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We study the effect of dielectric anisotropy of polymers on their equilibrium ordering within mean-
field theory, but with a formalism that takes into account the full n-body nature of van der Waals
(vdW) forces. Dielectric anisotropy within polymers is to be expected as the electronic properties of
the polymer will typically be different along the polymer than across its cross section. It is therefore
physically intuitive that larger charge fluctuations can be induced along the chain than perpendic-
ular to it. We show that this dielectric anisotropy leads to n-body interactions which can induce an
isotropic-nematic transition. The two body and three body components of the full vdW interaction are
extracted and it is shown how the two body term behaves like the phenomenological self-aligning-
pairwise nematic interaction. At the three body interaction level we see that the nematic phase that is
energetically favorable is discotic, however, on the full n-body interaction level we find that the nor-
mal axial nematic phase is always the stable ordered phase. The n-body nature of our approach also
shows that the key parameter driving the nematic-isotropic transition is the bare persistence length
of the polymer chain. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703762]

I. INTRODUCTION

Semi-flexible polymers,1 just like rod-like anisotropic
nematogens, form orientationally ordered liquid crystalline
mesophases, spanning the concentration regime of chiral
nematics,2 and all the way to line hexatics.3 Among the most
important examples of semi-flexible polymer ordering is the
double stranded DNA molecule,4, 5 which makes a plethora of
liquid crystalline phases in aqueous solutions. These ordered
phases of DNA aqueous dispersions are pertinent to the con-
struction of DNA nano-assemblies6 and have recently found a
promising new application in the form of virus-like particles.7

A rigorous theory of nematic ordering of long rigid ne-
matogens, in dilute solutions, was first proposed in a seminal
work by Onsager.8 His approach was later adapted to semi-
flexible polymers by Semenov and Khokhlov,9 and within a
different formal background by Ronca and Yoon.10 A field-
theoretical reformulation of the nematic-isotropic transition
for semi-flexible polymers was then pursued by Gupta and
Edwards,1 as well as by Tkachenko and Rabin and others.11, 12

These approaches are all based on the assumption of pair-
wise additivity of the interaction potential, which is assumed
to be of a general nematic form stemming from the Onsager
steric interaction. For short range interactions this is of course
a reasonable assumption. However, it is well known that elec-
trostatic as well as van der Waals (vdW) interactions usually
engender long range non-pairwise additive interactions that in
general do not conform to this approximation.13

Furthermore, polymers in general show an anisotropic di-
electric response, so that the dielectric functions along the
axis and perpendicular to the axis differ. This is nicely seen,
e.g., in the case of DNA,14 where the amplitude of the dielec-
tric function in the axial and the radial directions are very dif-
ferent because of the strong optical anisotropy of DNA.15 This
dielectric anisotropy has important consequences, as vdW
interactions between anisotropic media lead, in general, to
torques induced by electromagnetic field fluctuations, as first
realized by Weiss and Parsegian.17, 18 The details of this effect
are complicated, but it persists not only in the non-retarded
but also in the retarded limit.19–21

The existence of anisotropic vdW interactions now poses
a question about their possible role in ordering transitions.
While the fundamental importance of the vdW force for the
gas-liquid transition is well recognized, we now investigate
the possible role of anisotropic vdW interactions for orienta-
tional ordering transitions. As it is not clear off-hand whether
the effect is significant, it is of utmost importance that the
many-body pairwise non-additive nature of vdW interactions
be fully treated in the theoretical framework. We thus formu-
late the theory of orientational ordering of semi-flexible poly-
mers due to anisotropic vdW interactions in a way that allows
for a complete and exact re-summation of vdW interaction
energy to all levels, including pairs, triplets, quadruplets, etc.
Whatever the conclusions of this theory, they can certainly
not be undermined by the improper treatment of the n-body
aspects of the vdW effect.
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In order to assess the effect of anisotropic vdW interac-
tions, we analyze a rather simple case of semi-flexible poly-
mer ordering driven exclusively by these interactions. We thus
study the effects beyond the usual Onsager steric anisotropy
ansatz. However, the most fundamental difference with pre-
vious studies is that we calculate exactly the contribution of
vdW interactions to all orders within the mean-field approx-
imation. Usually, vdW interactions are treated on a pairwise
level, or possibly three body Axilrod-Teller level,22 but never
more. We propose an analytical approach that allows us to
sum the vdW interactions to all orders and solve the corre-
sponding mean-field theory exactly. It should be noted that the
long range nature of vdW interactions implies that our mean-
field treatment should be reasonably accurate, especially in
dense systems. Pursuing this approach we show that, indeed,
anisotropic vdW interactions can engender an orientational
ordering transition in a solution of stiff polymer chains.

