiparticles.
The notions of one particle energies and wave-function
fluctuations in the strong interaction regime, which will be
our main concern below, are therefore relevant. We take
the point of view that, as in the bulk case,13,15,16,51 the
mean-field approach provides a good approximation for these
quasiparticles in this low-temperature regime and, therefore,
for the physical quantities derived from them.54 As we shall
see, furthermore, most of the fluctuation properties we shall
investigate have universal features that makes them largely
independent from possible corrections to this approximation
(such as, for instance, corrections on the Kondo temper-
ature), making the approach we are following particularly
robust.

III. FLUCTUATIONS OF THE MEAN-FIELD
PARAMETERS

To begin our investigations of the low-temperature prop-
erties of the mesoscopic Kondo problem within SBMFT, we
consider the fluctuations of the mean-field parameters η and ξ

appearing in Eq. (12). We shall comment also on the degree

to which these fluctuations are connected with those of the
Kondo temperature TK .27,28,43

A. Preliminary analysis

We start with a few basic comments about the eigenvalues
{λκ − μ} and eigenstates |ψκ〉 (κ = 0,1, . . . ,N ) of the mean-
field Hamiltonian Eq. (12). Concerning the latter, we shall be
interested in the two quantities,

uκ ≡ |〈f |ψκ〉|2, (25)

θκ ≡ 〈0|ψκ〉〈ψκ |f 〉. (26)

uκ measures the overlap probability between the eigenstate
κ and the impurity state |f 〉 and θκ the admixture of this
eigensate with |f 〉 and |0〉 = ∑

i φi(0)|i〉, the electron-bath
state connected to the impurity. Note that θκ is a real quantity.
In this section we use κ = 0 to denote the additional resonant
level added to the original system, and so in the limit V0 → 0,
one has |ψ0〉 → |f 〉 and λκ → εi=κ (κ = 1, . . . ,N).

Expressing the Green function of the mean-field Hamilto-
nian as

Ĝ(λ − μ) = [λ − μ − HMF]−1 =
N∑

κ=0

|ψκ〉〈ψκ |
λ − λκ

, (27)

we can check that (λκ − μ) are the poles of the Green function
Gff (z) = 〈f |Ĝ(z)|f 〉. From Eq. (19) we have, therefore,
immediately that the λκ are the solutions of the equations

�

π

N∑
i=1

xi

λ − εi

= λ − E0(ξ )

�(η)
, (28)

where we have used the notation

E0(ξ ) ≡ Ed + μ − ξ
(29)

�(η) ≡ η2�0 = πρ0η
2V 2

0

for the center and the width of the resonance and
xi ≡ N |φi(0)|2 for the normalized wave-function probability
at r = 0. Note, first, that Eq. (28) implies that there is one
and only one λκ in each interval [εi,εi+1]: The two sets of
eigenvalues are interleaved and so certainly heavily correlated.
Furthermore, |〈f |ψκ〉|2 are the corresponding residues, so,
again, from Eq. (19),

uκ = 1

1 + �(η)
π

∑N
i=1

xi�

(λκ−εi )2

. (30)

Equation (28) is easily solved outside of the resonance, i.e.,
when |λ − E0(ξ )| � �(η): In that case one contribution i(κ)
dominates the sum on the left-hand side. [With our convention
where κ = 0 corresponds to the extra level added to the original
system, we actually just have i(κ) = κ .] The solution for the
fractional shift in the level δκ ≡ (λκ − εi(κ))/� is then given
by

δκ � �(η)

π

xi(κ)

λκ − E0
� 1. (31)
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Equations (30) and (31) then yield for the wave function
intensity,

uκ � �(η)

π

xi(κ)�

(λκ − E0)2
� �

�(η)
. (32)

If the resonance is small [�(η) � �], all states are
accounted for in this way, except for λ0 � E0, which is then
such that uκ=0 � 1. If the resonance is large, �(η) � �, the
states within the resonance—those satisfying |λ − E0(ξ )| �
�(η)—must be treated differently. Because the left-hand side
of Eq. (28) can be neglected in this regime, these states have
only a weak dependence on �(η). The typical distance between
a λκ and the closest εi is then of order �, and the corresponding
wave functions participate approximately equally in the Kondo
state,

uκ ∼ �/�(η) [inside the resonance]. (33)

In a similar way, the admixture coefficient, θκ , is the residue
of 〈0|Ĝ(z)|f 〉 = ∑

i φ
�(0)Gif (z) at the pole zκ = λκ − μ.

Applying Eqs. (20) and (28), we thus immediately have

θκ = uκ

1

ηV0

�(η)�

π

∑
i

xi

λκ − εi

= uκ

λκ − E0

ηV0
. (34)

Assuming the resonance is large [�(η) � �], and inserting
the limiting behaviors of uκ Eqs. (32) and (33), we obtain

θκ � θout
κ = xi(κ)

π

�

ηV0

�(η)

λk − E0
[|λκ −E0| � �], (35)

θκ ∼ �

ηV0

λk − E0

�(η)
[|λκ −E0| � �]. (36)

B. Formation of the resonance

Before considering the fluctuations of the mean-field pa-
rameters η and ξ , let us, first, discuss the physical mechanisms
that determine their value. While this discussion is not specific
to the mesoscopic Kondo problem, it is useful to review it
briefly before addressing the mesoscopic aspects.

The self-consistent Eqs. (13) and (14) or Eqs. (23) and (24)
can be written as (performing the summation over Matsubara
frequencies in the standard way55 in the latter case),

2V0

N∑
κ=0

(
fκ − 1

2

)
θκ = ηξ, (37)

nf =
N∑

κ=0

fκuκ = 1 − η2

2
, (38)

where fκ = f (λκ −μ) = [1 + exp((λκ −μ)/T )]−1 is the
Fermi occupation number. One, furthermore, has the sum rules∑

κ uκ = 〈f |f 〉 = 1 and
∑

κ θκ = 〈0|f 〉 = 0 [the latter has
been used to generate the 1/2 in Eq. (37)].

