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X - 2 ROLLAND ET AL.: MODELING THE GROWTH OF STYLOLITES

Abstract. Stylolites are ubiquitous pressure-solution seams found in sed-3

imentary rocks. Their morphology is shown to follow two self-affine regimes:4

analyzing the scaling properties of their height over their average direction5

shows that at small scale, they are self-affine surfaces with a Hurst exponent6

around 1, and at large scale, they follow another self-affine scaling with Hurst7

exponent around 0.5. In the present paper we show theoretically the influ-8

ence of the main principal stress and the local geometry of the stylolitic in-9

terface on the dissolution reaction rate. We compute how it is affected by10

the deviation between the principal stress axis, and the local interface be-11

tween the rock and the soft material in the stylolite. The free energy enter-12

ing in the dissolution reaction kinetics is expressed from the surface energy13

term, and via integration from the stress perturbations due to these local mis-14

alignments.The resulting model shows the interface evolution at different stress15

conditions. In the stylolitic case, i.e. when the main principal stress is nor-16
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mal to the interface, two different stabilizing terms dominate at small and17

large scales which are linked respectively to the surface energy and to the18

elastic interactions. Integrating the presence of small scale heterogeneities19

related to the rock properties of the grains in the model leads to the formu-20

lation of a Langevin equation predicting the dynamic evolution of the sur-21

face. This equation leads to saturated surfaces obeying the two observed scal-22

ing laws. Analytical and numerical analysis of this surface evolution model23

shows that the cross-over length separating both scaling regimes depends di-24

rectly on the applied far-field stress magnitude. This method gives the ba-25

sis for the development of a paleostress magnitude marker. We apply the com-26

putation of this marker, i.e. the morphological analysis, on a stylolite found27

in the Dogger limestone layer located in the neighborhood of the Andra Un-28

derground Research Laboratory at Bure (Eastern France). The results are29

consistent with the two scaling regimes expected, and the practical deter-30

mination of the major principal paleostress, from the estimation of a cross-31

over length, is illustrated on this example.32
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1. Introduction

Stylolites are undulated surfaces resulting from localized stress-driven dissolution of33

some minerals of the rock. Insoluble minerals as clay particles, oxides and organic mat-34

ters are concentrated in the interface and make stylolites visible. Bathurst [1987] describes35

stylolites as serrated interfaces with an amplitude greater than the diameter of the tran-36

sected grains giving them a sutured appearance. He makes a difference with dissolution37

seams or ’flaser’ which are smooth, undulating, lacking in sutures and fitting around grains38

instead of cutting through them. Stylolites are most often found in carbonates [Stock-39

dale, 1922, 1926, 1936, 1943; Dunnington, 1954; Bushinskiy , 1961; Park and Schot , 1968;40

Bathurst , 1971; Buxton and Sibley , 1981; Railsback , 1993] but also in sandstones [Young ,41

1945; Heald , 1955], shales [Wright and Platt , 1982; Rutter , 1983], cherts [Bushinskiy ,42

1961; Iijima, 1979; Cox and Whitford-Stark , 1987] and sometimes in coal [Stutzer , 1940].43

Stylolites are divided in two groups according (i) to their orientation with respect to the44

bedding of the surrounding rock or (ii) to the orientation of their ’tooth’ with respect to45

the mean plane of the stylolite. The first group shows two types of orientation: stylolites46

parallel to the bedding plane, designated as sedimentary, and formed under the lithostatic47

pressure and stylolites oblique or even perpendicular to the bedding, designated as tec-48

tonic, and depending on the maximum tectonic stress. The tooth orientation is in both49

cases an indicator of the direction of the incremental displacement which is parallel to50

the major principal stress in co-axial deformation. The stylolites of the second group are51

called ’slickolites’ [Ebner et al., 2010a]. They develop when there is a preferential plane52

for their growth (bedding or fracture). In this case, the stress is not perpendicular to the53
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mean plane of the stylolite [Stockdale, 1922], but the edges of the tooth are subparallel to54

the maximum principal stress axis. Various studies [Park and Schot , 1968; Renard et al.,55

1997, 2001; André, 2003; Aharonov and Katsman, 2009] suggest that many parameters56

play an important role in the stylolite growth such as confining pressure, deviatoric stress,57

fluid pressure, temperature, shape and assemblage of grains, anisotropy of minerals, rates58

of dissolution and presence of clay (acting potentially as catalyst for the dissolution).59

Only few papers report experiments about stylolites development. Indeed, they are60

inherently difficult to reproduce as the kinetics of pressure-solution processes is very slow61

[Rutter , 1976]. Experiments were conducted either on aggregates [Cox and Paterson,62

1991; Den Brok and Morel , 2001; Renard et al., 2001; Gratier et al., 2005] or with in-63

denter techniques [Gratier and Guiguet , 1986; Gratier , 1993; Gratier et al., 2004; Dysthe64

et al., 2002, 2003; Karcz et al., 2008]. Dysthe et al. [2002, 2003] used an indenter technique65

where a sodium chloride crystal was kept in contact with a piston at given pressure and66

temperature for several months. A fluid at compositional equilibrium with the crystal67

is trapped between the sample and the indenter. The contact evolved due to pressure-68

solution during the indentation. A power law time dependence with an exponent value of69

1/3 as in Andrade creep law was shown to control the indentation rate. The observed mi-70

crostructures in the contact seem to be different from stylolites. Karcz et al. [2008] loaded71

a halite cone-shaped indenter against a flat silicate surface immersed in an undersatu-72

rated brine. Using confocal microscopy techniques, they observed that the evolution of73

the system is dictated by an interaction between two deformation mechanisms: undercut-74

ting dissolution reducing the area of the contact and plastic flow increasing it. Recently,75

similar experiments were carried out with a brine at chemical equilibrium with the crystal76
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[Laronne Ben-Itzhak , 2011]. Emerging evolving islands and channels were observed at77

the contact. Such islands and channels structures were previously observed at the con-78

tacts during experiments on aggregates [Schutjens and Spiers, 1999; Den Brok and Spiers ,79