II. MEAN FIELD VDW FREE ENERGY

To begin this section we discuss the formulation of vdW
forces in terms of dipoles in the system. This approach ulti-
mately allows a general formulation in terms of local dielec-
tric constants which are accessible experimentally. The ap-
proach is rather standard, however, we go over it here for the
sake of completeness and because our final results will depend
on a microscopic cut-off. The exposition given here allows us
to determine the microscopic origin of the cut-off and hence
estimate its order of magnitude.

The electrostatic energy of of system of interacting
dipoles can be written as

HES = 1

2

∑
α �=β

pαTαβ(xα − xβ)pβ, (1)

where the dipole-dipole interaction between dipoles pα and
pβ at sites xα and xβ can be written as

Tij (x − x′) = ∇xi
∇x′

j
G(x − x′), (2)

where G is the Green’s function obeying

ε0∇2G(x) = −δ(x). (3)

The vdW part of the partition function can be written in terms
of a trace over the dipole degrees of freedom (for a given con-
figuration of the molecules bearing the dipoles) as

ZvdW = Tr exp(−βHES). (4)

The dipoles can be decoupled by introducing a scalar field φ

and writing

ZvdW =
∫

D[φ(x)] Tr exp

(
−βε0

2

∫
(∇φ(x)2)dx

+ iβ
∑

α

∇φ(xα) · pα

)
. (5)

In principle, we have added a divergent self-energy of the in-
teraction between a dipole with itself, however, this term is
independent of the interaction between different dipoles and
the divergence can be regularized.

The term −ipα · ∇φ(xα) can be identified as −pα · E(xα)
which is the interaction of the dipole and the local electric
field, so that we can thus write φ = −iψ where ψ is the local
electrostatic potential. As mentioned above, the results ob-
tained in this approach will be regulated by a cut-off and at
this point we will explain the origin of the cut-off within the
context of our model. A dipole moment is a pair of charges
±qd separated by a distance a0 (but which can vary in size in
the presence of the field). The dipole will not interact with
fields which oscillate in space over distances shorter than
the microscopic scale a0. Thus, on scales smaller that a0 the
medium will behave as vacuum. Therefore, we will regular-
ize our results by restricting the functional integral over φ in
Eq. (5) to fields φ which have no Fourier component for
modes k such that |k| > 2π /a0.

As we are only interested in linear dielectric response
models, ignoring completely any higher order saturation ef-
fects, we can use the approximation, for each pα , that

Tr exp(iβ∇φ(x) · pα) � Tr

[
1 + iβ∇iφ(x)pαi

−β2

2
pαipαj∇iφ(x)∇jφ(x)

]
. (6)

Now if we take the trace over the dipole to be normalized so
that Tr 1 = 1, and use the fact that in the absence of an external
field Tr pαi = 0, we can write

Tr exp(iβ∇φ(xα) · pα) � 1 − β2

2
χ

(α)
ij ∇iφ(xα)∇jφ(xα),

(7)
where χ

(α)
ij = 〈pαipjα〉 for a single dipole in the absence of an

electric field. Here χ
(α)
ij can depend on the local environment

of the dipole. In a polymer, for example, χ ij will be differ-
ent in directions parallel to the polymer and perpendicular to
the polymer, for example, typically in the direction tangent to
the polymer the polarizability will be larger and this will be
an easy axis, i.e., χ‖ > χ⊥. This is certainly what has been
observed in recent study.15

Re-exponentiating Eq. (7) for each dipole then gives the
result

ZvdW =
∫

D[φ(x)] Tr exp

(
−βε0

2

∫
(∇φ(x)2)dx

−β2

2

∑
α

χ
(α)
ij ∇iφ(xα)∇jφ(xα)

)
. (8)

Now assuming the above sum is over lattice sites of the same
typical size a0 as the dipoles, we can approximate the sum in
the above as an integral to obtain

∑
α

χ
(α)
ij ∇iφ(xα)∇jφ(xα) =

∫
dx χij (x)∇iφ(x)∇jφ(x),

(9)
where χij (x) = χ

(α)
ij /a3

0 . We can thus make the identification
of the local dielectric tensor as

εij (x) = ε0δij + βχij (x). (10)
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FIG. 1. Schematic representation of the dielectric polymer model with per-
sistence length lp. The external medium is water with dielectric constant
εw . The polymer is modeled as a tube with dielectric tensor ε‖ in the di-
rection of the tube’s local axis of symmetry and ε⊥ perpendicular to the
axis of symmetry. The diameter of the tube a is taken to be larger than the
atomic/molecular size a0 which represents the length of dipoles present in the
composite molecules or atoms.