As mentioned in Sec. II E, the trivial solution of these mean-
field equations (η=0,ξ =Ed ) is the only one in the high-
temperature regime. The Kondo temperature TK is defined,
in the mean-field approach, as the highest temperature for
which the η �= 0 solution occurs. One obtains an equation
for TK by requiring that the nontrivial solution of the mean-
field equations continuously vanishes, η → 0+, in which case
λκ=0 → E0(ξ ), uκ=0 → 1, and uκ �=0 → 0. Equation (38) then
reduces to f (E0(ξ ) − μ) = 1/2, implying E0(ξ ) = μ and so

ξ = Ed . Using Eq. (35) to simplify Eq. (37) then gives the
mesoscopic version43 of the Nagaoka-Suhl equation,56,57

Ed

V 2
0

=
N∑

i=1

|φi(0)|2
εi − μ

tanh [(εi − μ)/2TK ]. (39)

The same equation for TK was obtained from a one-loop
perturbative renormalization group treatment.27,42

In the bulk limit (N → ∞ and no fluctuations) and for μ in
the middle of the band, this gives T bulk

K = aK (D/2)e−1/JKρ0

for the Kondo temperature, with aK � 1.13 · · ·, as shown
in Appendix A. Unless explicitly specified, we will always
assume this quantity is large compared to the mean level
spacing. In this case, the fluctuations of the Kondo temperature
for chaotic dynamics described by the random matrix model
in Sec. II B has been analyzed in Refs. 27 and 28 and more
recently using SBMFT in Ref. 43. The main result is that
δTK , the fluctuation of the Kondo temperature around the bulk
Kondo temperature, scales as

(δTK )2 ∼ T bulk
K �. (40)

Now consider what happens as T decreases further below
TK . Dividing Eq. (37) by ηV0, we can write it as

ξ

V 2
0

=
N∑

κ=0

rκ

|φi(κ)(0)|2
λκ − E0

tanh [(λκ − μ)/2T ], (41)

where rκ = θκ/θ
out
κ is one outside the resonance and scales

as (λκ − E0)2/�(η)2 within the resonance [see Eqs. (35)
and (36)]. Equation (41) has a structure very similar to the
equation for TK , Eq. (39). Indeed, ξ might not be strictly equal
to Ed [and, thus,E0(ξ ) might differ slightly from μ] but its scale
will remain the same; then, outside the resonance, λκ � εi(κ)

and rκ � 1. The main difference in the expression for ξ is
that the logarithmic divergence associated with the summation
of 1/(λκ − E0) is cut off not only by the temperature factor
tanh [(λκ − μ)/2T ] at the scale T but also by the ratio rκ at
the scale �(η). As T becomes significantly smaller than TK ,
the temperature cutoff becomes inoperative. This implies in
particular that �(η) will rather quickly switch from 0 to its
zero temperature limit when T goes below TK . We shall in the
following not consider the temperature dependence of �(η)
but rather focus on its low-temperature limit.

We see, then, that both TK and �(η) represent physically the
scale at which the logarithmic divergence of

∑
i |φi(0)|2/(εi −

μ) should be cut to keep this sum equal to Ed/V 2
0 . Thus, as

long as we are only interested in energy scales, we can write
that, for T � TK ,

�(η) ∼ TK. (42)

The energy dependence of the cutoff rκ within the resonance,
however, differs slightly from that of tanh [(λκ − μ)/2TK ]
below TK . As an exponentiation is involved, the prefactors
of �(η) and TK somewhat differ; a discussion of the ratio
�(η)/TK for the bulk case is given in Appendix A.

At low temperature, η is fixed in such a way that �(η) is
of the scale of the Kondo temperature. The condition Eq. (38)
then fixes ξ , which governs the center of the resonance E0(ξ )
so a proportion (1 − η2)/2 of the resonance is below the Fermi
energy μ. In the Kondo regime when nf � 1/2, E0(ξ ) will,
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therefore, remain near μ. In the mixed valence regime E0(ξ )
will float a bit above μ for a distance −δξ = Ed − ξ which
scales as δξ ∼ η2�0 � Ed . The order of magnitude of ξ

remains, thus Ed [as we have assumed above when discussing
Eq. (41)].

C. Fluctuations scale of the mean-field parameters

With this physical picture of how the mean-field parameters
η and ξ are fixed, it is now relatively straightforward to evaluate
the scale of their fluctuations. For simplicity, we assume T = 0
so the mean-field equations become

I (η,ξ ) ≡ π

N∑
κ=0

sgn(λκ −μ)
(λκ −E0)

�(η)
uκ = πξ

�0
, (43)

J (η,ξ ) ≡
∑
λκ<μ

uκ = 1 − η2

2
. (44)

The discussion below generalizes easily to finite T as long as
it is much smaller than TK .

The average values of I (η,ξ ) and J (η,ξ ) are well approxi-
mated by their “bulk-value” analogs I bulk(η,ξ ) and J bulk(η,ξ ),
obtained with the same global parameters but with the
fluctuating wave-function probabilities xi replaced by 1 and the
spacing between successive levels taken constant, εi+1− εi ≡
�. We, furthermore, denote by (η̄,ξ̄ ) the solution of Eqs. (43)
and (44) with I (η,ξ ) and J (η,ξ ) replaced by their bulk
approximation, by δη ≡ η − η̄ and δξ ≡ ξ−ξ̄ the fluctuating
part of the mean-field parameters, and by δI (η,ξ ) ≡ I (η,ξ )−
I (η,ξ )bulk and δJ (η,ξ ) ≡ J (η,ξ )−J (η,ξ )bulk the fluctuating
parts of the sums appearing in Eqs. (43) and (44).

We start by discussing the Kondo limit TK � �0,
in which case η̄ � 1, ξ̄−Ed � �, and �̄ ≡ �(η̄) =
(D/2) exp(−1/JKρ0). A calculation in Appendix A shows

I bulk(η,ξ ) = 2 ln

[
D

2�(η)

]
+ O(η4), (45)

J bulk(η,ξ ) = 1

2
+ 1

π

ξ−Ed

�(η)
+ O(η4). (46)

Furthermore, as we shall be able to verify below, the leading
contribution to the fluctuations of η and ξ can be taken
independently of each other (i.e., the fluctuations of ξ can
be computed assuming η constant and reciprocally).

Subtracting its bulk value from Eq. (44), we have J (η,ξ ) −
J bulk(η̄,ξ̄ ) � −η̄δη, and, thus, by definition of δJ (η,ξ ),

J bulk(η̄ + δη,ξ̄ + δξ ) − J bulk(η̄,ξ̄ ) = −δJ (η,ξ ) − η̄δη.

If the fluctuations of ξ and η are small, we can, furthermore,
approximate δJ (η,ξ ) by δJ (η̄,ξ̄ ). We thus have

1

π

δξ

�(η̄)
= −δJ (η̄,ξ̄ ) + 2

π

(ξ̄ − Ed )

�(η̄)

δη

η̄
− η̄2 δη

η̄
. (47)

The two last terms on the right-hand side of Eq. (47) are
proportional to η̄2 [e.g., see Eq. (A10) for the second-to-last
term] and so are negligible in the Kondo regime. Computing
the variance (δξ )2 therefore, up to the constant factor π�(η̄),
amounts to computing the variance of δJ (η̄,ξ̄ ).

