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Abstract. The reverse-engineering (RE) is a real threat on high-value
electronic circuits. Many unitary solutions have been proposed to make
RE difficult. Most of them are low-level, and thus costly to design and
to implement. In this paper, we investigate alternative solutions that at-
tempt to deny the possibility of RE using high-level methods, at virtually
no added cost.
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1 Introduction

The field of protection against reverse-engineering (RE) has developed recently,
especially in the case of software (where it is called digital forensic [11]). Those
techniques have extended to hardware, because the design of circuits is more and
more outsourced (for fabrication, packaging, assembly, etc.). Some governments
have additionally enforced anti-RE laws, to force industrialists take this risk into
consideration. This article is a position paper about non-technical ways to resist
RE and derived attacks that span from mere cloning to Trojan insertion.

The rest of this paper is structured as follows. A detail analysis of the threats
categories and of the typical attack protections against them is covered in Sec. 2.
Some technologies, mainly proposed by the academia, suitable to fight RE, have
emerged. They are reviewed in Sec. 3. Solutions that aim at preventing RE
and related attacks at a system-level are discussed in Sec. 4. Eventually, the
conclusions are given in Sec. 5.

2 Threats

Reverse-engineering consists in recovering the design by analyzing its implemen-
tation. It can serve per se to gain illegitimate information. The motivation is



typically acquiring the knowledge about industrial design secrets embedded in
a system, or cloning a design by extracting its masks or its netlist, in a view to
producing compatible chips (albeit without paying for the research/development
cost). Also, it can be a first step for Trojan [18] insertion. A Trojan (or a back-
door) is a piece of software or of hardware that is added to the circuit. It is
designed not to interfere with its nominal operation, and to allow for the leakage
of some secrets when activated by a secret and unpredictable sequence of inputs.
Sometimes, the Trojan is an added functionality, that will not be detectable by
the test; sometimes, it can alter one functionality. For instance, the “bug attack”
of Shamir [3] can be seen as an exploitation of a Trojan. The idea of this Trojan
is that the integer multiplier of the circuit returns one incorrect value, which
allows the attacker that knows the data that causes this error to craft a message
that will be signed (in practice: raised to the power of the secret key) properly
modulo p (resp. q) but incorrectly modulo q (resp. p), which makes it possible
to carry out a remote Bellcore attack on CRT-RSA [5].

Accessing the design can be obtained by several means. The first one consists
in simply getting the whole design, if the source is accessible or can be easily
stolen. To avoid this risk, recommended design practices consist in concealing
the design, by good practices of development. For instance, the class ALC3 of the
common criteria formally addresses [1] this point.

But even when such organizational measures are enforced, the design can
still be reversed. Indeed, the binaries can be extracted from memories, and sub-
sequently decompiled to recover its functionality. Nonetheless, as this threat is
very pregnant, the designers usually encrypt the memory contents. This doctrine
is commonplace in the military objects, where different kinds of data exist:

1. insensitive data, called black, that are either public or encrypted variables,

2. sensitive data, called red, that consist in secret material manipulated unen-
crypted (i.e. plain).

Thus, as a countermeasure, the data that is intended to be stored in easy
dumpable memories is encrypted (i.e. turned to black). We talk about a se-
cure bus architecture [10], a.k.a. a protection about the so-called bus probing
attacks. The attacker can target the bus encryption mechanism, that can be for
instance a side-channel attack or a fault attack (corruption of a data when writ-
ing to memory). The side-channel attack is perfectly suitable for this scenario,
because it can work as well on read and write operations. Indeed, they work
in a context of known-plaintext or know-ciphertext only. For instance, such an
attack has been conducted successfully in a know-ciphertext context of FPGA
bitstream decryption [19,20]. The fault injection attack can only be applied in
some conditions. For instance, in some cases, it is useless in read mode: indeed,
the data that is faulted is subsequently processed within the CPU, and might not
be known by the attacker. Indeed, at best, the faulted read data can make the

3 In version > 3.1 of the CC, ALC details the requirements associated with the devel-
oper’s site.



programme crash. But the system can resist the fault injection – but nonethe-
less without leaving the opportunity for the attacker to recover any information
about the injection. Typically, the bitstream decryption in Xilinx FPGAs is
sent to the fabric (thus becoming non-functional), but the attacker cannot know
which fault has been triggered (it remains internal to the FPGA). Also, if a mode
of operation is used in way secure way (an initialization vector is refreshed each
time), then it is difficult to observe both a correct and a faulty ciphertext; this
is the root of the fault injection resilience countermeasure introduced in [14].

Now, secrets can be recovered from a circuit by various means:

– Non-invasive means: for instance, RE using side-channel analysis attacks,
aka SCARE [8,16];

– Semi-invasive means [25]; for instance, RE using fault injection attacks, aka
FIRE [23];

– Invasive means; for instance, the live probing of signals or the delayering of
circuits.

3 State-of-the-Art Technical Solutions

The protection of circuits against RE has been appropriated by the scientific
community (CHES, FDTC, etc.). Many technical solutions, that most of the time
assume optimistically that an attacker is omnipotent, have been put forward and
studied. The most relevant are detailed in the next subsections.

3.1 Physically Unclonable Functions (PUFs)

Physically Unclonable Functions (PUFs [26]) consist in devices that produce a
stable yet unique per chip output. They can be used to deter RE by producing
internally a key. This key is known by nobody, since it is intrinsic to the elec-
tronic circuit; thus there is no possibility that it is compromised by any kind of
unwanted disclosure (unintentional copy or theft, i.e. human errors or attacks).