The chain is then assumed to be composed of an
anisotropic macroscopic dielectric material that has a dielec-
tric response function ε‖ and ε⊥, respectively, parallel and
perpendicular to the chain. A schematic for the model is
shown in Fig. 1. The model we adopt for the polymer is that
of a continuous cylindrical chain. We denote the trajectory of
the centre of the polymer about its axis of cylindrical symme-
try to be within the arc-length parameterization x(s), so that
the tangent vector defined as

t(s) = ẋ(s) (11)

is normalized such that t2(s) = 1. We now use the matrix pij

= titj to project onto the direction parallel to the polymer and
the matrix qij = δij − titj to project onto the plane perpendicu-
lar to the polymer. Putting all this together gives the partition
function for the vdW interactions as

ZvdW =
∫

D[φ(x)] exp(−βEES), (12)

where

EES = 1

2
εw

∫
Vw

(∇φ(x))2 dx + 1

2
ε‖

∫
Vp

ti tj∇iφ(x)∇jφ(x)dx

+1

2
ε⊥

∫
Vp

(δij − ti tj )∇iφ(x)∇jφ(x)dx. (13)

Here Vw indicates the volume occupied by the solvent, which
is assumed to have an isotropic dielectric tensor εij = εwδij ,
and Vp is the volume occupied by the polymer which has an
anisotropic dielectric tensor εij = ε‖pij + ε⊥qij. The above can
be written in terms of an integral over V the total volume and
Vp the volume occupied by the polymer:

EES = 1

2
εw

∫
V

(∇φ(x))2 dx + 1

2
ε‖

∫
Vp

ti tj∇iφ(x)∇jφ(x)dx

+1

2

∫
Vp

((ε⊥ − εw)δij − ε⊥ti tj )∇iφ(x)∇jφ(x)dx.

(14)

We now define the indicator function for the surface per-
pendicular to t(s) containing points y closer than a from the
central point x(s), and which therefore contain polymer mate-
rial. We denote this indicator function by Ia(x(s), t(s), y). In

terms of this function Eq. (14) then becomes

EES = 1

2
εw

∫
V

(∇φ(x))2 dx + 1

2

∫ L

0
dsdy Ia(x(s), t(s), y)

×[(ε⊥ − εw)δij + (ε‖ − ε⊥)ti(s)tj (s)]∇iφ(y)∇jφ(y).

(15)

The indicator function is explicitly given by

Ia(x(s)), t(s), y) = δ ([y − x(s)] · t(s)) θ (a − |y − x(s)|),
(16)

the first term picks out the surface perpendicular to the poly-
mer direction and in the second term, the Heaviside θ func-
tion, restricts integration to points within the radius a of the
polymer. If we introduce the joint density field of t and x de-
fined by

�(x, t) =
∫ L

0
ds δ(x − x(s))δ(t − t(s)), (17)

the electrostatic energy can be written as

EES = 1

2
εw

∫
V

(∇φ(x))2 dx

+1

2

∫
dxdt �(x, t)

∫
dy Ia(x, t, y) × [(ε⊥ − εw)δij

+(ε‖ − ε⊥)ti tj ]∇iφ(y)∇jφ(y). (18)

In the mean field approximation, we replace the density field
�(x, t) by its spatially averaged value

〈�(x, t)〉 = 1

V

∫
dx �(x, t) = L

V
�(t), (19)

where �(t) is the probability distribution of the tangent vector
t. We now use the fact that∫

dx Ia(x, t, y) = πa2, (20)

and define the order parameter matrix σ ij as∫
dt �(t)ti tj = 〈ti tj 〉 = σij , (21)

to obtain the mean field expression for the electrostatic energy
as

EES =
∫

V

dx
1

2

[
(∇φ(x))2

(
εw + πa2L

V
(ε⊥ − εw)

)

+πa2L

V
(ε‖ − ε⊥)σij∇iφ(x)∇jφ(x)

]
, (22)

or alternatively as

EES = 1

2

∫
V

dx ε̃ij∇iφ(x)∇jφ(x). (23)

where

ε̃ij = (εw + ν(ε⊥ − εw))δij + ν(ε‖ − ε⊥)σij (24)

is the effective mean field dielectric constant and where
ν = πa2L/V is the volume fraction of the polymer. Note that
the normalization condition t2(s) = 1 implies that the order
parameter matrix obeys the constraint Tr σ = 1. Within this
mean field approximation the functional integral over the field
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φ can be evaluated explicitly giving the corresponding free
energy