Now, for �(η) � �, we have uκ = ũκ [π�/�(η)], where

ũκ ≡
[

N∑
i=1

xi�
2

(λκ − εi)2

]−1

(48)

is a dimensionless quantity that, for (λκ −E0) � �(η), is
essentially independent of ξ , �(η) or the other parameters
of the model. Within the resonance, and for our random
matrix model, we therefore can take the ũκ to have identical
distributions (independent of κ) characterized by a variance σ 2

u

of order one. Neglecting the correlations between the ũκ , and
treating the κ at the edge of the resonance as if they were well
within it (which is obviously incorrect but should just affect
prefactors that we are, in any case, not computing), we have

(δJ )2 ∼
∑

−�<(λκ−μ)<0

σ 2
u

π2�2

�̄2
∼ (πσu)2 �

�̄
. (49)

Inserting this into Eq. (47), we, finally, get

(δξ )2 ∼ �̄� ∼ TK�. (50)

With regard to the limits of validity of this estimate, note
that our random matrix model (Sec. II B) assumes implicitly
that the Thouless energy ETh is infinite and, more specifically,
that ETh � T bulk

K . For a chaotic ballistic system with ETh �
T bulk

K , the ũκ are independent only in an interval of size ETh;
thus, Eq. (50) should be replaced by (δξ )2 ∼ ETh�.

For the fluctuations of η, we proceed in a similar way,
subtracting Eq. (43) from its bulk analog and assuming small
fluctuations, and so find

δη

η̄
= δ�

2�̄
= 1

4

[
δI (η̄,ξ̄ ) − πδξ

�0

]
. (51)

Here, however, it is necessary to split the sum over states
in Eq. (43) into two parts: I = I in + I out, where I in and
I out are defined in the same way as I but over an energy
range corresponding, respectively, to the inside and outside of
the resonance. One has I out(η,ξ ) � I in(η,ξ ) since the former
contains the logarithmic divergence. However, the fluctuations
of the two quantities are of the same order [basically because
when considering the variance, and, thus, squared quanti-
ties, one transforms a diverging sum

∑
κ (λκ − E0)−1 into a

converging one
∑

κ (λκ − E0)−2]. Indeed, the sum I out(η,ξ ) is,
up to subleading corrections, the same as the one entering into
the definition of TK . Its fluctuations have been evaluated in
Refs. 27 and 28, leading to

(δI out)2 ∼ �

T bulk
K

, (52)

which is consistent with Eq. (40). The variance of δI in can, on
the other hand, be evaluated following the same route as for
δJ , yielding

(δI in)2 ∼ 2
∑

0<(λκ−μ)<�

σ 2
u

(�̄/π�)2

π2

�(η)2
(λκ − E0)2 ∼ �

�̄
.

(53)

This shows, then, that the two contributions (δI in)2 and (δI out)2

scale in the same way.
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For the final contribution—the last term on the right-hand
sides of Eqs. (50) and (51) implies

π (δξ )2

�0
∼ η2 �

�̄
, (54)

which is proportional to �/�̄ as for the first two contributions,
but the extra smallness factor η2 makes it negligible in the
Kondo limit. Gathering everything together, we therefore
obtain,

(δη)2

η̄2
= 〈(δ�)2〉

4�̄2
∼ �

�̄
. (55)

[If ETh � �(η), (δξ )2, and (δI in)2 are reduced by a factor
(ETh/�̄) but not (δI out)2; thus Eq. (55) remains unchanged.]

Turning to the mixed-valence regime by releasing the
constraint η � 1, we see that π (δξ )2/�0 becomes comparable
in size to the other contributions to (δη)2 and has the same para-
metric dependence. Furthermore, taking the derivative
∂J bulk/∂ξ [see Eq. (A9)] implies that the left-hand side of
Eq. (47) should be multiplied by a factor �̄/[�̄2 − (ξ̄ − E0)2],
which, however, does not change the scaling of (δη)2. In
the same way, using Eq. (55), the two last terms on the
right-hand side of Eq. (47), which are proportional to δη/η̄,
give a contribution ∼η4�̄� to (δξ )2, as well as the term
(ξ̄ − Ed )δξ/[�̄2 − (ξ̄ − E0)2] that should be added to the the
left-hand side of Eq. (51) from ∂I bulk/∂ξ [see Eq. (A8)]. Those
are negligible in the Kondo regime but are of the same size
and with the same scaling as the contribution due to δJ in
the mixed-valence regime. We find, then, that the fluctuations
of the mean-field parameters scale with system size in the
same way in both the Kondo and mixed-valence regimes: The
variance of both ξ and η is proportional to �.

D. Numerical investigations

To illustrate the previous discussion, we have computed
numerically the self-consistent parameters η and ξ for a
large number of realizations of our random matrix ensemble
at various values of the parameters defining the Anderson
box model (always within our regime of interest, T <��
TK , except when explicitly specified). Figure 3 shows the
distributions of η and ξ for a choice of parameters such
that T bulk

K /�0 � 0.24 (close to but not in the mixed valence
regime). We see that these distributions are approximately
Gaussian and centered on their values for the bulk flat-band
case, though note the slightly non-Gaussian tail on the left
side in both cases. The distributions for the GOE and GUE
are qualitatively similar, with those for the GUE being, as
expected, slightly narrower. As anticipated, the fluctuation
of these mean parameters is small: The root-mean-square
variation is less than 5% of the mean. Figure 4 further shows
how the variance of η and ξ varies with the parameters of the
model, confirming the behavior in Eqs. (50) and (55).

IV. OTHER GLOBAL PHYSICAL PROPERTIES

Beyond η and ξ themselves, several interesting global
properties of the system follow directly from the solution of
the mean-field problem. We briefly discuss two of them here.
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FIG. 3. (Color online) The distribution of the mean-field parame-
ters, critical coupling, and effective Wilson number from the SBMFT
calculation for both GOE (blue solid line) and GUE (red dash-dotted
line). (a) η, (b) ξ , (c) critical coupling J c

K , and (d) the effective
Wilson number W ∗ = TKχ0(0). The vertical black dashed lines mark
the values for the corresponding bulk flat-band system. The following
parameters were used: band width D = 3, Ed = −0.7, V0 = 0.6, and
T = 0.005. The mean level spacing is � = 0.01, and the Kondo
temperature in the bulk limit is T bulk

K � 0.092.

A. Wilson number: Comparing TK and the ground-state
properties

The “Wilson number” is an important quantity in Kondo
physics: It compares TK with the energy scale contained
in the ground-state magnetic susceptibility. It is defined as
W ∗ ≡ TK χ0(T →0), where χ0(T ) ≡ ∫ 1/T

0 〈Sz(τ )Sz(0)〉dτ is
the static susceptibility. W ∗ is, thus, the ratio between the
characteristic high-temperature scale TK and the character-
istic low-temperature scale T0 = 1/χ0(T = 0) of the strong-
coupling regime.51

In the bulk Kondo problem, there is only one scale,
of course, and so the Wilson number has a fixed value,2

namely 0.4128 (approximated as 0.349 in the SBMFT). For
our mesoscopic Anderson box, on the other hand, this will
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FIG. 4. (Color online) Variance of the mean-field parameters η

(left panel) and ξ (right) as the size of the system is changed. The
change in system size is quantified through the mean level separation
�. As expected, the fluctuations are smaller in the GUE compared to
the GOE, and the dependence of the variance of the fluctuations on
� is nearly linear. Here we use D = 3, Ed = −0.7, and V0 = 0.8.
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be a fluctuating quantity that has to be computed for each
realization of the mesoscopic electron bath. Computing TK

according to Eq. (39) and expressing the static susceptibility
as χ0(T ) = T

∑+∞
n=−∞ Gff (iωn)Gff (−iωn) with Gff (iωn)

given by Eq. (19), we obtain the distribution of the Wilson
number shown in Fig. 3(d). Note the unusual non-Gaussian
form of the distribution, with the long tail for large W ∗. As
a result, the peak of the distribution is slightly smaller than
the bulk flat-band value. The magnitude of the fluctuations in
W ∗ is modest for our choice of parameters (about 30%) but
considerably larger than the magnitude of the fluctuations of
the mean-field parameters in Figs. 3(a) and 3(b).