1991]. Other experiments on aggregates were performed by Gratier et al. [2005]. They80

loaded layers of fine quartz sand grains. The experiments lasted several months at 350◦C,81

under 50 MPa of differential stress and in presence of an aqueous silica solution. Microsty-82

lolites were created for the first time in the laboratory at the stressed contacts between the83

quartz grains. An interesting observation is that the stylolites peaks are always located84

in front of dislocation pits. Consequently, stylolites appear to be localized by the hetero-85

geneities of the mineral. Den Brok and Morel [2001] loaded elastically K-alum crystals at86

a controled temperature and in a saturated K-alum solution. A hole was drilled in the87

middle of the crystals to provide an elastic strain gradient. They observed macroscopic88

etch grooves on the originally smooth free surfaces of the soluble crystals which disappear89

when removing the stress. Koehn et al. [2004] stressed crystals of NaClO3 in a NaClO390

solution at room temperature. Parallel dissolution grooves developed on their free surface91

in a 1D geometry to a 2D geometry with the coarsening of the pattern. The pressure-92

solution process slowed down or stopped progressively with the increasing concentration93

of the solution during the experiments. Gratier et al. [2004] used a similar technique in94

which a sample of Bure claystone was kept in contact with a piston, with a saturated95

brine in the contact, at an imposed pressure and temperature for several months. No96

evidence of localized pressure-solution (dissolution seam) was observed in this case, grain97

to grain sliding being more efficient in presence of clay. Renard et al. [2001], studied98

chemical compaction of aggregates of halite (salt) mixed with clay. They showed that99
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clay particles enhance pressure-solution. Moreover, Renard et al. [1997] studied the effect100

of clay on clay-rich sandstones. They suggested that pressure-solution is enhanced by clay101

because a thick film of water is preserved between clay particles. They also concluded102

that the depth determines the limiting factor for the process: at great depth, the water103

film between grains should be thinner and diffusion limits the process. Conversely, at low104

depth water films are bigger, transport is easier and the reaction kinetics is the limiting105

factor.106

The clay particles effect on pressure-solution was recently simulated in numerical mod-107

eling. Aharonov and Katsman [2009] used the two-dimensional Spring Network Model to108

study the stylolites growth in a medium with a uniform clay distribution. They showed109

that clay plays a role of enhancing pressure-solution and that stylolites propagation is110

possible only when both pressure-solution and clay-enhanced dissolution operate together.111

Koehn et al. [2007] developed a new discrete simulation technique that reproduces suc-112

cessfully the roughening of stylolites from a preferential existing surface with no clay. This113

model is based on molecular dynamics, with a dissolution speed depending on the local114

free energy that includes stress dependent terms and surface energy terms. Two different115

spatial regimes arise from this modeling: a small-scale regime where surface energy is116

dominant with significant fluctuations of the roughness and a large-scale regime where117

elastic energy dominates. The dependence on the cross-over scale between both regime118

on the imposed stress has been recently investigated numerically [Koehn, 2012]. This119

model shows that the growth of the stylolite tooth follows the main compressive stress120

direction. The nature and structure of the small scale disorder for the dissolution prop-121

erties of grains were systematically analyzed [Ebner et al., 2009a]. Moreover, Ebner et al.122
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[2010b] performed detailed microstructural analysis to investigate the interplay between123

this disorder and the compositional nature of the grains surrounding a stylolite.124

Stylolites are localised features for which deformation is purely compactant as for com-125

paction bands [Mollema and Antonellini , 1996; Baud et al., 2004; Katsman et al., 2006b;126

Tembe et al., 2008]. Stylolites and compaction bands development was modeled as ant-127

icracks or anti-mode I fracture [Fletcher and Pollard , 1981; Rispoli , 1981; Mollema and128

Antonellini , 1996]. Fletcher and Pollard [1981] assume that the rate of pressure-solution129

is only a function of the normal stress. They observed an elliptic dissolution pattern i.e.130

more dissolution in the central part of stylolites than at the tips. With these observations131

they proposed an analogy between propagation of stylolites and propagation of mode I132

fractures. They observed that the relative displacement between the sides of a stylolite133

should have the opposite sign than that of a crack, and thus termed their model an an-134

ticrack. Note however that cracks can bear zero surface traction, contrary to stylolites.135

This distinction between crack solutions and stylolites was introduced, and it was shown136

by Katsman et al. [2006a] that, as compaction bands, stylolites are Localized Volume137

Reduction zones (LVR). The shape of the displacement along stylolites, and how the138

stress perturbation can be determined from the concept of LVR, is discussed in details by139

Katsman [2010].140

In LVR where the dissolution amount is constant across the surface of the LVR, as for a141

compaction band, the stress enhancement was shown to be that of a dislocation [Katsman142

et al., 2006a]. In later models Katsman [2010], it was shown that if more dissolution is143

allowed in the center of a stylolite, another type of stress enhancement, with a dependence144

on the distance to the tips analogous to the one for a crack (rather than to a dislocation),145
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can be observed it is given by the Eshelby inclusion problem. Such an increase of the146

dissolution in the center of a stylolite, where the dissolution does not stop in the already147

dissolved zone in the middle of the stylolite, can be observed in models with a positive148

feedback do the dissolution, as for example the one that can be modeled from a clay149

concentration mechanism [Aharonov and Katsman, 2009].150

In general, in stylolites, the stress concentrates at the tips and the largest stress is151

perpendicular to the stylolites. Recent models [Koehn et al., 2007; Ebner et al., 2009b;152

Zhou and Aydin, 2010] suggest that a higher stress concentration at the top of the tooth153

should be responsible of localized high rates of dissolution. Benedicto and Schultz [2010]154

investigated the topography of stylolites (along-strike trace length, maximum and average155

amplitudes) from the damaged zone of the Gubbio normal fault zone in central Italy. They156

showed that the amount of contractional strain accommodated by stylolites as well as their157

length and their number increase according to the topography parameters. Analyses of158

cores from boreholes reveal also an increase in stylolite abundance with depth [Lind ,159

1993]. Fabricius and Borre [2007] compared formations of chalk from boreholes on the160

Ontong Java Plateau and in the central North Sea. They showed that the burial stress161

and the temperature play distinct roles in the burial diagenesis and porosity development162

of chalk. Pressure-solution and physical compaction are controled by the burial stress163

while the temperature controls recrystallization and cementation. Moreover, Lind [1993]164

suggests that mineralogical anomaly is an initializing factor in stylolite formation such as165

burrows, shale clasts or flaser structures. Many studies were conducted on the morphology166

of sedimentary stylolites [Renard et al., 2004; Brouste et al., 2007; Ebner et al., 2009b].167