βFvdW = − ln(ZvdW ) = 1

2
V

∫
d3k

(2π )3
log (ε̃ij kikj ). (25)

This is the form of the free energy corresponding to thermal
fluctuations of the electrostatic field that we will use later. It
is equivalent to the zero Matsubara frequency or static vdW
interactions as it is well known.22 In the full Lifshitz theory16

with assumed complete magnetic homogeneity of the space,
the above formula is generalized to

βFvdW = − ln(ZvdW ) = V

∞∑
n=0

′ ∫
d3k

(2π )3
log (ε̃ij (ıξn)kikj ),

(26)
where the n summation (the prime indicates that n = 0 term
has a weight of 1/2) is over the imaginary Matsubara frequen-
cies ξ n = 2πnkBT/¯, where kB is the Boltzmann constant, T is
the absolute temperature, and ¯ is the Planck constant divided
by 2π .

Here we compute the zero Matsubara frequency vdW
free energy, however, this result can then be trivially extended
to compute the contribution from other frequencies. We must
compute an integral of the form

W (B) =
∫

d3k ln(Bij kikj ). (27)

To proceed, we notice that

∂W (B)

∂Bpq

= Ipq

∫ �

0
k2dk = Ipq

�3

3
(28)

where

Ipq =
∫

dk̂
k̂pk̂q

Bij k̂i k̂j

. (29)

Here k̂ denotes the unit vector and � is the ultraviolet cut-off
corresponding to length scales below which the electromag-
netic field fluctuations are cut off. We now note that

Jpq(B) =
∫

d3k exp

(
−1

2
k2

)
kpkq

Bij kikj

=
∫ ∞

0
k2dk exp

(
−1

2
k2

)
Ipq(Bij ) =

√
π

2
Ipq(Bij ),

(30)

and use the identity

Jpq(B) =
∫

d3k exp

(
−1

2
k2

)
kpkq

∫ ∞

0

dt

2
exp

(
− t

2
Bij kikj

)

= 1

2
(2π )

3
2

∫ ∞

0
dt (I + tB)−1

pq det(1 + tB)−
1
2 , (31)

where I denotes the identity matrix. Putting all of this together
we obtain

Ipq(B) = 2π

∫ ∞

0
dt (1 + tB)−1

pq det(I + tB)−
1
2 = ∂W (B)

∂Bpq

.

(32)

Thus, we derive the effective potential W (B) in the form of

W (B = I + γ σ )

= 4π

∫ ∞

0

dt

t

[
1

(1 + t)
3
2

− det(I + tB)−
1
2

]

= 4π

∫ ∞

0

dt

t

[
1

(1 + t)
3
2

− det(I + t(I + γ σ ))−
1
2

]
. (33)

Using this result the zero Matsubara frequency vdW part
of the free energy can then be written in a compact form as

βF̃vdW (σ )

V
= �3

12π2

[
ln (εw + ν(ε⊥ − εw)) +

∫ ∞

0

dt

t

×
(

1

(1 + t)
3
2

− det[I + t(I + γ σ )]−
1
2

)]
,

(34)

where

γ = ν(ε‖ − ε⊥)

εw + ν(ε⊥ − εw)
. (35)

The zero Matsubara frequency vdW free energy may now
be expanded in terms of γ , the expansion up to order γ 2 cor-
responding to the pairwise approximation for the vdW inter-
action. Carrying out this expansion to third order in γ yields,
up to terms independent of σ ,

βF̃vdW (σ )

V

= �3

12π2

[
γ

3
Trσ − γ 2

30
(2Trσ 2 + (Trσ )2)

+ γ 3

315
(8 Trσ 3 + 12 Trσ 2 Trσ + (Trσ )3) + O(γ 4)

]
.