B. Critical Kondo coupling

Another interesting global quantity is the critical Kondo
coupling J c

K [{εi},{|φi(0)|2}] defined for a given realization of
the electron bath by

1

2J c
K

≡
N∑

i=1

|φi(0)|2
|εi − μ| . (56)

Here, exceptionally, we move away from the regime T bulk
K �

�. The discreetness of the spectrum is what is making
convergent the sum in the above expression, and, thus, J c

K

can be defined only because of the finite size of the electron
bath.

Comparing with Eq. (39), we see that, in the SBMFT
approximation, J c

K is the realization-dependent value of the
Kondo coupling JK [defined in Eq. (6)] such that TK = 0 if
JK < J c

K and TK is nonzero if JK > J c
K . Note that the possibil-

ity of vanishing the Kondo temperature TK has been discussed
in the framework of disordered bulk systems.28,29,44,45,58,59

Figure 3(c) shows the distribution of this critical coupling
for a mesoscopic Anderson box. Note the non-Gaussian form
of the distribution and the similarity between the GOE and
GUE results. Remarkably, the distribution functions do not
vanish at J c

K = 0, indicating that there exist realizations for
which the Kondo screening occurs for any coupling V0 and
impurity level Ed . Indeed, as pointed out in Ref. 43, a small
J c

K corresponds to a situation in which the chemical potential
μ lies very close to some level εi , which then dominates the
sum in Eq. (56). If μ exactly coincides with some εi , J c

K = 0:
The large dot contains an odd number of electrons on average
so the impurity can always form a singlet with the large dot.32

V. SPECTRAL FLUCTUATIONS

The mean-field approach maps the Kondo problem at low
temperature into a resonant level problem, Eq. (12), with two
realization specific parameters: the energy of the resonant
level [E0(ξ ), taking μ = 0 as the energy reference] and the
strength of the coupling to it. We have seen, however, that
in the limit TK � � [or, equivalently, �(η) � �] the scale
of the fluctuations of these parameters both go to zero as√

�/�̄. Furthermore, as long as |λκ − E0| � �(η), the λκ and
corresponding |ψκ〉 are relatively insensitive to � and E0 and,
thus, to their fluctuations. We consider, therefore, in a first stage
the fluctuations implied by the resonant level model (RLM)

with fixed parameters and then come back later to consider
how the fluctuations of the parameters modify the results.

For the analysis in this section and the next, it is convenient
to rewrite the resonant level model (RLM) as

HRLM =
N∑

i=1

εi |i〉〈i| + ε0|f 〉〈f |

+ v

N∑
i=1

[
√

Nφi(0)|i〉〈f | + H.c.]. (57)

Here |f 〉 is the bare resonant level state with energy ε0,
and the |i〉 for i � 1 are the bare (unperturbed) states of the
reservoir with wave functions φi(r). The eigenstates of HRLM

(perturbed states) are, as before, |ψκ〉 for κ = 0, . . . ,N with
corresponding eigenvalues {λκ}. Finally, the coupling strength
is taken to scale with system size as v ∝ 1/

√
N so the large N

limit in the random matrix model can be conveniently taken.
The corresponding width of the resonant level is � ≡ πρ0Nv2.

We use two complementary ways of viewing the RLM.
First, as a microscopic model in its own right, albeit non-
interacting, one has v = V0/

√
N , where V0 is the hopping

matrix element from the resonant level to the r = 0 site in
the reservoir as in Eq. (3). In this case, the width of the
level is simply � = �0, and ε0 is just a parameter of the
model. Second, if one views the RLM as the result of an
SBMFT approach in which the fluctuations of the mean-field
parameters are neglected, one has v = η̄V0/

√
N , in which case

� = �(η̄) = �̄ and ε0 = E0(ξ̄ ). We stress that, in both views,
ε0 and the εi’s (1 � i � N ) are, in spite of the similarity in the
notations, different objects in terms of the statistical ensemble
considered: ε0 is a fixed parameter when the εi’s are random
variables distributed according to Eq. (7).

A. Joint distribution function

To characterize the correlations between the unperturbed
energy levels and the perturbed levels, the basic quantity
needed is the joint distribution function P ({εi},{λκ}). As seen
in Sec. III A, the RLM eigenvalues λκ are related to the
unperturbed energies through Eq. (28), which we rewrite as

N∑
i=1

xi

λκ − εi

= λκ − ε0

v2
, (58)

remembering that xi ≡ N |φi(0)|2. Explicitly writing out the
“interleaving” constraints, we obtain

εi � λi � εi+1, i = 1, . . . ,N − 1

λ0 < ε1 (59)

λN > εN.

(Note we slightly change the way we index the levels λi

with respect to Sec. III.) There is, furthermore, an additional
constraint on the sum of the eigenvalues

D ≡
N∑

i=0

εi −
N∑

κ=0

λκ = 0, (60)

a proof of which is given in Appendix B.
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Since we know the joint distribution of the εi and |φi(0)|2,
we now want to use Eq. (58) to convert from the eigenfunctions
to the λκ . A slight complication here is that there is one more
level λκ than wave-function probabilities |φi(0)|2 [which is
why a constraint such as Eq. (60) needs to appear]. It is,
therefore, convenient to include an additional “unperturbed”
level at energy ε0 associated with a wave-function probability
x0 and to extend the summation in the left-hand side of
Eq. (58) to i = 0. Assuming, then, that x0 has a probability 1
to be zero [i.e., that P (x0) = δ(x0)], one recovers the original
problem.

In terms of the Jacobian for this variable transformation,
the desired joint distribution then can be written as

Pβ({εi},{λκ}) = Pβ({εi}) δ(x0)
N∏

i=1

pβ(xi)

∣∣∣∣ det

[
∂xi

∂λj

] ∣∣∣∣,
(61)

where Pβ({εi}) and pβ(xi) are given in Eqs. (7) and (8). (We
shall not assume in this subsection that the spectrum {εi} has
been unfolded.) In order to find the Jacobian, we, first, find xi

explicitly. Since Eq. (58) is linear in xi , inverting the Cauchy
matrix aκi = 1/(λκ − εi) yields

xi =
∑

κ

biκ

λκ − ε0

v2
, (62)

where60

biκ = 1

εi − λκ

A(εi)

B
′ (εi)

B(λκ )

A
′(λκ )

,

(63)

A(z) =
N∏

κ=0

(z − λκ ), B(z) =
N∏

i=0

(z − εi).