Morphology analyses can be done on 1D profiles or 2D opened surfaces. They consist168
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on studying a stylolitic profile or surface height variations (standard deviation, height169

differences, power spectrum, average wavelet coefficient spectrum, etc.) over different170

scales [Schmittbuhl et al., 1995, 2004; Renard et al., 2004]. These analyses reveal two171

distinct scaling regimes that could be described by power laws. The power laws are172

function of a roughness exponent also called Hurst exponent inferred to be 1 and 0.5 for173

small and large scale respectively [Renard et al., 2004; Schmittbuhl et al., 2004; Brouste174

et al., 2007; Ebner et al., 2009b]. The two regimes are separated by a cross-over length175

typically around 1 mm [Renard et al., 2004; Schmittbuhl et al., 2004]. For sedimentary176

stylolites, the two dimensional (2D) analysis of their surface does not show any significant177

inplane anisotropy reflecting the fact that horizontal stresses are isotropic. Ebner et al.178

[2010a] observed that the profiles of tectonic stylolites show the same geometric attributes179

as sedimentary ones. Two different regimes are also observed with Hurst exponent around180

1 and 0.5 for small and large scale respectively. However, for tectonic stylolites, the 2D181

analysis revealed an anisotropy of the cross-over length which varies with the direction in182

the plane of stylolites. Ebner et al. [2010a] argue that this anisotropy develops because183

the stylolite roughens in an anisotropic inplane stress field. The vertical and inplane184

horizontal stresses are significantly differents. In recent papers, stylolites are presented as185

fossilized signatures of the stress field [Renard et al., 2004; Schmittbuhl et al., 2004; Ebner186

et al., 2009b, 2010a]. The existence of two scaling regimes for sedimentary stylolites was187

shown in Schmittbuhl et al. [2004] where a brief theoretical derivation was performed.188

It was shown that the cross-over length between both scaling regimes is expected to189

be dependent on the stress acting on the stylolite during its growth. Their conclusion190

was that stylolite morphology can be used as a paleostress magnitude indicator. This191
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conclusion was later probed independently on two types of approaches: first, on field data192

sampled from the same formation at different heights, Ebner et al. [2009b] showed that the193

measured cross-over length in the morphology followed the expected scaling with the burial194

stress, evaluated from the position in the formation. Next, discrete numerical simulations195

were carried out at different stress magnitudes, allowing for the dissolution of grains along196

the fluid/rock interface, with free energy depending on interfacial tension and local stress.197

It was shown that the two expected scaling regimes were observed [Koehn et al., 2007;198

Koehn, 2012], and that the cross-over length followed the predicted dependence on the199

far-field stress amplitude [Koehn, 2012].200

Interfaces between solids and fluids are related to models of stylolitization. In the case201

where a solid in contact with a fluid is stressed, an instability due to pressure-solution202

was shown theoretically to exist and is called the Asaro-Tiller-Grinfeld (ATG) instability203

[Renard et al., 2004]. In models of dissolving surfaces with a stress imposed to a solid in204

contact with a fluid at chemical equilibrium, this instability leads to the growth of initial205

large scale modulations of the surface with a wavelength selection obtained through a206

fastest growing mode. The basic equation depends on the particular boundary conditions207

e.g. when two solids with different elastic properties are in contact and submitted to a208

stress, the interface can undergo a fingering instability led by the contrast between the209

free energies applied to both solids [Angheluta et al., 2008, 2009, 2010]. The stability210

analysis can be performed theoretically from expressions for the kinetics using local free211

energy criteria for the reaction rate [Renard et al., 2004; Schmittbuhl et al., 2004], or212

global ones [Bonnetier et al., 2009; Angheluta et al., 2008]. Depending on the boundary213

conditions, this situation is also found to be unstable for perturbations exceeding a certain214
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wavelength, leading to fingering (as e.g. with large stress tangential to a fluid interface,215

or a stress normal to fluid interfaces and lateral periodic boundary conditions [Bonnetier216

et al., 2009]). With other boundary conditions, the surface energy and elastic interactions217

are found to stabilize the interfaces, which are only destabilized by material noise due to218

heterogeneities [Schmittbuhl et al., 2004; Koehn et al., 2007]. We will argue in details in the219

discussion section about the different possibilities applied to the geometry of stylolites,220

and the fact that stylolites displaying self-affine scaling laws for their height at large221

scale are compatible with the stabilizing character of elastic forces at large scale. This222

manuscript provides the technical development and details that lead to the final result223

that was previously published without derivation, in a condensed form [Schmittbuhl et al.,224

2004]. It also compares the result of the analytical development to a direct numerical225

simulation.226

In this paper we concentrate on the following questions: (i) Is the elastic energy sta-227

bilizing or destabilizing? (ii) What is the significance of the obtained paleostress values?228

To answer to these questions, (i) we derive the details of the computation leading to the229

link between the paleostress magnitude and the cross-over length between the two scaling230

regimes. This is performed by a perturbative analysis of the elastic energy around an231

interface slightly wavy and unaligned with one of the principal stresses. Then we show in232

details that the mechanics and chemistry allow to relate the small and large scale behavior233

of stylolites to known models, with Hurst exponents corresponding to the observed ones.234

(ii) We finally present and discuss an application in relation with the geological context.235

This is made on a stylolite from the Bure carbonates and it shows how the predicted236
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scaling regimes can be found, and how to determinate the paleostress from the extracted237

cross-over length.238

2. Analytical approach : Continuous elastostatic model for stylolite

propagation

The rough morphology of stylolites arises from the disorder present in a rock and its239

impact on the pressure-solution process. This disorder is spatially linked to the grains con-240

stituting the rock. To understand the impact of this disorder on the chemico-mechanical241

coupling, we will consider the following simplified geometry: the initial stage of the sty-242

lolite is modeled as an elongated fluid pocket enclosed between two contactless rough243

surfaces of infinite extent. The contacts between these two surfaces can in principle mod-244

ify the geometry of the resulting dissolution surface. However, they are assumed to be245

sufficiently loose in a stylolite and thus the main morphological results are not affected.246

This assumption simplifies the problem since the dissolution process, happening on both247

sides of the stylolite (Figure 1), can be described as the dissolution of a solid half-plane in248

contact with a fluid. With this geometry, the small and large scale self-affine behaviors of249

the dissolution surface and the associated roughness exponents (or Hurst exponents) are250

well reproduced. The model leads to the characteristic exponents typically observed in251

previous studies [Renard et al., 2004; Schmittbuhl et al., 2004; Brouste et al., 2007; Ebner252

et al., 2009b].253

The average stylolitic plane is defined along the x and y-axis (Figure 2). To have254

better statistics on the morphology of the studied surfaces, the model is assumed to be255

invariant by translation along the y-axis. It allows to us to describe a larger range of256

scales at the same numerical cost and to numerically solve the self-affine behavior of the257
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resulting pressure-solution surface over a larger number of orders of length scales. The258

same approach can be considered using invariance by translation along the x-axis. In259

the model we assume a mechanical equilibrium throughout the system and express the260

dissolution rate as a function of the stress tensor and of the area of interface per unit261

volume.262

2.1. Force perturbation related to the mechanical equilibrium along the fluid-

solid interface

First, we express the mechanical equilibrium at the solid-fluid interface (Figure 2).263