(36)

It is interesting to compare our free energy functional at
the order of γ 2 with that derived within the same mean-
field approximation for nematic interactions between poly-
mers where the pairwise interaction energy is given by1

EN = 1

2
u

∫ L

0

∫ L

0
dsds ′(t(s) × t(s ′))2δ(x(s) − x(s ′)). (37)

The form of this interaction makes it energetically favorable
for the polymers to align locally in a parallel fashion. In the
mean field approximation this gives a σ dependent mean-field
free energy of nematic interaction

βF̃N (σ )

V
= L2

2V
βu[(Trσ )2 − Trσ 2]. (38)

Recalling that as Trσ = 1 is fixed, we can identify an effec-
tive nematic interaction parameter for the vdW interaction by
identifying the coefficients of Trσ 2 in Eqs. (36) and (38) to
obtain

ue = kBT �3γ 2V

90π2L2
. (39)
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The effective nematic interaction is thus proportional to the
square of the relative anisotropy polarizability γ and thus cru-
cially depends on the non-isotropic nature of the polymer ma-
terial. Note also that the sign of the interaction is always pos-
itive. This ties up with the fact that polarizable cylinders have
a preference to align in a parallel fashion, thus favoring ne-
matic order. However, only stiff molecules with non-isotropic
dielectric response, such as DNA or carbon nanotubes, can be
expected to exhibit this particular tendency toward nematic
ordering.

III. POLYMER FREE ENERGY

The polymer chain itself is not featureless and will be
modeled within the framework of the semi-flexible Kratky-
Porod model, where the polymer’s conformational energy is
given by

EKP = 1

2
K

∫ L

0
ds ṫ(s)2 with the constraint t(s)2 = 1,

(40)
and where the last constraint stems from the fixed length of
the monomers. Instead of dealing with this constraint locally,
which is a difficult task, we simplify the model as suggested
by Edwards and Gupta,1 by taking it into account globally in
the form

〈t(s)2〉 = 1. (41)

This then leads to the effective partition function of the poly-
mer chain in the form

EKP = 1

2
K

∫ L

0
ṫ(s)2ds + 1

2
λ

∫ L

0
(t(s)2 − 1)ds, (42)

where λ is a Lagrange multiplier to be evaluated self-
consistently from the global constraint of Eq. (41). The poly-
mer partition function is then given by

ZKP =
∫

D[x(s)] exp (−βEKP [x(s)]) with

∫
D[x(s)]ẋ(s)2 exp (−βEKP [x(s)]) = ZKP . (43)

In order to couple this model with our mean field calcu-
lation of the vdW free energy we need to compute the free
energy of the polymer with the constraint that

〈ti tj 〉 = 1

L

∫ L

0
ds ẋi(s)ẋj (s) = σij . (44)

This average constraint can be imposed using a Fourier repre-
sentation of the delta function

δ

(
1

2
βLσij − 1

2
β

∫ L

0
ds ẋi(s)ẋj (s)

)

=
∫

dsij exp

(
β

2
Lsijσij − β

2

∫ L

0
ds sij ẋi(s)ẋj (s)

)
, (45)

where the variables sij are integrated along the imaginary axis.
The partition function for the constrained polymer is thus
given by

ZKP =
∫

D[x(s)] dsij exp

(
−βK

2

∫ L

0
ds ẍ2(s)

−β

2
λ

∫ L

0
ds (ẋ2(s) − 1) + β

2
Lsijσij

−β

2

∫ L

0
ds sij ẋi(s)ẋj (s)

)
. (46)

In order compute ZKP we first of all introduce the Rouse,
or polymer Fourier, decomposition

x(s) =
∫

dω

2π
x(ω)e−iωs . (47)

The complete polymer part of the partition function can thus
be written as

ZKP =
∫

dsij exp

(
1

2
βλL + 1

2
βLsijσij

)∏
ω

×
∫

dx(ω) exp(−βẼPol(x(ω))), (48)

where L is the total length of the polymer chain, and

ẼKP (x(ω)) = 1

2
aij (ω)xi(ω)x∗

j (ω), (49)

where the matrix a(ω) has components

aij (ω) = ω2((Kω2 + λ)δij + sij ). (50)

The functional integral over the Rouse modes is now Gaus-
sian and can be evaluated explicitly yielding, up to irrelevant
multiplicative constants,

ZKP = exp

(
β

2
λL + β

2
Lsijσij

)∏
ω

(det(a(ω)))−1/2 .

(51)
In the large L limit the corresponding free energy is given by

βF̃KP = − ln(ZKP ) = L minλ,sij

×
{

1

4π

∫
dω ln(det a(ω)) − β

2
λ − β

2
σij sij

}
. (52)

The integral over ω can be evaluated easily in an explicit
form in terms of the eigenvalues sμ of s and σμ of σ , yielding
up to an overall constant independent of σ

βF̃KP = L minλ,sμ

{
1

4

∑
μ

√
λ + sμ

K
− βλ

2
− β

2
σμsμ

}
.