This expression can be simplified by using the residue theorem
twice. First, note that

xi = − 1

v2

[
1

2πi

∮
(z − ε0)B(z)

(z − εi)A(z)
dz

]
A(εi)

B
′ (εi)

. (64)

Second, the identity
∮ ∏

i(z − ai)/
∏

i(z − bi)dz =
2πi

∑
i(bi − ai) implies

xi = 1

v2
(εi − ε0 + D)

∏N
κ=0(λκ − εi)∏
i �=j (εj − εi)

. (65)

For i = 0, this reads

x0 = 1

v2
D ·

∏N
κ=0(λκ − ε0)∏N
j=1(εj − ε0)

, (66)

and, thus, x0 �= 0 implies that the λκ cannot coincide with ε0,
leading, then, to

δ(x0) = v2 ∏N
j=1(εj − ε0)∏N

κ=0(λκ − ε0)
δ(D). (67)

The factor δ(x0) in Eq. (61) therefore imposes the constraint
of Eq. (60) that we know should hold.

Now note that ∂xi/∂λκ is itself a Cauchy-like matrix
∂xi/∂λκ = risκ/(λκ − εi), where

ri = 1

v2

∏
κ (λκ − εi)∏

κ �=i(εκ − εi)
and sκ = λκ − ε0 + D. (68)

The Jacobian, then, is given by

det

(
∂xi

∂λκ

)
=

N∏
i=0

ri

N∏
κ=0

sκ det

(
1

λκ − εi

)

=
∏

κ (λκ − ε0 + D)

v2N

∏
j>i(λj − λi)∏
j>i(εj − εi)

. (69)

From now on, since no further derivative will be taken, we
can set x0, and, thus, D, to zero and, thus, assume that the
constraint of Eq. (60) holds. The last ingredient we need in
order to assemble the joint distribution function is

∑
i xi :∑

i

xi = 1

v2

∑
i

(ε0 − εi)
A(εi)

B
′(εi)

= − 1

2πiv2

∮
(z − ε0)A(z)

B(z)
dz

= − 1

2πiv2

∮ ∏N
κ=0(z − λκ )∏N
i=1(z − εi)

dz. (70)

The relation

1

2πi

∮ ∏N
i=1(z − ai)∏N−1
i=1 (z − bi)

dz

= 1

2

[
N−1∑
i=1

b2
i −

N∑
i=1

a2
i +

(
N∑

i=1

ai −
N−1∑
i=1

bi

)2]
(71)

and the sum constraint of Eq. (60) then gives

∑
i

xi = − 1

2v2

(
N∑

i=0

ε2
i −

N∑
κ=0

λ2
κ

)
. (72)

Finally, assembling all the different elements, Eqs. (7),
(8), (65), (69), and (72), we arrive at the desired result for
the joint distribution function: Within the domain specified in
Eq. (59),

Pβ({εi},{λκ}) ∝
∏

i>j�1(εi − εj )
∏

κ>ν�0(λκ − λν)∏N
i=1

∏N
κ=0 |εi − λκ |1−β/2

× δ

(
N∑

κ=0

λκ −
N∑

i=0

εi

)
exp

[
− 1

4α2

N∑
i=1

ε2
i

]

× exp

[
− β

4v2

(
N∑

κ=0

λ2
κ −

N∑
i=0

ε2
i

) ]
. (73)

(In the last exponential, α = √
N�/π .) We stress, again,

that, in Eq. (73), ε0 is not a random variable but a fixed
parameter.

B. Toy models

The joint distribution Eq. (73) contains, in principle,
all the information about the spectral correlations between
the high- and low-temperature spectra of the mesoscopic
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Kondo problem. It is, however, not straightforward here,
as in other circumstances (cf. Ref. 48), to deduce from it
explicit expressions for basic correlation properties. Instead
of pursuing this route, we shall here follow the spirit of the
Wigner approach to the nearest-neighbor distribution of classic
random matrix ensembles47 and introduce a simple toy model,
easily solvable, which provides, nevertheless, good insight for
some of the correlations in the original model.

Starting from Eq. (58) for the level λκ of the RLM, we,
first, notice that the resonance width � = πρ0Nv2 defines
two limiting regimes. When λκ is well outside the resonance,
|λκ − ε0| � �, the low-temperature level λi has to be (almost)
equal to εi or εi+1; as expected, the two spectra nearly coincide.
On the other hand, well within the resonance, |λκ − ε0| � �

so the right-hand side of Eq. (58) can be set equal to
zero,

N∑
i=1

xi

λκ − εi

≈ 0, (74)

thus providing a first simplification.
Let us now consider the level λκ located between εi and

εi+1. It is reasonable to assume that the position of λκ will be
mainly determined by these two levels and the fluctuations
of their corresponding eigenfunctions |φi(0)|2 = xi/N and
|φi+1(0)|2 = xi+1/N and that the influence of the other
states will be significantly weaker. Neglecting completely the
influence of all but the closest ε’s, the problem then reduces
to the much simpler equation for λκ ,

xi

λκ − εi

+ xi+1

λκ − εi+1
= 0, (75)

where xi and xi+1 are uncorrelated and distributed according
to the Porter-Thomas distribution [Eq. (8)]. One notices, then,
that all energy scales (v, �, etc.) have disappeared from the
problem except for εi+1 − εi . The resulting distribution of
λκ is, therefore, universal, depending only on the symmetry
under time reversal. Straightforward integration over the
Porter-Thomas distributions gives

P (λκ ) = 1

π

1√
(εi+1 − λκ )(λκ − εi)

(GOE) (76)

P (λκ ) = 1

εi+1 − εi

(GUE). (77)

Breaking time-reversal invariance symmetry thus affects
drastically the correlation between the low-temperature level
λκ and the neighboring high-temperature ones εi and εi+1.
Time-reversal symmetric systems see a clustering of the λκ ’s
close to the εi’s—with a square root singularity—while for
systems without time-reversal symmetry the distribution is
uniform between εi and εi+1.