The convention adopted is that compressive stresses and compactive strains are negative264

Landau and Lifchitz [1986]. The far-field stress applied to the host rock is denoted by265

¯̄σ0. The largest principal stress axis, perpendicular to the average plane of the stylolite,266

is defined along the z-axis. The fluid pocket transmits all the load through itself (The267

boundary condition of the fluid pocket is approximated as undrained for that respect:268

if there is any flow, from or into the fluid pocket, it happens slowly, via the lateral269

ends. If there is any contact between the opposite walls perpendicular to the main fluid270

direction, the load transmitted through this contact is neglected). The fluid pressure271

is thus homogeneous and equal to the largest principal stress applied to the host rock,272

considering the integral of the local stress field ¯̄σ along an elongated rectangular boundary273

(dashed line in Figure 1):274

p = −σ0
zz (1)275

Locally, the local stress ¯̄σ is split between the far-field asymptotic value ¯̄σ0 and a pertur-276

bation generated by the irregular nature of the interface ¯̄σ1:277

¯̄σ(x) = ¯̄σ0 + ¯̄σ1(x) (2)278
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The far-field stress unit vectors x̂ and ẑ along the x and z-axis are assumed to be the279

principal directions i.e.280

¯̄σ0 = σ0
xxx̂x̂ + σ0

zz ẑẑ (3)281

Here, the notations x̂x̂ and ẑẑ correspond to unit matrixes composed from the unit282

vectors, as e.g. are ŷŷ, x̂ŷ, or ẑx̂. This canonical basis for the matrixes is composed283

from the doublets of unit vectors x̂, ŷ and ẑ. For example, x̂ẑ represents the unit matrix284

with all components equal to zero, apart from a unit in the lign corresponding to the x285

coordinate, and the column corresponding to the z one, so that for a pair of vectors u, v286

applied to the left and right of this matrix, u · (x̂ẑ) · v = (u · x̂)(ẑ · v) = uxvz. In other287

terms, with cartesian components along directions of indexes i and j, and the help of the288

Kronecker symbol δ, the components of the matrix x̂ẑ, for example, are: (x̂ẑ)ij = δixδjz.289

This convention to define the canonical basis of matrix space (nine elementary second290

order dyadic products like x̂ẑ) from the three basic unitary vectors of the vectorial space,291

x̂, ŷ and ẑ is, for example, defined by [Gonzalez and Stuart , 2008].292

For a stylolite, the largest compressive stress axis is normal to its average plane and293

thus to the average fluid pocket direction:294

|σ0
zz| > |σ0

xx| (4)295

This relation has strong implications on the stability of the surface pattern emerging from296

the dissolution process. The far-field deviatoric stress is defined as:297

σ0
s = (|σ0

zz| − |σ0
xx|) = (σ0

xx − σ0
zz) (5)298

To express the force perturbation related to the curved nature of the interface, we define299

the unit vector n̂ normal to the surface pointing towards the fluid. This vector is assumed300
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to be close to the principal stress axis. In the following, we will consider small-angle devia-301

tions from a straight surface, and the results will therefore be valid for small surface slopes302

only. The model presented below aims to describe the onset of the stylolite propagation303

from a flat surface, and it will also describe the evolution of large wavelength modes, if304

the aspect ratio of such modes (ratio of the amplitude over the wavelength) stays small,305

corresponding to small effective slopes at large wavelength.306

The interface is described as a single-valued function z(x) and the slopes are assumed to307

be of the order ε i.e. that |∂x(z)| ∈ O(ε) � 1. Since the normal n̂ to the interface of slope308

∂xz can be expressed by the conditions of normality to the interface, n̂ · (1, ∂xz)T = 0309

(at any order or ε), and by its unitary norm n̂2 = 1, it is in general n̂ = (−(∂xz)x̂ +310

ẑ)/
√

1 + (∂xz)2. Using the above limit of small slopes, developing in ε, we obtain to311

leading order312

n̂ = ẑ − (∂xz)x̂ + O(ε2) (6)313

(The order O(ε) is absent from n̂).314

The local mechanical equilibrium at the solid-fluid interface is expressed as:315

σ · n̂ = −pn̂ (7)316

And with equations (1-7) the force perturbation (illustrated in Figure 3) becomes:317

δf(x) = σ1(x) · n̂ =318

−pn̂ − σ0 · n̂319

= σ0
zz[ẑ − (∂xz)x̂] − σ0

zz ẑ + σ0
xx(∂xz)x̂320

= (σ0
xx − σ0

zz)(∂xz)x̂321

= σ0
s (∂xz)x̂ (8)322
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2.2. Chemico-mechanical coupling

Next, we express the chemico-mechanical coupling. The dissolution speed normal to the323

solid/fluid interface (in mol.m−2.s−1), is to the first order proportional to the chemical324

potential ∆µ of the chemical product dissolving [Kassner et al., 2001; Misbah et al., 2004;325

Schmittbuhl et al., 2004; Koehn et al., 2007]:326

v = m∆µ (9)327

where328

m = k0Ω/RT (10)329

is the mobility of the dissolving species, R = 8.31 J.mol−1.K−1 is the universal gas330

constant, T is the temperature in Kelvin, k0 is a dissolution rate which can be measured331

experimentally, and Ω is a molar volume. For calcite, Ω ' 4·10−5 m3.mol−1 and k0 ' 10−4
332

mol.m−2.s−1 for dissolution in water at atmospheric pressure and 298◦K [De Giudici , 2002;333

Schmittbuhl et al., 2004]. The difference in chemical potential from the solid state to the334

fluid state is [Kassner et al., 2001; Misbah et al., 2004; Koehn et al., 2007]:335

