
HAL Id: hal-00701979
https://hal.science/hal-00701979

Preprint submitted on 4 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relational Data Mining Through Extraction of
Representative Exemplars
Frédéric Blanchard, Michel Herbin

To cite this version:
Frédéric Blanchard, Michel Herbin. Relational Data Mining Through Extraction of Representative
Exemplars. 2012. �hal-00701979�

https://hal.science/hal-00701979
https://hal.archives-ouvertes.fr


Relational Data Mining Through Extraction of

Representative Exemplars

Frédéric Blanchard ∗and Michel Herbin †

June 4, 2012

Abstract: With the growing interest on Network Analysis, Relational Data
Mining is becoming an emphasized domain of Data Mining. This paper ad-
dresses the problem of extracting representative elements from a relational
dataset. After defining the notion of degree of representativeness, computed
using the Borda aggregation procedure, we present the extraction of exemplars
which are the representative elements of the dataset. We use these concepts to
build a network on the dataset. We expose the main properties of these notions
and we propose two typical applications of our framework. The first application
consists in resuming and structuring a set of binary images and the second in
mining co-authoring relation in a research team.

Keywords: relational data, data mining, representative, exemplar, cluster-
ing, network, Borda.

1 Introduction

The data mining is interested in discovering knowledge from data. Nowadays
finding interesting patterns or structures is a crucial task in the field of data
analysis. Thus the paper addresses the problem of the extraction of representa-
tive elements from a dataset. This problem presents a significant interest when
designing recommendation systems [16], selecting leaders or specimens [5], com-
munity detection [14], customer Relationship analysis [20] or sub-sampling.

The classical ways to determine representative elements refer to the task of
data clustering [1]. The goal is to partition of the dataset. Then the repre-
sentative elements are the prototypes of the clusters. They can be chosen as
the average elements of each cluster or selected after a random initialization
step. For instance, when using k−means or k−centers algorithms (see [10] for
a review of clustering methods including k−means algorithm), the centers of
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the obtained clusters provide the prototypes of the dataset. The prototypes are
first randomly selected and the algorithms iteratively refine the set of proto-
types. The final elements are quite sensitive to the initial selection. Moreover
k−means algorithm leads to average prototype which are not “real” elements of
the initial dataset. this kind of methods is not satisfactory. The lacks of all the
approaches based on clustering are multiple. Firstly the partition into clusters is
predate to the extraction of representative elements and the clusters have to be
validated and interpreted to justify the prototypes. Secondly the representative
elements depend on the choice of clustering algorithms and the extraction of
the prototypes depends on the implicit assumptions about the shape of clusters
and data distributions. Moreover when one cluster contains more than one sub-
population, only one prototype is extracted. Finally, in the case of clustering
algorithms like k-means, the centers are not elements of the original dataset.
They are average computed elements. How make a mean-element meaningful
? Most of the time, providing a non-existing element (virtual element like a
mean-element) does not make sense.

In this paper the approach we present consists in extracting elements we
called exemplars directly from the whole dataset, without any a priori cluster-
ing step (in one pass unlike [9]) . The exemplars summarize the dataset and
are particular elements of the original dataset. Thus they are real data. These
elements are as representative as possible of the whole set without any assump-
tion on the shape or the density of data distribution (unlike in [11]). To achieve
the extraction of exemplar, we construct a degree of representativeness on the
dataset. The exemplars are finally chosen as local maxima of the degree of
representativeness. By fitting the locality parameter (in topological terms the
scale factor) we adapt the scale to determine the number of exemplars.