In the GUE case, for which the Porter-Thomas distribution
is particularly simple, we can consider a slightly more
elaborate version of our toy model. It is, for instance, possible
to include the average effect of all levels beyond the two
neighboring ones (for which we keep the fluctuations of only
the wave functions, not the energy levels). Furthermore, one
can take into account the term (λκ − ε0)/v that was neglected
above, assuming that its variation in the interval [εi,εi+1] is
small. Introducing λ̄ ≡ (εi + εi+1)/2 and σ ≡ (λκ − λ̄)/� ∈

[−1/2,+1/2], Eq. (75) is replaced by

xi

σ + 1
2

+ xi+1

σ − 1
2

= F(σ ), (78)

with

F(σ ) ≡
∑
i �=0,1

1

σ + 1
2 − i

+ π
λ̄

�
,

= π

(
tan(πσ ) + λ̄

�

)
−

(
1

σ + 1
2

+ 1

σ − 1
2

)
. (79)

Integrating over the Porter-Thomas distribution, we obtain, in
the GUE case,

P (σ ) = exp

[
−

(
σ + 1

2

)
F(σ ) − umin

]

×
[

1 + umin +
(

1

2
+ σ

)
F(σ ) +

(
1

4
+ σ 2

)
dF
dσ

]
(80)

with umin ≡ inf[0, − F(σ )]. Replacing F(σ ) by zero in
Eq. (80) of course recovers Eq. (77).

C. Numerical distributions

To characterize the relation between the weak and strong
coupling levels, we consider the distribution of the normalized
level shift defined by

S ∈
{ |λκ − εi |

|εi+1 − εi | ,
|λκ − εi+1|
|εi+1 − εi |

}
. (81)

The range of S is from 0 to 1.
We start by considering the noninteracting RLM, intro-

ducing the resonant level right at the chemical potential,
ε0 = 0, and then analyzing those levels within the resonant
width, −�0/2 < λκ < �0/2. Figure 5 shows the probability
distribution P (S) obtained by sampling a large number of
realizations. We see that this distribution is independent of the
coupling strength (for levels within the resonant width). The
corresponding results for the toy model, Eqs. (76) and (80),
are plotted in Fig. 5 as well. The toy model gives a good
overall picture of both the distribution of S and the difference
between the orthogonal and unitary cases: The strong coupling
levels are concentrated near the original levels in the case
of the GOE while they are pushed away from the original
levels in the GUE. Quantitatively, however, the weight in the
middle of the interval is greater in the full RLM than in the
toy model. Comparing the GUE case with the prediction of
Eq. (80) obtained from the second toy model (after performing
the proper averaging over λ̄/�̄; see Appendix C), we see that
this difference can be attributed to the mean effect of the levels
other than the closest ones, which tend to push λκ into the
middle of the interval [εi,εi+1]. Remarkably, as seen in Fig. 5,
neglecting the fluctuations of the wave functions other than
|φi(0)|2 and |φi+1(0)|2 tends to make this “pressure” toward
the center somewhat bigger than it would be if all fluctuations
were taken into account.

One intriguing prediction of the toy model is the square-
root singularity at S = 0 and S = 1 in the GOE case. To see
whether this is present in the RLM numerical results, we plot
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FIG. 5. (Color online) The distribution of S (which includes both |λκ − εi |/|εi+1 − εi | and |λκ − εi+1|/|εi+1 − εi |) for the resonant level
model (a) GOE and (b) GUE and for the SBMFT treatment of the infinite-U Anderson model, (c) GOE and (d) GUE. (a, Insert) The cumulative
distribution of the V0 = 0.9 GOE data compared to the toy model. The dashed lines in (a) and (b) are the result of the toy model; those in (c)
and (d) show the RLM result for V0 = 0.9 and 1.3, respectively. Parameters: D = 3, ε0 = 0 for the RLM and Ed = −0.7 in the SBMFT, 5000
realizations are used, and there are 500 energy levels within the band.

the cumulative distribution function on a log-log scale in the
inset in Fig. 5; the resulting straight line parallel to the toy
model result (though with slightly smaller magnitude) shows
that, indeed, the square-root singularity is present. As predicted
by the toy model, breaking time-reversal symmetry causes a
dramatic change in P (S).

Results for the full SBMFT treatment of the infinite-U
Anderson model are shown in Figs. 5(c) and 5(d) for the GOE
and GUE, respectively. Only levels satisfying E0 − �(η)/2 <

λκ < E0 + �(η)/2 are included; these are the levels that are
within the Kondo resonance. Figure 5 shows that the perturbed
energy levels within the Kondo resonance for the interacting
model have the same statistical properties as the ones within
the resonance for the noninteracting model.

VI. WAVE-FUNCTION CORRELATIONS

We turn now to the properties of the eigenstates. A key
quantity of interest in quantum dot physics is the magnitude
of the wave function of a level at a point in the dot that is
coupled to an external lead. This quantity is directly related to
the conductance through the dot when the chemical potential
is close to the energy of the level.25,61 We assume that the

probing lead is very weakly coupled, so the relevant quantity
is the magnitude of the wave function in the absence of leads.
Within our RMT model, all points other than the point r = 0, to
which the impurity is coupled, are equivalent. The evolution of
the magnitude of the quasiparticle wave-function probability
|ψi(r)|2, at some arbitrary point r �= 0 as a function of the
coupling strength is shown in Fig. 1(c) for GOE and Fig. 2(c)
for GUE. Note the large variation in magnitude, often over a
narrow window in coupling V0, and the fact that the magnitude
of each level tends to go to 0 at some value of V0 (though not
all at the same value).

In order to understand how the coupling to an outside
lead at r is affected by the coupling to the impurity, we
study the correlation between the quasiparticle wave-function
probability |ψκ(i)(r)|2 and the unperturbed wave-function
probability |φi(r)|2 [using the convention of Sec. III A, κ(i) =
i]. More specifically, we will consider in this section the
correlator

Ci,κ(i) = |φi(r)|2|ψκ(i)(r)|2 − |φi(r)|2 · |ψκ(i)(r)|2
σ (|φi(r)|2)σ (|ψκ(i)(r)|2)

. (82)
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FIG. 6. (Color online) Wave-function correlator Ci,κ(i) for the noninteracting RLM (η̄ = 1). (a) GOE and (c) GUE, as a function of the
average distance between εi and ε0. (b) GOE and (d) GUE, as a function of rescaled average distance ε = (i� − D/2)/�0. The dashed lines
are the result of Eq. (90) in which the wave-function fluctuations are taken into account but the energy levels are assumed bulklike. Parameters:
D = 3, impurity energy level ε0 = 0, 5000 realizations, and 500 energy levels within the band.

The average (·) here is over all realizations, for arbitrary
fixed r �= 0, and σ (·) is the square root of the variance of
the corresponding quantity.

We expect that, as for the energies, most of the wave-
function fluctuation properties can be understood by starting
from the RLM [Eq. (57)] despite the fact that fluctuations of
the mean-field parameters are not included. We start, therefore,
with Fig. 6, which shows Ci,κ(i) for the noninteracting RLM as
a function of the average distance δε̄i = (i� − D/2) between
εi and ε0 = 0 (which is in the middle of the band). In Figs. 6(a)
and 6(c), the correlator Ci,κ(i) has a dip at the position of
the impurity level. The width of the dip increases as the
coupling V0 increases. Rescaling the energy axis by �0, as
done in Figs. 6(b) and 6(c), shows that the width of the dip is
proportional to the resonance width. One also finds that Ci,κ(i)

is �1 for the energy levels outside the resonance, which is
expected, but that Ci,κ(i) is slightly below 1/2 in the center of
the resonance.