∆µ = ∆Ψs + Ω∆Pn + Ωγκ (11)336

Considering a solid state at given pressure and elastic free energy in chemical equilibrium337

with the fluid, ∆Ψs and ∆Pn are defined respectively as the change in Helmoltz free energy338

per mole and the change in stress normal to the interface. The last term corresponds to the339

surface energy with κ = ∂xxz, the surface curvature (the inverse of the radius curvature)340

and γ the surface tension between the solid and the fluid phase. In a particular case,341

neglecting temperature variation effects and assuming that the fluid composition is in342

chemical equilibrium with a solid flat surface at normal pressure p and stress σref , Eq.(11)343
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reduces to :344

∆µ = 0 (12)345

κ = 0 (13)346

More generally, by definition ([Kassner et al., 2001]:347

∆Ψs + Ω∆Pn = Ω∆ue, (14)348

where349

∆ue = ue(σ) − uref
e (15)350

and351

ue = [(1 + ν)σijσij − νσkkσll]/4E (16)352

is the elastic free energy per unit volume with E the Young’s modulus and ν the Poisson’s353

ratio of the elastic solid [Kassner et al., 2001; Landau and Lifchitz , 1986].354

To take into account the dissolution speed variations associated to the morphology of355

the stylolite, we develop the dissolution speed to the leading order as:356

v = v0 + v1 (17)357

With equations (9-16):358

v0 =
k0Ω

2

RT

(

[(1 + ν)σ0
ijσ

0
ij − νσ0

kkσ
0
ll]

4E
− uref

e

)

359

=
k0Ω

2

RTE
(αp2

0 − αrefp
2
ref) (18)360

The geometrical factor α is computed assuming σ0
xx = σ0

yy = −p0 + σs/3 and σ0
zz =361

−p0 − 2σs/3:362

α =
9(1 − 2ν) + 2(1 + ν)σ2

s/p
2
0

12
(19)363
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αref is expressed with a similar expression and characterizes the chemical equilibrium with364

the fluid at the referential state as a function of the pressure pref and the shear stress365

σref . Typically, for a limestone with a Young’s modulus E = 80 GPa stressed at p0 ' 10366

MPa (which corresponds to a few hundred of meters deep in sedimentary rocks) and for a367

fluid with a chemical composition in equilibrium with the solid, the dissolution speed at368

the solid-fluid interface in a limestone is of the order of:369

v0
n ' 10−6 to 10−5 m.year−1

370

2.3. Consequences for the stability of the dissolution process

From the local mechanical equilibrium and the nature of the chemico-mechanical cou-371

pling, some important considerations can be inferred about the morphological stability of372

the dissolution surfaces. This behavior depends on the orientation of the surfaces with373

respect to the far-field stress.374

Previously we have shown how to express the force perturbation arising from the mis-375

match between the solid-fluid interface orientation and the principal axis of the far-field376

stress tensor x̂ (equation 8).377

This relationship holds independently of the relative magnitudes of the principal stresses378

σxx and σzz. If the largest principal stress is tangential to the interface, which is not the379

case for stylolites, σ0
s < 0 and the sign of δf(x) · x̂ is opposite to the slope of the interface380

∂xz. Such tangential force perturbation is concentrated at the points lying ahead of the381

average dissolution front (Figure 4). The elastic forces concentrate stress at the valleys of382

the dissolution front where the free energy is thus higher. This leads to an increased dis-383

solution speed at the points lying ahead of the averaged front. The dissolution propagates384

downwards. The points at the crests, i.e. located behind the averaged dissolution front,385
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show a reduced rate of dissolution thus pushing them further from the average front. The386

points lying out of the average dissolution plane tend therefore to depart further from387

the average position. The elastic force is in this situation a destabilizing force. On the388

contrary, the surface tension tends to stabilize the process by decreasing the surface area389

by flattening the interface.390

The competition between the elastic long-range destabilizing forces and the surface391

tension short-range stabilizing forces leads to the ATG interface instability. The fastest392

growing wavelength is determined by the balance between these long-range destabilizing393

and short-range stabilizing effects. Such instability arising in stressed solids was studied394

theoretically [Asaro and Tiller , 1972; Grinfeld , 1986; Misbah et al., 2004] and observed395

experimentally in stressed soluble crystals immersed in a saturated fluid [Den Brok and396

Morel , 2001; Koehn et al., 2004].397

If the largest principal stress lies perpendicular to the interface, as for stylolites, σ0
s > 0398

and the sign of δf(x) · x̂ is the same as the slope of the interface ∂xz. Such tangential399

force perturbation is concentrated at the points lying behind of the average dissolution400

front (Figure 5). The elastic forces concentrate stress at the crests of the dissolution front401

where the free energy is thus higher. This leads to an increased dissolution speed for402

the points lying behind the averaged front. The dissolution propagates downwards. The403

points at the valleys, i.e. located ahead of the averaged dissolution front, tend to come404

back to the average position. The elastic force is a stabilizing force in this situation. Here,405

the surface tension is again a stabilizing process.406

Since the long-range elastic force and the short-range surface tension force are stabilizing407

forces, if the modeled solid properties are purely homogeneous (i.e. homogeneous elastic408
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solid with homogeneous dissolution rate properties), the model predicts the flattening of409

any initial non-plane surface with time.410

Consequently, to model the morphogenesis of stylolites, which are rough surfaces, we411

will take here into account the disorder linked to the material properties.412

2.3.1. Consequence on initial evolution of trapped fluid pocket413

In summary, the above arguments show that an elementary bump of a flat surface dis-414

appears for σs > 0, or grows for σs < 0. Qualitatively, if the argument on the stability415

of surfaces depending on their orientation on the principal stress axis extends for more416

local orientations along trapped fluid pockets, one should observe the following: for the417

sides of a fluid pocket lying tangentially to the largest stress, these should develop instable418

grooves penetrating into the solid, similarly to the ATG instability case. On the contrary,419

the sides normal to the largest stress direction should remain relatively flat, apart from420

the fluctuations due to the disorder. These small variations along the surfaces normal to421

the principal stress axis, and the penetrations of grooves of characteristic wavelength in422

the rock along the direction of the weakest stress, should lead to the development of elon-423

gated structures, and merge initially separated fluid pockets (or clay-enriched pockets).424