(53)
The minimization is now carried out with respect to fields s
and λ to yield

βF̃KP = LkBT

32K

∑
μ

σ−1
μ = LkBT

32K
Tr σ−1. (54)

We note that the constraint imposed by λ gives that Tr σ = 1.
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IV. TOTAL FREE ENERGY

The free energy density per unit volume as a function of
the order parameter σ is denoted by f̃ (σ ) = F̃T (σ )/V , and
can be expressed, up to terms independent of σ , as

βf̃ (σ ) = �3

12π2

[∫ ∞

0

dt

t

(
1

(1 + t)
3
2

− det[I + t(I + γ σ )]−
1
2

)
+ cTrσ−1

]
. (55)

The dimensionless parameter c is given by

c = 3

8

πν

�3a2lbb
, (56)

where lp = K/bkBT is the dimensionless bare persistence
length of the polymer in units of the monomer length b.
From the definition of γ in Eq. (35), it is clear that 0 < γ

< (ε‖ − ε⊥)/ε‖. This simple fact is a crucial point arising
from our analysis. The fact that the effective interaction pa-
rameter saturates at high volume concentrations means that a
phase transition cannot be induced by simply increasing the
concentration of polymer as in the case of models with self-
aligning-pairwise interactions.1 Physically this result can be
interpreted by the fact that n-body interactions tend to frus-
trate the ordering which is induced by the pairwise term.

The cut-off � associated with vdW interactions is associ-
ated with the breakdown of the continuum dielectric descrip-
tion and is usually taken to be of the atomic size,22 this is
consistent with our discussion above where we relate the cut-
off to the size of dipole moments. We thus set � = 2π /a0 and
write a = λa0 where λ is the ratio between the atomic and the
macro-molecular sizes a0 and a, which is thus larger than 1.
This means that we can write

c � 3νa

64π2λ3blp
= 3

64π2λ3

ν

lp
= C.ν (57)

Further, we notice that the precise values of the parameters a
and b can be absorbed into a redefinition of the persistence
length of the polymer, i.e. lp −→ lp(b/a). In the analysis that
follows, the dimensionless parameter c is expected to be small
as by definition ν < 1 and lp > 1 and λ > 1.

V. NEMATIC TRANSITION

The parameter γ is small in the limit where ε‖ ≈ ε⊥
and/or when the volume fraction ν is small. However for
strong contrasts in ε‖ and ε⊥ it can be of order 1. It is conve-
nient to measure the components of the polymer’s dielectric
tensor in terms of the dielectric constants of the solvent, we
write ε‖ = εwε‖ and ε‖ = εwε‖, which now gives

γ =
(

ε‖ − ε⊥
ε‖ − 1

) (
1 − 1

1 + ν(ε‖ − 1)

)
. (58)

Therefore γ is a monotonic function of ν and the absolute
value of γ increases upon increasing ν. In order to proceed
we write the tensor σ as

σ = 1

3
(I + Q) (59)

where Q is the order parameter tensor

Q =

⎛
⎜⎝

−S + T 0 0

0 −S − T 0

0 0 2S

⎞
⎟⎠. (60)

Here S is the standard uniaxial nematic scalar order parameter
and T is the measure of the biaxality.

At the pairwise level, the vdW interaction to order γ 2 can
be mapped onto a nematic interaction Eq. (39), a uniaxial ne-
matic alignment of the polymers is favored and indeed Gupta
and Edwards1 found in their analysis that only these phases
are thermodynamically stable. Thus in what follows we will
examine the possibility of uniaxial ordering to all orders in γ

and thus set T = 0 in the ansatz Eq. (60). Note that in this
case we must have −1/2 ≤ S ≤ 1. While within this ansatz
positive S corresponds to a normal nematic phase, the lower
branch with negative S implies excess material in the plane
perpendicular to the nematic director and therefore represents
a discotic phase.

We first define the rescaled free energy Eq. (55) as

g(S) = 12π2βf̃ (σUA)

�3
(61)

Where σ UA is given by the Eq. (59) with Q given by the uni-
axial ansatz for Eq. (60) (thus with the term T = 0); it can be
evaluated explicitly and is given by

g(S) = −2 + 2

√
3 + γ (1 − S)√

3γ S
cos−1

( √
3 + γ (1 − S)√

3 + γ (1 + 2S)

)

+ ln

(
1

3
(3 + γ (1 + 2S))

)
+ 3c

1 + 2S
+ 6c

1 − S
.