Turning now to the full self-consistent problem, we plot in
Fig. 7 the wave-function correlator Ci,κ(i) for the full SBMFT
approach to the infinite-U Anderson model. Figures 7(a)
and 7(c) show that the wave-function correlation has a dip
similar to that in the RLM results. The dip is located
at δε̄i = 0.0 for small coupling (i.e., V0 = 0.6) and then
moves to larger δε̄i as the coupling V0 increases. This is a
natural result for the highly asymmetric infinite-U Anderson
model: For small coupling, the SBMFT calculation leads
to E0 − μ = Ed − ξ ≈ 0, while for increasing V0, E0 − μ

increases to positive values. In fact, the dip corresponds to the
effective Kondo resonance. Incorporating the shift of E0(ξ ) and

rescaling by �(η) ∼ TK , we plot the wave-function correlation
as a function of δε̃ ≡ [(i�−D/2) − (E0(ξ ) − μ)]/�(η) in
Figs. 7(b) and 7(d). All the curves collapse onto universal
curves, one for the GOE and another for the GUE. In addition,
the universal curves are the same as the universal curves
for the RLM. As anticipated, the (fixed parameter) resonant
level model contains essentially all the physics controlling
the behavior of the correlator Ci,κ(i). We can, therefore, try to
understand the behavior of this quantity without taking into
account the fluctuations of the mean-field parameters.

Using, again, the Green function Eq. (27), we can define the
quasiparticle wave-function probability |ψκ (r)|2 as the residue
at λκ of 〈r|Ĝ|r〉 = ∑

jj ′ ψj (r)Gjj ′ψj ′ (r). From the expression
for Gjj ′ given in Eq. (22), we thus have

|ψκ (r)|2 =
∑
jj ′

ψj (r)v∗
j

λκ − εj

uκ

ψ∗
j ′ (r)vj ′

λκ − εj ′
, (83)

where vj = ηV0φj (0) is the coupling of the state j to the
impurity and uκ ≡ |〈ψκ |f 〉|2 is given by Eq. (30). Therefore,

|ψκ (r)|2 · |φi(r)|2 =
∑
jj ′

�κ
jj ′ ψj (r)ψ∗

j ′ (r)ψi(r)ψ∗
i (r), (84)

where we have defined

�κ
jj ′ ≡ v∗

j

λκ − εj

uκ

vj ′

λκ − εj ′
. (85)

In our random matrix model, there is no correlation between
different wave functions or between wave functions and energy
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FIG. 7. (Color online) Wave-function correlation, Ci,κ(i), for the SBFMT approach to the infinite-U Anderson model. (a) GOE and
(c) GUE, as a function of the average distance from the middle of the band. (b) GOE and (d) GUE, as a function of rescaled average distance
δε̄ = [(i�−D/2) − (E0(ξ )−μ)]/�(η). The black lines labeled RLM are results for the noninteracting RLM at V0 = 0.5. The dashed lines are
the result of Eq. (90) in which the wave-function fluctuations are taken into account but the energy levels are assumed bulklike. Parameters:
D = 3, impurity energy level Ed = −0.7, 5000 realizations, and 500 energy levels within the band.

levels. We thus have

|φi(r)|2|ψκ (r)|2 − |φi(r)|2 · |ψκ (r)|2 =
∑
jj ′

�κ
jj ′giijj ′ , (86)

where

gii ′jj ′ ≡ [ψi(r)ψ∗
i ′ (r)ψj (r)ψ∗

j ′(r)

−ψi(r)ψ∗
i ′ (r) · ψj (r)ψ∗

j ′(r)]. (87)

Because the wave functions are independent and Gaussian dis-

tributed, gii ′jj ′ = (2/β)δii ′δjj ′δij |ψi(r)|22
(remembering the

normalization |ψi(r)|2 = 1/N and β = 1 for GOE while
β = 2 for GUE). In the same way, we have σ (|φi(r)|2) =
giiii = (2/Nβ). Furthermore, using Eq. (83) and the limit
� � �, we have σ (|ψκ (r)|2) � (2/Nβ), which then yields,

Ci,κ = �κ
ii = uκ

|vi |2
(λκ − εi)2

. (88)

[We note that by differentiating Eq. (28) with respect to εi , one
can show that ∂λ2

κ/∂εi = �κ
ii and, thus, Ci,κ = ∂λκ/∂εi .]

A good approximation to Ci,κ(i) can then be obtained from
the bulk value, using Eq. (A4) to evaluate Eq. (88) in the bulk
limit yields

(
�κ

ii

)bulk ≡
[
δ2
κ

∑
i

1

(i + δκ )2

]−1

, (89)

where δκ = (λκ(i) − εi)/�. Using Eqs. (A3), (A5), and (A6)
from Appendix A, we thus have

Ci,κ(i) � 1

[cotan−1(δε̄i/�)]2(1 + (δε̄i/�)2)
, (90)

which, as anticipated, depends only on the ratio (δε̄i/�). The
curve resulting from this expression is shown in Figs. 6 and 7
and is in good agreement with the numerical data.

Equation (90) provides a good qualitative and quantitative
description of the energy dependence of the correlator Ci,κ(i)

[although differences between (�κ
ii)

bulk and �κ
ii are visible]. In

a conductance experiment, however, only the levels near the
Fermi energy that are within the Kondo resonance contribute
to the conductance. In the middle of the resonance, Ci,κ(i) is
slightly less than one-half. At temperatures lower than the
mean spacing �, for which only one state would contribute to
the conductance, there would be some correlation, but only a
partial one, between the fluctuations of the conductance in the
uncoupled system and the one in the Kondo limit.

VII. DISCUSSION AND CONCLUSIONS

We have obtained results for the correlation between the
statistical fluctuations of the properties of the reservoir-dot
electrons in two limits: The high-temperature noninteracting
gas on the one hand (T � T bulk

K ) and, on the other hand,
the quasiparticle gas when the Anderson impurity is strongly
coupled (T � T bulk

K ). The exact treatment of the mesoscopic
Kondo problem in the low-temperature regime is, however,
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nontrivial. Since the very low temperature regime (T � T bulk
K )

is described by a Nozières-Landau Fermi liquid, we tackled
this problem by using the slave boson mean-field approx-
imation, through which the infinite-U Anderson model is
mapped to an effective resonant level model with renormalized
impurity energy level and coupling.

We derived the spectral joint distribution function, Eq. (73),
which, in principle, contains all the information about the
correlations between the high- and low-temperature spectra
of the mesoscopic Anderson box. In the spirit of the Wigner
surmise, a solvable toy model was introduced to avoid the
complications of the joint distribution function. The toy model
provides considerable insight into the spectral correlations in
the original model.