This qualitative mechanism is illustrated on Figure 6. This expectation of qualitative425

evolution is indeed compatible with the mechanism of development of anti-cracks numer-426

ically obtained by Koehn et al. [2003]. The experimental grooves observed along the free427

surface on the sides of a fluid-filled cylindrical pocket by Den Brok and Morel [2001] also428

displayed this trend.429
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2.4. Expression of the dissolution speed perturbation as a function of the

interface shape

To model the disorder in the solid we assume that the material properties (related to the430

solid grains) vary in a random and spatially uncorrelated way. This disorder can originate431

from the diversity of grain composition, grain size or orientation, i.e. it represents the432

small scale heterogeneities present in the rock For example, the dissolution rate k can be433

expressed as an averaged term k0 plus some spatial variations of zero average η(x, z) · k0:434

k = k0(1 + η(x, z(x))) (20)435

The random variable η is a quenched disorder with no spatial correlations and is charac-436

terized by its mean < η >= 0 and its variance < η2 > assumed to be small enough to437

keep small local slopes. The dynamics of the dissolving interface z(x, t) can be expressed438

from equations (9-17) as:439

v = −∂tz =
kΩ2

RT
(∆ue + γ∂xxz),440

=
k0Ω

2

RT
(1 + η){(1 + ν)[(σ0

ij + σ1
ij)(σ

0
ij + σ1

ij) − ν(σ0
kk + σ1

kk)
2]/4E − ue

ref + γ∂xxz}441

=
k0Ω

2

RT
{(1 + ν)[σ0

ijσ
0
ij − ν(σ0

kk)
2]/4E − ue

ref}442

+
k0Ω

2

RT
η{(1 + ν)[σ0

ijσ
0
ij − ν(σ0

kk)
2]/4E − ue

ref}443

+
k0Ω

2

RT
{(1 + ν)[2σ0

ijσ
1
ij − 2ν(σ0

kkσ
1
kk)]/4E + γ∂xxz} (21)444

i.e., using Eq.(18) for the expression of σ0
ijσ

0
ij − ν(σ0

kk)
2, a dissolution speed separated445

between an average homogeneous speed v0 and a leading order of the perturbations v1,446

first order in ε as447

∂tz(x, t) = −v0 − v1(x, t) (22)448
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with v0 the dissolution speed given by equation (18) and v1 a deviation of the dissolution449

speed with respect to the average dissolution speed v0 expressed as:450

v1 =
k0Ω

2

RT

(αp2
0 − αrefp

2
ref)

E
η(x, z(x))451

+
k0Ω

2

RT
γ∂xxz(x)452

+
k0Ω

2

RT

(

[(1 + ν)σ0
ijσ

1
ij − νσ0

kkσ
1
ll]

2E

)

(23)453

σ1 is the stress perturbation mentioned previously in equation (2). It is generated by the454

surface distribution of the tangential force perturbation δf(x) due to the irregular nature455

of the interface.456

The first term is a quenched disorder term leading to the roughening of the interface.457

The second one is a stabilizing quadratic short-range term arising from the surface tension.458

The last term can be expressed via a non-local kernel from the shape of the interface z(x)459

by integrating the elastostatic equations in the solid half-plane.460

2.5. Detailed form of the elastic long-range interaction kernel

The stress perturbation induced by the force perturbation δf(x) (equation 8) exerted461

on the surface can be determined via the Green function method. Following Landau and462

Lifchitz [1986], the displacement induced by an elementary force x̂ applied at the origin463

(0, 0, 0) on a semi-infinite solid is:464

ax (x, y, z) =
1 + ν

2πE

{

2(1 − ν)r + z

r(r + z)
+

(2r(νr + z) + z2

r3(r + z)2
x2

}

465

ay (x, y, z) =
1 + ν

2πE

{

2r(νr + z) + z2

r3(r + z)2
xy

}

466

az (x, y, z) =
1 + ν

2πE

{

(1 − 2ν)x

r(r + z)
+

zx

r3

}

(24)467
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where r is the distance relatively to the force application point at (0, 0, 0), i.e. r2 =468

x2 + y2 + z2. The associated strain applied on the solid is:469

εe
ij =

1

2
(∂iaj + ∂jai) (25)470

and the associated stress is:471

fij(x, y, z) =
E

1 + ν
(εe

ij +
ν

1 − 2ν
εe
kkδij) (26)472

The stress associated to the point force x̂ applied on the surface of normal ẑ at the origin473

is equal at the origin itself to x̂ẑ + ẑx̂.474

Since the model treated here is invariant by translation along y, the force perturbation

δf(u) = σ0
s(∂uz)(u)x̂ is exerted at any v ∈]−∞,∞[ and the resulting displacement field at

(x, y, z), is solely dependent on (x, z) and can be expressed, by linearity of the elastostatics

equations, (similarly to the elastostatic Green function method detailed in Eq.(8.14) by

[Landau and Lifchitz , 1986]), as a displacement field w of components

wi(x, y = 0, z) =
∫

∞

u=−∞

∫

∞

v=−∞

ai(x − u,−v, z)dudv δf(u).x̂ (27)

The associated strain perturbation is

εp
ij =

1

2
(∂iwj + ∂jwi), (28)

and the associated stress,

σ1
ij(x) =

E

1 + ν
(εp

ij +
ν

1 − 2ν
εp
kkδij) + δf(x)(δixδjz + δizδjx)δ(z), (29)

where the first term represents the stress induced by the elastic deformation, and the

second one the direct application of the force perturbation on the surface. In the above,

the spatial derivative of Eq.(28) can be exchanged with the integration in Eq.(27), to
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obtain

εp
ij(x, y = 0, z) =

∫

∞

u=−∞

∫

∞

v=−∞

εe
ij(x − u,−v, z)dudv δf(u).x̂. (30)

Recalling the expression of the force perturbation, Eq.(8), from Eq.(29), the stress per-475

turbation along the surface, at z = 0, is thus:476

σ1
ij(x) = σ0

s · p.p.[
∫

∞

u=−∞

du (∂uz)(u)477

∗
∫

∞

v=−∞

fij(x − u,−v, 0)dv]478

+σ0
s(∂xz)(x)(δixδjz + δizδjx) (31)479

where p.p. refers to the principal part of the integral. Taking the derivatives of the480

displacement field (equation 25), we can calculate the associated stress. Integrating this481

result along the y-axis gives:482

∫

∞

v=−∞

fij(x,−v, 0)dv = − 2ν

πx
(δixδjx + δiyδjy) (32)483

and thus,484

σ1(x) = −2νσ0
s

π
· p.p.[

∫

∞

x′=−∞

du
(∂uz)(u)

x − u
](x̂x̂ + ŷŷ)485

+σ0
s · (∂xz)(x)(x̂ẑ + ẑx̂) (33)486

The elastic energy perturbation associated to the interface deformation can be computed487

using equation (33) and the relation:488

σ0 = −(p0 − σ0
s/3)(x̂x̂ + ŷŷ) − (p0 + 2σ0

s/3)ẑẑ (34)489

It results in:490

u1
e =

[(1 + ν)σ0
ijσ

1
ij − νσ0

kkσ
1
ll]