(62)

The first three terms represent the zero Matsubara frequency
contribution to the electromagnetic field fluctuations. In the
treatment of the full Lifshitz expression, for magnetically in-
active media, these three terms would need to be summed over
all the Matsubara frequencies as in Eq. (26).

We denote the first three terms in Eq. (62) as gvdW (S), i.e.

gvdW (S) = g(S, c = 0).

As one of the main aims of this paper is to investigate the
effect of the full n-body van der Waals interactions it is inter-
esting to compare this term with g

(2)
vdW (S), which corresponds

to the pairwise approximation, and can be derived from
Eq. (62) or the expression Eq. (36) truncated at the second
order in γ , which gives

g
(2)
vdW (S) = γ

3
− γ 2

90
(5 + 4S2) + O(γ 3). (63)

The negative coefficient of S2 clearly demonstrates that
the vdW interactions favor ordering at the pairwise level.
However, one notes that at the pairwise level there is obvi-
ously no difference between the energy of nematic ordering
(ordering along an axis) and discotic ordering (concentration
in a plane) because the interaction is even in S. In the study
of Edwards and Gupta1 it was found that within the ordered
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phase it is the nematic phase which has the lower free en-
ergy. The difference is due to the constraint part of g(S), corre-
sponding to the last two terms of Eq. (62), denoted by gCO(S),
and given by

gCO(S) = g(S) − gvdW (S) = 9c(1 + S)

(1 + 2S)(1 − S)
. (64)

This term favors nematic ordering over discotic ordering as
can be seen by its Taylor expansion to fourth order in S

gCO(S) = 9c + 18cS2 − 18cS3 + 54cS4 + O(S5). (65)

Here we can see how the symmetry of the vdW free energy
between the nematic and discotic phases is broken by look-
ing at the third order term in the interaction, corresponding to
three body interactions. The total contribution to gvdW (S) to
order γ 3 is then given by

g
(3)
vdW (S) = γ

3
− γ 2

90
(5 + 4S2)

+ γ 3

2835
(53 + 120S2 + 16S3) + O(γ 4). (66)

Therefore, for small S, where the term S2 dominates, the three
body interactions tend to increase the vdW interaction energy
and thus they reduce the tendency toward ordering. Further-
more, we also see that the three body interaction favors dis-
cotic rather than nematic ordering due to the presence of a
term proportional to S3 with positive coefficient.

In Fig. 2 we show the comparison of gvdW (S) with its
approximation at third order in γ , g

(3)
vdW (S), for the value

γ = 0.5. We see that the approximation is very good at this
value of γ , however the approximation tends to over estimate
the zero Matsubara frequency vdW energy at all values of S.

As far as the phase diagram based on the assumption of
nematic ordering is concerned, the rescaled free energy g(S)
for γ = 0.5 is shown in Fig. 3. We see that when the value of
c is sufficiently lowered a first order nematic phase transition
is induced. The transition occurs at c* ≈ 0.000504 and the
order parameter S jumps discontinuously from 0 to S* ≈ 0.24.

FIG. 2. The rescaled dependence of the zero frequency vdW energy on the
order parameter, gvdW (S) = g(S, c = 0) (Eq. (62)) for uniaxial ordering for
the coupling parameter γ = 0.5 compared with the expansions g

(3)
vdW (S) of

gvdW (S) to third order in γ (Eq. (66)).

FIG. 3. The rescaled free energy difference (shifted for clarity by g(S = 0))
g(S) (Eq. (62)) for uniaxial ordering for the coupling parameter γ = 0.5 for
(from top to bottom) c = 0.000506 (isotropic), c = 0.000504 (coexistence
between isotropic and nematic phases), c = 0.000502 (nematic phase).

The complete dependence of the c* and S* on γ is given on
Fig. 4.

The way in which c can be varied while keeping γ con-
stant is by changing the bare persistence length lp of the poly-
mer. The isotropic nematic transition occurs at a critical value
l∗p = 3ν/64π2λ3c∗. As l∗p is further increased, the order pa-
rameter S increases and eventually tends to 1.

In spite of the insights gained by this partitioning of the
volume fraction dependence of γ and c, it is necessary to in-
vestigate also the complete dependence of the free energy on
the polymer density or equivalently its volume fraction. This
dependence is hidden in γ = γ (ν), Eq. (35), and c = c(ν),
Eq. (57).