The paper is organized as follows. In the first section we introduce the
context and expose our method. We present the formal definitions of scores be-
tween data, the notion of standard and the concept of exemplars in the dataset.
Then we show how to build a network of exemplars to visualize these notions.
For each definition we present some interesting and remarkable properties (ro-
bustness, stability etc.)
In Section 3, we provide two applications in very different context. Firstly we
apply our method on a set of binary images. We compute scores and exemplars
and we build the network to structure the dataset. The second application
concerns the analysis of co-authoring in a research laboratory. We exhibit a co-
authoring network that permits to visualize how researchers are really clustered
and how they work together.
Section 4 is a brief conclusion that outlines our main contributions and that
expose our current and future works.
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2 Method

Let Ω be a set of n elements in a multidimensional space. The n elements are
qualitative, quantitative or mixed data. We assume that Ω is a relational data
set without any underlying distribution. Let us describe the way we use to
extract the exemplars of Ω structuring this set in a network. In this paper, the
elements are called objects.

2.1 Pairwise Valued Relation

Ω is a relation dataset. Let us specify this relation. Let R be a pairwise valued
relation on Ω. R is defined by :

R : Ω× Ω → R+

(x, y) 7→ R(x, y)

The use of a pairwise valued relation is very useful in data processing. A distance
is a special case of this kind of relation. But a distance is frequently not available
when processing qualitative data. Thus a relation is more widespread than a
distance for pairwise comparisons of objects. In this paper, the value R(x, y) is
also called the cost from x to y, indicating the generality of the relation.
The relation must follow three trivial properties.

• The relation must be total. This means that each pair of objects of Ω is
valued by R.

• The relation must be positive. The cost is a positive value for all pairs.

• The cost from x to x is null forall x (i.e. ∀x ∈ Ω, R(x, x) = 0)

Unlike a distance, the relation does not necessarily respect the property of
symmetry. R(x, y) may be different from R(y, x). For instance, if the cost
from a point x to a point y is the time to go from x to y, then the cost from
y to x could differ from the first one because of the slope, wind, flow, etc.
Moreover, the relation does not respect the triangle inequality. A dissimilarity
index gives a classical example of such a relation which does not respect the
triangle inequality. x is dissimilar from y with R(x, y) and y is dissimilar from z
with R(y, z) but x could be dissimilar from z with R(x, z) > R(x, y) + R(y, z).
Such a relation can lead to a vote to designate exemplars within the dataset.
Specifically, we can rank the objets of Ω taking into account the relation to set
up votes between the objects themselves. The following subsection describes
this procedure.

2.2 Score

In this paper, we select an exemplar object from Ω according to the Borda
voting method [8]. But firstly, we transform values of the relation into ranks
[2][6][7]. Let x be an object of Ω. All objects can be sorted by the ascending
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order of their costs relative to x. Let us note Rkx(y) the rank of y relative to
x. The rank is obtained when sorting the set {R(x, z)/z ∈ Ω}. Using Borda
method [8][21], the object x assigns a relative score to all objects of Ω. The
score Scx relative to x is defined by:

∀y ∈ Ω, Scx(y) = n−Rkx(y)

where n is the number of objects of Ω. Thereby the relative score is an integer
and it lies between 0 and n− 1. The lower the cost from x to y, the higher the
score of y relative to x.
Computing all relative scores, each object x receives n relative scores corre-
sponding to the votes of all objects of Ω (i.e. the n values Scy(x) with y ∈ Ω).
Then the relative scores are aggregated to choose the winner of the voting pro-
cedure. The aggregate score is defined by:

Sc : Ω → R+

x 7→ Sc(x) =
1

n

∑
y∈Ω

Scy(x)

In this paper, the aggregation function is the mean function.
Let us observe the aggregated scores in a relational dataset. Figure 1 displays an
example of a dataset with 120 two dimensional random samples (A). Euclidean
distance is used as the pairwise valued relation between samples. The respec-
tive aggregated scores (B) confirm that the score increases when the sample
approaches the center of the dataset, i.e. in the midst of this one.

Figure 1: Example of a dataset with 120 random samples (A) and their respec-
tive aggregated scores (B). The score increases in the midst of the dataset
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2.3 Standard

The object with the highest aggregated score is the standard we propose. Let
us observe some properties of the standard.
Figure 2 displays three datasets A, B, and C. Each dataset has 100 random sam-
ples (n = 100). The aggregated scores are computed using Euclidean distance
as pairwise valued relation. The maxima of aggregated score are respectively
68.75, 70.55, and 68.77 for A, B and C. Filled circles indicate the three respec-
tive standards with the highest aggregated scores. Figure 2 confirms that each
standard lies in the midst of its dataset.