2E
491

=
2ν[(1 − 2ν)p0]

πE
∗ σ0

s · p.p.[
∫

∞

u=−∞

du
(∂uz)(u)

x − u
] (35)492
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2.6. Dynamic equation for the dissolution interface

The equation (22) rules the dynamics of the interface dissolution. When computed with493

equation (18), it gives:494

RT

k0Ω2
v1 =

(αp2
0 − αrefp

2
ref)

E
η(x, z(x))495

−γ∂xxz(x)496

+β
p0σ

0
s

E
· p.p.[

∫

∞

u=−∞

du
(∂uz)(u)

x − u
] (36)497

where β is a geometrical factor:498

β = [2ν(1 − 2ν)]/π (37)499

Equation (23) can be expressed in a dimensionless form by using length and time units500

as:501

L∗ = γE/(βp0σs) (38)502

τ = (L∗)2RT/(γk0Ω
2) (39)503

We define the dimensionless variables in the reference frame moving at the average velocity504

−v0 as:505

z′ = [z + (v0t)]/L
∗ (40)506

x′ = x/L∗ (41)507

t′ = t/τ (42)508

and the reduced quenched noise as:509

η′(x′, z′(x, t) − v0t/L
∗) =510

[(αp2
0 − αrefp

2
ref)/(βp0σs)]η(x, z(x, t)) (43)511
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The dimensionless stochastic equation for the stylolite growth process is then:512

∂t′z
′(x′, t′) =513

η′(x′, z′(x′, t′) − v0τt′/L∗) + ∂x′x′z′514

−p.p.[
∫

∞

u=−∞

du
(∂uz

′)(u)

x′ − u
] (44)515

At large average dissolution speed, the term v0τt′/L∗ takes over z quickly and the noise516

is annealed, becoming mostly time-dependent. On the contrary, for sufficiently slow pro-517

cesses such as the extend of the surface roughness over several grains, the noise can be518

considered as quenched. This is the case here as the changes in η′ arising from z(x, t)519

are significantly larger than the changes due to some variations of the average dissolution520

front position v0τt′/L∗. To the first order, the noise dependence is mainly η′(x′, z′(x′, t′))521

and the noise will therefore be considered here as quenched.522

The dynamic equation then becomes:523

∂t′z
′(x′, t′) = η′(x′, z′(x′, t′)) + ∂x′x′z′524

−p.p.[
∫

∞

u=−∞

du
(∂uz

′)(u)

x′ − u
] (45)525

Alternatively, in some arbitrary spatial unit `, this can also be written:526

∂tz(x, t) = η′′(x′, z′(x′, t′)) + ∂xxz − `

L∗

∫

dy
∂yz

x − y
(46)527

with L∗ = γE/(βp0σs) and τ = `2RT/(γk0Ω
2), the time unit.528

2.7. Small and large scale behavior of the model

Elastic interactions can be neglected in equation (46) for small scales such as ` � L∗
529

(the lower limit corresponds to the resolution of the analyzed signal) reducing the model530
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to a Laplacian description:531

∂tz
′(x, t) = ∂xxz

′ + η(x, z′(x)) (47)532

This equation is known as the Edwards Wilkinson model [Edwards and Wilkinson, 1982]533

modified with a quenched random noise. It has been studied in the literature and leads534

to the growth of self-affine surfaces of roughness ζ ∼ 1.2 [Roux and Hansen, 1994], in535

agreement with existing data on stylolites where ζ ∼ 1.1 [Schmittbuhl et al., 2004].536

Conversely, for large scales ` � L∗ (the upper limit corresponds to the system size),537

surface tension can be neglected reducing equation (46) to a mechanical regime:538

∂tz
′(x, t) = − `

L∗

∫

dy
∂yz

x− y
+ η(x, z′(x)) (48)539

In this case, the model is similar to known models describing the propagation of an540

elastic line on a disordered pinning landscape or the propagation of a mode I fracture541

front in a disordered solid. It leads to the growth of self-affine surfaces of roughness542

ζ ' 0.5 [Tanguy et al., 1998]. In summary, the model derived above predicts the growth543

of dissolution surfaces with different self-affine characteristics at small scale (ζ1 ∼ 1.2)544

and large scale (ζ2 ∼ 0.5). The transition between these regimes is expected to occur at545

a certain cross-over length L∗.546

3. Numerical approach : Dynamic evolution of the interface

From a purely analytical point of view and via the similarity of asymptotic form of547

the dynamic equation with known models for large and small scales, we have shown that548

two different scaling laws are expected for small and large scales, and that the cross-over549

length should depend on the far-field stress magnitude. Independently from this general550

analytical analysis, we will now show how to solve the problem numerically, i.e. implement551
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the dynamic evolution of the interface with all the large and small scale terms and random552

variables to represent the disorder and analyse the resulting morphogenesis.553

3.1. Practical implementation of the model

We simulate the dissolution process for a calcite-water interface. This is done in an554

event-driven discrete lattice code, with algorithms corresponding to a discrete Langevin555

equation leading to grains getting dissolved one at a time: for each grain along the in-556

terface, a time to dissolution is computed from the above Langevin equation, and the557

grain with the shortest dissolution time is removed. After what, the times are recom-558

puted for all grains along the interface, and the next grain with shortest dissolution time559

is removed, and so on (see Renard et al. [2004] for details of the practical implementa-560

tion). The selected constants correspond to a calcite-water system, γ = 0.27J · m−2,561

Ω = 4 ·10−5 m3 ·mol−1, ν = 0.25, E = 80 GPa and k0 = 10−4mol ·m−2 ·s−1 [Renard et al.,562

2004]. The chosen physical conditions are T = 420 K, < p >= 10 MPa and < σs >= 40563

MPa. The amount of quenched noise is associated to the natural variations of grain prop-564

erties. The typical scale associated to the quenched disorder (or typical grain size) is con-565

sidered here to be around ` = 10µm, with no correlation above this scale. This quenched566

disorder has a standard deviation
√

< η2 > = [α`p0/(βL∗σs)]·[(δE/E)+(δk/k0)+(δα/α)]567

corresponding to some relative variations of the dissolution rate of around 10% (i.e.568