Figure 5 shows the order parameter dependence of the
total free energy Eq. (62) for three different values of the vol-
ume fraction ν contained in γ = γ (ν) and c = c(ν). The di-
electric constants were taken as ε‖ = 4, ε⊥ = 3 and εw = 80,
which corresponds to a polymer with a hydrophobic core in
an aqueous solution. The persistence length was taken as 2.5
in the units of the monomer size and the radius of the polymer
was taken to be ten times the atomic size cutoff, λ = 10.

For the chosen set of parameters the nematic transition
occurs at ν = 0.655, where the minimum of the free energy
is displaced from its disordered value S = 0 to an ordered ne-
matic state with S �= 0. The critical concentration obviously
depends on the exact values of the persistence length, the ra-
dius of the polymer and its dielectric anisotropy.

VI. DISCUSSION

We have explored the consequences of orientationally de-
pendent anisotropic vdW interactions on the ordering transi-
tion of semi-flexible polymers. A theory exact to all orders
in the non-pairwise additive vdW interactions was derived
and solved at the mean-field level. We have shown that there
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(a) (b)

FIG. 4. The dependence of the c* and S* at the nematic transition on the interaction parameter γ = ν(ε‖−ε⊥)
εw+ν(ε‖−εw ) .

exists an orientational ordering transition engendering a ne-
matic polymer phase.

Though we limited ourselves to the zero Matsubara fre-
quency term, the approach can be straightforwardly general-
ized to include the full anisotropic Lifshitz expression.16 In
this case the free energy Eq. (62) needs to be rewritten as a
full Matsubara frequency sum of the form

g(S, ν) =
∞∑

n=0

′(
−2 + 2

√
3 + γn(1 − S)√

3γnS
cos−1

( √
3 + γn(1 − S)√
3 + γn(1 + 2S)

)

+ ln

(
1

3
(3 + γn(1 + 2S))

))
+ 9c(1 + S)

(1 + 2S)(1 − S)
, (67)

FIG. 5. The dependence of the free energy difference g(S) − g(S = 0) on the
order parameter S for various values of the volume fraction. Top to bottom
ν = 0.63, 0.655, 0.68. We have taken ε‖ = 4, ε⊥ = 3, and εw = 80 and
C = 2 × 10−6. The value for C corresponds to lb = 2.5 and λ = 10.

where now

γn = γ (ν, ıξn) = ν(ε‖(ıξn) − ε⊥(ıξn))

εw(ıξn) + ν(ε‖(ıξn) − εw(ıξn))
and

c = 3πν

8�3a2blp
= 3

64π2λ3

ν

lp
. (68)

Depending on the dielectric anisotropy ε‖(ıξ n) − ε⊥(ıξ n) at
every Matsubara frequency, each term in the sum makes a
contribution to the total ordering free energy. This means that
the vdW part of the free energy in general increases and there-
fore displaces the ordering transition towards smaller densi-
ties. One should note that the overall density dependence of
Eq. (67) becomes quite complicated in this case as it has a
component (the first three terms) which depends on the fre-
quency dependent dielectric response, and a component that
does not (the last term coming from the constrained KP poly-
mer free energy). We also note that the temperature depen-
dence of the free energy, upon the inclusion of the non-zero
Matsubara frequencies, becomes much more complex. How-
ever, detailed computations of the van der Waals interaction
in aqueous solutions show that the zero frequency Matsubara
term gives more then 50% of the contribution to the total vdW
interaction.22 This is a particularity of water dielectric disper-
sion, stemming from its very large dipole moment and high
static dielectric response. The order of magnitudes predicted
in this paper based on solely the zero-frequency Matsubara
frequency should give a good estimate of the effect of vdW
interactions on ordering transitions. However, the frequency
dependent components will play a significant role, and possi-
bly recent experimental developments will allow a determina-
tion of their behavior.15

The total free energy thus contains two separate contri-
butions: the Matsubara sum corresponding to the anisotropic
vdW interactions and the last term stemming from the “con-
straint” free energy, that connects the dielectric anisotropy
of the polymer chain with its configuration in space. It is
the last term that cannot be evaluated precisely because it
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contains a spatial cutoff � due to the continuum nature of the
electrostatic field description. This is not a major impediment
regarding the scaling properties and the existence of the tran-
sition, however, it introduces questions regarding the exact
numerical values for the transition density. Based on the esti-
mates made here, we conclude that the polymer does not have
to be very stiff in order to show the vdW driven orientational
ordering transition.

The mean-field approach outlined here for the case of ori-
entationally dependent vdW interactions can of course be eas-
ily extended and applied to other cases. The coupling of the
zero frequency vdW interaction to an electrolyte in the solvent
would be of particular interest to analyze.
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