Figure 2: Standard examples (filled circles) for respectively the datasets (A),
(B), and (C). The datasets have 100 random samples. The aggregated scores of
the standards are respectively 68.75, 70.55, and 68.77.

When resampling the dataset using the bootstrap technique [19], the stan-
dard could change. If it does not change, the extraction of this standard is robust
against the resampling. Using many bootstraps, the highest frequency of the
extracted standards indicates the stability of the standard when resampling.
Our experiments using simulated data and real data show that the standard
depends very weakly in the resampling.
Figure 3 displays the standards obtained when resampling the datasets (A),
(B), and (C) of Figure 2. The initial datasets have 100 elements displayed
with crosses. Stems with filled circles show the frequencies of the standards
obtained with 200 bootstraps. The extracted standards remain in the center
of respectively A, B, and C. The frequencies of the most frequent standards
when resampling the 100 initial samples are respectively equal to 40%, 32%,
36%. These frequencies assess the stability of the standard with respect to the
samples. Respectively 90%, 88%, and 90% of the dataset elements are never
extracted as standards when resampling.
Thus we assume that a standard gives a clue on the center of the dataset. Be-
cause the standard is a real element, it avoids the nonsense that the classical
averages could produce with a virtual out-of-scope element outside of the data
distribution. Note that the stability of the standard (i.e. the frequency of the
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most frequent standard) increases when the number of objects increases.

Figure 3: Frequencies of the standards when resampling the datasets (A), (B),
and (C) of Figure 2. The crosses show the 100 initial objects of the datasets.
Stems with filled circles show the frequencies of the standards obtained when
using 200 bootstraps. The most frequent standards appear in (A), (B), and (C)
with respectively the frequencies of 40%, 32%, 36%.

Let us examine the stability of the standard when outliers are feared. We
simulate outliers that we append to an initial dataset. We consider that the
standard extraction is robust against outliers when the extracted standard re-
mains one of three most frequent standards of the initial dataset.
In this paper we describe the study of robustness (see [18] for more details
about the concept of robustness) using the datasets A, B and C of Figure 2.
The outliers are random elements out of the range of the initial data domain.
In this section, the domain is defined by elements of coordinates (x, y) where
−10 ≤ x ≤ 40 and −15 ≤ y ≤ 15. Outliers are simulated in a larger domain
defined by −10000 ≤ x ≤ 40000 and −15000 ≤ y ≤ 15000 (the initial limits
are multiplied by 1000) excluding the elements that are too close from the ini-
tial domain by keeping the elements (x, y) where x ≤ −1000 or 4000 ≤ x and
y ≤ −1500 or 1500 ≤ y (the limits of initial domain are multiplied by 100).
We add such random outliers to an initial dataset until the extracted standards
changes (i.e. until the extracted standard from the new dataset with outliers will
not be one of the three most frequent standards of the initial dataset). When
outliers are randomly generated in a such very large domain, the percentage of
outliers could be higher than 200% without changing the initial standard. Then
the standard is robust when the outliers are spread in a large domain. But
the standard remains also robust when outliers are concentrated into only one
duplicate object. When only one outlier is randomly generated in the very large
domain, we could add up to 20% of out-of-range elements using this single out-
lier without changing the initial standard. Then we assume that the standard
is particularly robust against outliers.
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2.4 Exemplars and Networks

The standard is the only exemplar extracted from a dataset. But the dataset
may be complex and it could require more than one exemplar to represent the
whole set. This section describes how the dataset can be structured to retrieve
these exemplars from the set.
The first step consists in defining the neighborhood of each object within Ω.
Let x be one of the n objects of Ω. Let k be a value between 0 and n. The
k-nearest neighbors of x are defined using the ranks relative to x. Then the
k−neighborhood of x in Ω is defined by:

∀x ∈ Ω, ∀k ∈ J1, nK, Nk(x) = {y ∈ Ω/Rkx(y) ≤ k}

Thus Nk(x) is the set of k nearest objects of x.
In a second step, each object x is associated with the neighbor having the highest
aggregated score. Thus we define a link from x to its preferred neighbor. Each
object x is linked to an object y. The links are defined by:

∀x ∈ Ω, x 7→ y = argmax
z∈Nk(x)

Sc(z)

In this definition, x is linked to y and y is generally different from x when
Sc(y) > Sc(x). If Sc(x) is maximal inside Nk(x), then y = x and x is linked to
x itself. These self-linked objects are simply called exemplars of Ω.
Using the links, the dataset becomes a network where the nodes are the objects.
The exemplars becomes the terminal nodes of this network (i.e. the roots of
the trees forming the network). The exemplars depend on the value of k which
influences the network configuration. In this paper, k is the size of the neigh-
borhood we use. This parameter is called scale factor.
Figure 4 displays four networks obtained from the simulated dataset of Figure 1
(A). The dataset has the 120 samples (n = 120). The four networks are con-
figured using the scale factors 5, 10, 20, and 40. The exemplars are displayed
with a filled circle, they are the terminal nodes of the networks. The numbers
of extracted exemplars are respectively equal to 8, 4, 2 and 1. Distinctly the
number of exemplars depends on the scale factor k. The following describes the
influence of the scale factor.
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Figure 4: Networks obtained with scale factor k = 5, k = 10, k = 20, and
k = 40. The networks are built between the 120 samples of Figure 1 (A). The
exemplars are displayed with black filled circles.

2.5 Exemplars and Scale Factor

The higher the scale factor, the lower the number of exemplars. Moreover, when
the scale factor increases from one to n, the number of exemplars decreases from
n to one. Let us explain this property. When k = 1, N1(x) is the singleton equal
to x. Therefore each object x is itself an exemplar of Ω (i.e. x is linked to x).
Then the set of exemplars is Ω and the number of exemplars is equal to n. When
k = n, Nn(x) is equal to Ω. Each object x is linked to the standard which has
the highest aggregated score within Ω. Then the number of exemplars is equal to
1 the network becomes only one tree and the standard is its root. At the scale k,
an exemplar x has the highest aggregated score within the neighborhood Nk(x)
(i.e. within the k nearest neighbors of x). If k1 ≤ k2, then Nk1(x) ⊆ Nk2(x). If
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x is an exemplar at the scale k2, then it is an exemplar at the scale k1. Therefore
the number of exemplars necessarily decreases when the scale factor increases.
Increasing the scale factor, some exemplars could disappear among those who
were extracted. But an object never appears as an exemplar if it was not
extracted at lower scale factor. Figure 5 displays the duration of each exemplar
when increasing the scale factor. The exemplars are extracted from Figure 1
dataset (n = 120). When the scale factor is equal to 1, all the objects are
exemplars. When the scale factor increases, some exemplars disappear and
their duration is shortened. Only the standard is kept from scale 1 to the scale
n. It has the longest duration equal to n.

,

Figure 5: Duration of exemplars increasing the scale factor: The Figure 1
dataset has 120 objects (n = 120). The scale factor increases from 1 to 120.
When the scale factor is equal to 1, all the objects are exemplars. When the
scale factor increases, some exemplars disappear. Only the standard is always
extracted when increasing scale factor. Then its duration is equal to 120.

At the scale k, we assume that the numbers of exemplars is smaller than
n − (k − 1) where k is the scale factor and n is the number of objects of the
dataset. At each scale k, we want to reduce the number of exemplars. When
this number is equal to n−k+1, we consider that the extraction of exemplars is
suboptimal. This case is observed when k = 1 or k = n. In this paper, the scale
factor becomes optimal when the difference between n− k + 1 and the number
of extracted exemplars is maximum. Let koptimum be this optimal value of the
scale factor we propose in this paper.
Figure 6 displays the numbers of exemplars according to the scale factor k. It
uses the dataset of Figure 1 (A) (n = 120). The scale factor increases from
1 to 120 and the number of exemplars decreases from 120 to 1. The numbers
of exemplars is smaller than 121 − k. The difference between 121 − k and the
number of exemplars is maximum when k = 9. The black filled circle shows this
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optimum value. Then four exemplars are extracted using k = 9.