The numerical infinite-U SBMFT calculation shows the
following results. First, the distributions of the mean-field
parameters are Gaussian. Second, the distribution of the critical
coupling J c

K does not vanish at zero, which shows that there
exist some realizations for which the Kondo effect appears at
any bare coupling V0 and impurity energy level Ed . Third, for
the GOE, the spectral spacing distribution has two sharp peaks
at S = 0 and S = 1, showing that the two perturbed energy
levels (i.e., those for T � T bulk

K ) are close to the unperturbed
ones (T � T bulk

K ). For the GUE, the peak of the spectral
correlation function is located at S = 0.5 corresponding to the
center of the two unperturbed energy levels. In addition, the
spectral spacing distribution for different coupling strengths
V0 collapse to universal forms, one for GOE and one for
GUE, when we consider only energy levels within the Kondo
resonance.

Finally, we studied the influence of the Anderson impurity
on the coupling strength between an outside lead and the
energy levels of the large dot, as would be probed in
a conductance measurement. This is characterized by the
intensity of the wave function at an arbitrary point. The cor-
relation function of this intensity corresponding to the unper-
turbed system and perturbed system shows a dip located at
the Kondo resonance, and the width of the dip is proportional
to the width of the Kondo resonance. Only the part of the
wave-function amplitude that corresponds to the perturbed
energy levels within the Kondo resonance will be significantly
affected due to the coupling to the Kondo impurity.
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APPENDIX A: KONDO TEMPERATURE AND
VALUES OF THE MEAN-FIELD PARAMETERS IN

THE BULK LIMIT

In this Appendix, we provide a brief reminder of the deriva-
tion of the Kondo temperature and mean-field parameters in
the bulk limit. We define this latter by taking N → ∞ and
assuming that there are no fluctuations in either the wave
functions or the unperturbed levels: For all i, xi = 1 and

εi+1 − εi = �. We further assume the chemical potential μ

in the middle of the band.
Under these assumptions, the equation defining the Kondo

temperature, Eq. (39), reads

Ed

ρ0V
2

0

=
∫ +D/2

−D/2

dy

y
tanh [y/2TK ] = 2 ln

(
aK

2

D

TK

)
, (A1)

(aK � 1.1338..), and, thus,

TK = aK

2
D exp

(
− |Ed |

2ρ0V
2

0

)
. (A2)

Turning now to the (zero-temperature) mean-field parame-
ters, we shall denote their value in the bulk limit by η̄ and ξ̄

and by �̄ ≡ �(η̄,ξ̄ ) and Ē0 ≡ E0(η̄,ξ̄ ) the corresponding width
and center of the resonance. Let us consider the perturbed
eigenlevel λκ ∈ [εi,εi+1] and δκ ≡ (λκ −εi)/�. Equation (28)
reads, in the bulk limit,

λκ − Ē0

�̄
= 1

π

∑
j

1

δκ − j
, (A3)

and, likewise, Eq. (30) for the overlap uκ = |〈ψκ |f 〉|2 is
(assuming �̄ � �)

uκ = π�

�̄

1∑
j (δκ − j )−2

. (A4)

Using the identities

∑
j

1

δκ − j
= π cotan(πδκ ), (A5)

∑
j

1

(δκ − j )2
= π2[1 + cotan2(πδκ )], (A6)

together with Eq. (A3), one obtains

∑
j

1

(δκ − j )2
= π2

[
1 + (λκ − Ē0)2

�̄2

]
. (A7)

We therefore can express the bulk analogs I bulk(η̄,ξ̄ ) and
J bulk(η̄,ξ̄ ) of the sums introduced in the mean-field Eqs. (43)
and (44) as

I bulk(η̄,ξ̄ ) ≡
∫ +D/2

−D/2
dy

sgn(y − δξ̄ ) y

y2 + �̄2

= 2 ln

[
1√

1 + (δξ̄/�̄)2

D

2�̄

]
(A8)

J bulk(η̄,ξ̄ ) ≡ 1

π�̄

∫ δξ̄

−∞

dy

1 + (y/�̄)2

= 1

2
+ 1

π
tan−1(δξ̄/�̄). (A9)

with δξ̄ ≡ (ξ̄−Ed ) = (Ē0−μ).
Equation (A9) inserted into Eq. (44) yields

δξ̄/�̄ = − tan(πη2/2), (A10)
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which, in the Kondo regime (η � 1), implies δξ̄/�̄ = O(η2).
Inserting Eq. (A8) into Eq. (43) then gives

�̄ = D

2
exp

(
− |Ed |

2ρ0V
2

0

)
. (A11)

Thus, in this regime, TK and �̄ differ just by the fac-
tor aK � 1.133. In the mixed-valence regime TK/�̄ =
aK

√
1 + tan2(πη2/2), which, however, remains of order one

as long as (1−η2) does.
As a final comment, we note that Eq. (A11) implies

η2 = (D2/2πV 2
0 ) exp(−|Ed |D/2V 2

0 ), from which we obtain
an explicit condition,

exp

(
− 1

ρ0JK

)
� 2π

V 2
0

D2
, (A12)

to be in the Kondo regime.

APPENDIX B: CONSTRAINT ON THE SUM OF
THE EIGENVALUES OF THE RESONANT

LEVEL MODEL

In this Appendix, we briefly demonstrate Eq. (60) con-
straining the sum of the eigenvalues of the RLM.

Starting from 〈ψκ |HRLM|ψκ〉 = λκ〈ψκ |ψκ〉, we may insert
the identity I = ∑N

i=0 |i〉〈i| on the right-hand side (with the
notation that |i = 0〉 ≡ |f 〉) and obtain

N∑
i=0

(λκ − εi)〈ψκ |i〉〈i|ψκ〉

= v

(
N∑

i=0

φi(0)〈f |ψκ〉〈ψκ |i〉 + H.c.

)
. (B1)

The sum of these equations,
∑N

κ=0, is

N∑
κ=0

λκ −
N∑

i=0

εi = v

(
N∑

i,κ=0

φi(0)〈f |ψκ〉〈ψκ |i〉 + H.c.

)

= v

(
N∑

i=0

φi(0)δ0i + H.c.

)

= 0; (B2)

thus, the sum of the two sets of eigenvalues must be equal.

APPENDIX C: AVERAGING OF EQ. (80)

Averaging Eq. (80) over the variable � ≡ λ̄/� in some
range [0,�max], we find, after a bit of algebra,

1

�max

∫ �max

0
P (σ ) = 4/π

1 + 2σ
exp[−f̃ (σ )]

[(
1 + (1 − 4σ 2)f̃ ′(σ ) + 1 − 2σ

1 + 2σ

)
sinh

[
π

(
σ + 1

2

)
�max

]

−
(

σ − 1

2

)
f̃ (σ ) sinh

[
π

(
σ + 1

2

)
�max

]
+ π

(
σ − 1

2

)
�max cosh

[
π

(
σ + 1

2

)
�max

]]
,

with f̃ (σ ) = f (σ,�=0).
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