Also, as the PUF is unique per chip, it does not prevent to extract the
encrypted data (common to a product line), but it prevents from the alteration
(by a remote Trojan patch) of all the product line. Indeed, an attacker can only
forge the data for the device whose key (PUF result) is known.

3.2 Obfuscation

Obfuscation consists in turning a straightforward implementation into a complex
description, that is hard to unravel. It has been proved that there is no univer-
sal obfuscation technique, that can apply to any algorithm [2]. Nonetheless, in
theory, a concrete obfuscator for RSA, AES, etc. can exist. This method exists
for both the pure hardware modules as well as for the pure software.

At the hardware-level, the typical impediments are:



– Covering of the chip with a top-level metal to prevent seeing the layers
underneath, and to fight probing;

– Spaghetti routing, for evident control wires not to clearly stand out;
– Standard cells scattering, which comes down to the previous item (except

that the countermeasure is implemented by constraining the placement and
not the interconnection).

At the software-level, the typical impediments are:

– Adding an intermediate virtual machine operating with unknown opcodes;
– Call graph re-engineering;
– Addition of florid tautologies, randomly and abundantly scattered every-

where in the source code.

3.3 Whitebox Cryptography

Whitebox cryptography is a scientific domain that aims at providing a descrip-
tion of an algorithm that embeds a secret (for instance an AES with a constant
key), but from which the key cannot be recovered. Some examples exist:

– A PIN code or password verification algorithm, in which the PIN code or
the password is stored hashed;

– A block cipher that is implemented as its codebook (hence as a huge memory,
that is unrealistic in practice).

Concrete implementations of whitebox cryptography make of secret tables
much smaller than the codebook [7]. This solution is attractive in hardware also,
since EEPROM memories are much more difficult to read by invasive means than
RAM or ROM.

3.4 Backend-Level Decoiling

Circuits can be reversed by the analysis of their layout. Advanced techniques
exist for state-of-the-art circuits [27]. But on various occasions, older designs
have been exposed with much lower technology tools. For instance,

– CRYPTO1, the encryption algorithm of the NXP MyFare card [21], and
– DSC, the encryption algorithm of the DECT [22],

have between disclosed by the observation of the chip and the reconstruction of
its netlist (open source software tools exist for this final step [24]). Incidentally,
those algorithms have been cryptanalysed almost as soon as they were known,
which is a brilliant example of the danger of security by obscurity mechanisms.

Optical dissimulation against delayering consists in making the analysis of
the images difficult, by:

– adding dummy wires, dummy interconnections, dummy gates, etc.,
– scrambling the memories [6],
– using custom cells that resemble despite their function differ; For instance

the SecLib cells are all derived from a common template, and are customized
by the addition of vias [13].



4 More “Holistic” Solutions

In this section, we promote prospective solutions, most of which do not rely on
a technical mechanism. The primary goal of the electronic design industry is to
sell products that accomplish a given function. Preventing RE is thus usually
only a secondary goal. Thus, the anti-RE mechanisms shall be as less costly as
possible. This means that both:

1. the design of the countermeasure (if devised internally) shall be as cheap as
possible (or the cost of the IP, if bought from a third-party shall be low),
and

2. its overhead must not be too large (in terms of silicon area, code size), and
it must be discrete enough not to demand for further developments (e.g.
because the clock frequency is not high enough, etc.)

Therefore, the state-of-the-art techniques listed in Sec. 3 are often not suit-
able. Indeed, they answer (fully or partially) to the issue of preventing RE, but
are definitely a cost center. In addition, it can be noticed that they are ad hoc
solutions that attempt to fix a local problem.

Now, the goal of the protection against RE is to protect the whole circuit,
and not only some parts in a unitary manner. Therefore, global solutions can be
thought about. The next subsection details some recommendations. They might
not cover all the problems of RE, but still already provide some hints for good
design practices at low cost.

4.1 Leaving No Secret in the Weakest Link

In some communication systems, one party is weaker than the other. For in-
stance, in the case of a smartcard talking to a terminal, the smartcard is the
easiest party to attack. Indeed, it is depends on the environment for its power
supply and time reference, and it is cost-constrained.

Thus, it shall contain as few secrets as possible. This is indeed possible using
public-key cryptography [9], for instance. The terminal generates a signature,
and the smartcard verifies it. The verification requires no secret, thus there is no
reason to attack the smartcard. This technique allows typically to deny virused
code (e.g. containing a Trojan) to be executed on the smartcard.

4.2 Providing a Minimalist Application Programming Interface
(API)

The more rich the API, the more attack scenarios an attacker can write. At the
opposite, if the API is minimalist, most of the operations are realized internally,
at an unknown pace. They leave fewer control for the attacker to understand
what the circuit is actually computing.



4.3 Randomizing the Protocols

If the protocols are deterministic, then they can be replayed, which enables some
training. Also, differential attacks (such as DFA [4]) require a correct and at least
one [28] faulty cryptogram. This approach is similar to resilient countermeasures:
the secret is made volatile [17], as well as the data [15]. We emphasize that for
this class of countermeasure to be efficient, a tamper-resistant TRNG (True
Random Number Generator) shall be available.

5 Conclusions

Fighting RE can be done by dedicated means that have been widely discussed
in the scientific literature. Nonetheless, they are costly in general, because they
consider a very powerful attacker that is able to play with the target at her
will. The solutions we sketch in this article do not have this drawback. They
are designed not to give the opportunity for the attacker to be in a favourable
position, for instance by ascertaining the attack is impossible to setup. The
resulting countermeasures, being only “organizational”, are thus also low cost,
hence acceptable in an industrial context. Nonetheless, they require to define new
specific high-level communication protocols that are low-level security oriented.
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