,

Figure 6: Number of Exemplars from Figure 1 (A) dataset and Scale Factor
: The number of exemplar is smaller than 120 − (k − 1) where k is the scale
factor and 120 is the number of objects of the dataset. The difference between
120− (k − 1) (line) and the number of extracted exemplars (cross) is maximal
when the scale factor is equal to 9 (filled circle).

Figure 7 displays the exemplars obtained with optimal scale factor from the
datasets ((A), (B), and (C) on the Figure 2). The random datasets have 100
samples (n = 100). koptimum is respectively equal to 9, 7 and 10. The filled
circles display the exemplars and a larger filled circle shows the standard.
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Figure 7: Optimal Scale Factor and Exemplars : The exemplars are extracted
from the datasets (A), (B), and (C) of Figure 2. The optimal scale factors
are respectively 9, 7 and 10. The numbers of exemplars (filled circles) are
respectively 4, 3, and 3, larger filled circles show the standards.

3 Applications

This section presents applications of our method in two typical and very different
contexts. The first application consists in extracting exemplars from a binary
image database and building the graph of exemplars of this database. The
second application present an analysis of the co-authoring in a research team
by extracting exemplar authors and exhibiting the implicit structure.

3.1 Extraction of exemplars from a set of binary images

In this first application we consider a set of binary images contained in a
database. The goal is to extract exemplar images from this database. The
interest could be providing a set of resuming images or distinguishing subsets
of images according to their content. The database is presented in the Table 1.
In a first we construct the relation matrix by using the Asymetric Haussdorff
Distance. Classical methods of clustering have to work with symmetric dis-
tance. They are inapplicable when distance from an image A to image B is not
equal to distance from image B to image A. As we wrote at the beginning of
this paper, the symmetry property is not required in our method.
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Image filename score

Butterfly-a004 12.16

Fish-a023 10.22

Butterfly-a029 9.34

Butterfly-a011 9.22

Lamp012 8.41

Butterfly-a009 8.06

Butterfly-a014 7.78

Fish-a019 7.69

Image filename score

Butterfly-a001 7.62

Lamp015 7.38

Fish-a018 7.25

Lamp010 6.88

Butterfly-a028 5.34

Lamp013 5.22

Fish-a030 3.94

Fish-a035 3.50

Table 1: Binary images sorted by decreasing score

Firstly, we compute the score of each image of the database. The table
1 represents the images sorting by decreasing order of scores. Secondly we
build the associated directed graph presented in Figure 8 and representing the
exemplars network (with a scale factor of 4). This graph show how the dataset
is structured. We can observe that the connected components of this graph are
grouping image according to the object they represent. The three images of the
Table 3.1 are the exemplars of this dataset and provide a good summary of the
whole dataset.

Table 2: Exemplars extracted from the set of binary images of the Table 1
.
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Figure 8: Network of the binary images where each image is connected to one
exemplar. This directed graph exhibits three connected components forming
three clusters coinciding with the content of images

3.2 Exploration of co-authoring network

The second application of our concept deals with publication data inside a lab-
oratory, a research team or any other group of researchers.
Co-authoring informations can be considered as relational data ([12], [13]). In
this work, we consider that the value of the relation from a researcher named
Alice to a researcher named Bob is computed as the sum for each common pub-
lication of the product of the number of coauthor on the publication and the
number of publication of Alice. This relation is not symmetric. In fact, gener-
ally, Alice can be the ”preferred” co-author of Bob, but Bob is not necessarily
the ”preferred” co-author of Alice. This valued relation characterizes the ”qual-
ity” of links between the members and takes account of their publication activity.
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The dataset we used is the set of publications of the CReSTIC Laboratory
(University of Reims, France) [3]. This informations are extracted from the web
site of the laboratory and have been anonymized.

The graph of the Figure 9 represents this dataset. Each node is a lab mem-
ber and each edge between two members represents one common publication.
Different colors are used to represents the different teams that compose the lab-
oratory (but this information is not used in the computation of the exemplars).
Therefore the scale factor is not used in this application because the size of
the neighborhood is implicitly fixed in the dataset (according to the number of
co-author of each member of the team).

After computing the scores, we built the exemplars graph represented on
the Figure 10. The size of the node is proportional to its score. This graph is
displayed using the same position for the nodes. In the Figure 11, the nodes are
rearranged to propose a clearer visualization.
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Figure 9: Digraph of the co-authoring in a laboratory. Each vertex is one
researcher and each edge corresponds to one common publication.
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Figure 10: Representative Network extracted from data of Figure 9. The higher
is the score of one researcher, the higher is the diameter of its vertex in the
graph. In this graph, each edge is the link of one researcher to its exemplar.
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Figure 11: Network extracted from data of Figure 9 after rearranging the vertex
positions (to increase the readability)

The graphs presented in the Figures 9, 10 and 11 show several interests of
our method. The first interests is the simplification of the graph of the Figure 9.
When the numbers of vertices and edges are growing the graph becomes more
unreadable. For big data, resuming and simplifying is a necessary task.
The second interest is to exhibit such a sub-structure of the team (this task
is called community detection in a network [15]). The Figures 10 and 11 show
how groups are connected, and which members are the most representative. The
exemplars members are connecting the others and can be viewed as natural lead-
ers (or natural mentors) according to their publications and their co-authors.
It emphasizes the important (critical) position of some members in a research
team.
Incidentally, we can observe that the resulting clustering obtained by parti-
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tioning the graph in connected components is a little bit different of the real
partitioning in sub-groups (represented by the different colors)

4 Conclusion

In the framework of data mining, this paper describes a new way for extracting
exemplars from a relational dataset. The method we propose is based on a
pairwise comparison assuming a coarse relation on the dataset. This approach
is particularly adapted when no distance is available or meaningful in the data
domain. Moreover the coarse relation between data does not need symmetry
or transitivity properties. Thus the method is useful for any kinds of relational
data.
An aggregated score is defined from these pairwise comparisons. The paper
defines the standard which is the sample with the highest score. Simulations
show the robustness of the standard against outliers and the stability of the
standard when resampling the dataset. Thus these results confirm the standard
as a robust location estimator. Moreover the aggregated score is used to extract
exemplars which are real objects. Then our approach of location estimator
avoids the drawbacks of average objects which are meaningless when processing
qualitative data.
Using a score based on the pairwise comparison, we define the k nearest neigh-
bors of each datum. This approach permits us to extract exemplars depending
on this k value. We state that the number of local exemplars decreases from n
to 1 (n is the number of data samples) when k value increases from 1 to n. Thus
k is considered as a scale factor. The method we propose allows us to explore
the dataset through different scales. We can adjust the k value for extracting
a reduced number of exemplars. An automated approach is proposed to deter-
mine an optimal number of exemplars.
On top of the extraction of exemplars, the method proposes to design a network.
The paper shows that the network is reconfigured when the scale factor changes.
The network eases the explanation of the exemplar roles in the dataset. When
the scale factor increases, some exemplars could disappear keeping the most
important ones (i.e. the exemplars which are important nodes for connecting
some data).

In future works we propose to use the fuzzy set theory as in [4] to generalize
our framework in the case of fuzzy relation, when ranking data is not easy.
The major way we would to explore is the area of Social Network Analysis.
We are convinced that our concept of exemplar could be a significant tool for
extracting leaders or mentors in social network and improve recommendation
systems. Our concept of degree of representativeness should be compared to
the different definitions of centrality in a network [17].
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