δk/k0 ∼ 0.1).569

The dimensionless surface dynamic equation without disorder is:570

∂tz(x, t) = v0 + ∂xxz − `

L∗

∫

dy
∂yz

x− y
(49)571

where L∗ = γE/(βp0σs), ` is the unit length, and τ = `2RT/(γkΩ2) is the time unit.572
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We assume a small disorder in the implied quantities (e.g. Young’s modulus), that are573

quenched in the material properties of the rock heterogeneity associated with micrometric574

grains, typically ` = 10µm. The interface is supposed to be normal to the largest stress575

direction (stabilizing elastic interactions).576

Considering a perturbation to the first order, in the referential frame of the homo-577

geneously moving average front, z′ = z − v0t, the equation ruling the surface growth578

becomes:579

∂tz
′(x, t) = ∂xxz − `

L∗

∫

dy
∂yz

x− y
+ η(x, z(x)) (50)580

with a quenched random term η(x, z′(x)) = [α`p0/(βL∗σs)] · [(δE/E) + (δk/k) − (δα/α)]581

The first and second terms are stabilizing terms. The third term refering to the quenched582

disorder destabilizes the interface. We perform the simulation of this dynamic equation583

with both stabilizing terms and quenched noise.584

The prefactors in equation 50 depend on the rock type and on the applied stress. In585

addition to these mappings, the characteristic units are known as function of the rock586

properties. The cross-over scale L∗ = γE/(βp0σs) is function of the pressure during the587

growth, through p0 and σs.588

Determining the cross-over length L∗ for natural samples allows to determine such stress589

value during the growth, and consequently the depth of the rock during the stylolite590

propagation. Assuming as an order of magnitude p0 ∼ σs and typical values for the591

limestone elastic properties and the water calcite reaction rates, L∗ ∼ 1mm leads to592

a typical depth of 1 km. Stylolites can thus be considered as fossils of the stress593

magnitude.594
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We solved the dynamic equation (46) with an event-driven algorithm where the fastest595

dissolving grain is removed at each step. The problem is considered as L−periodic and the596

long-range elastic kernel p.p.
∫

dy ∂yz
x−y

= −p.p.
∫

dy z(x)−z(y)
(x−y)2

is replaced by its finite-size form597

−p.p.
∫ L
0 dy z(x)−z(y)

sin2(π(x−y)/L)
π2

L2 . This standard form can be obtained by solving the elastostatic598

equations in the Fourier space and performing an inverse Fourier integration. When a new599

grain is reached, the realization of its quenched disorder η is evaluated using a Gaussian600

distribution. For the dissolution surface simulated which is 4096` long, 8000000 grains601

were dissolved.602

3.2. Analysis of the small-scale and large-scale roughness of the saturated

interface

The simulation of the calcite-water system leads to the growth of a dissolution interface.603

Starting from a flat interface and after a certain transient time, the Fourier modes saturate604

to a characteristic amplitude. A snapshot of the developed stylolitic interface is shown in605

Figure 7.606

This interface fluctuates around the average progressing flat dissolution front. The607

Fourier power spectrum P (k, t) = ‖z̃(k, t)‖2 of each front z(x, t) is extracted, and the608

ensemble average of this power spectrum P (k) =
〈

‖z̃(k)‖2
〉

is obtained for developed in-609

terfaces, by averaging over all fronts after 80000 grains have been dissolved. The expected610

small and large scale self-affine characteristics correspond to the theoretical predictions,611

as shown in Figure 8. Indeed, the power-spectrum is a power-law of scale, with two dif-612

ferent exponents at large and small scale, and a cross-over length around the scale L∗:613

For k > 2π/L∗ i.e at small scale, we have P (k) ∼ k−1−2ζ with ζS = 1.2, and for the large614

scales, the roughness exponent is found to be around ζL = 0.35. The straight lines in the615
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bilogarithmic axes (Figure 8) correspond to these power law behaviors, determined by616

linear regression over the two domains k > 2π/L∗ and k < 2π/L∗. The ensemble used for617

the roughness estimate is the following: it corresponds roughly to 100000 grain being dis-618

solved after the first 80000 first ones, which are discarded. We thus compute the average619

power spectral density profiles over all these states, representative of a saturated situation620

with fluctations of the Fourier mode amplitude around some characteristic magnitude for621

each wavelength. The linear regression have been performed in bilogarithmic space on622

the ranges 0 < log10(k) < 1.5 and 2 < log10(k) < 3, with k−unit of 2π/L, with L = 4096`623

and a grain size ` = 10µm. The standard error bar provided by the linear regression over624

this two ranges is around ±0.2 in slope (i.e. ±0.1 for the Hurst exponents ζ).625

Thus, we find that the scaling of saturated surfaces in this model is compatible with626

observations made on natural surfaces, and with the previous analytical predictions.627

In addition, the dynamic behavior of these models (Edwards Wilkinson in a quenched628

noise [Roux and Hansen, 1994], or elastic string in a disordered landscape [Tanguy et al.,629

1998]) is known. The prefactor (characteristic time) associated with the dynamics can630

be evaluated through the previous computations from the rock material properties. The631

time to saturation at an observation scale of a few centimeters is estimated to be around632

a few thousands of years. The stylolite roughness is hence always in a saturation state for633

a geologist at small observation scale.634

However, for longer systems, e.g. decametric ones, much longer times would be required635

for saturation. Such long stylolites are sometimes observed but rarely analyzed in terms636

of scaling of the height. To our knowledge, the only analysis performed on decametric637

size stylolites [Laronne Ben-Itzhak , 2011] showed that these large scale structures were638
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not saturated. This means that the time during which the stylolitization was active on639

such very long stylolites was only enough to lead the small scales to saturated amplitude,640

but not the large ones (above a few tenth of centimeters).641

4. Example: Application of the model to natural data

The model is applied to a sedimentary stylolite collected in a core at the Andra642

(French national radioactive waste management agency) Underground Research Labo-643

ratory (URL) at Bure in Eastern France. The selected sample comes from the borehole644

EST433 at a depth of 720 m. The host rock is a fine-grained, homogeneous grainstone645

from the Dogger age. The core was cut in three parts thus giving four profiles for analysis646

(Figure 9).647

Profiles 1 and 2 and profiles 3 and 4 are spaced by 3 mm (thickness of the drilling saw)648

and profiles 2 and 3 are spaced by 30 mm. Each profile has a length around 90 mm. The649

stylolites were photographed at a resolution of 30 µm. A systematic method was used to650

extract profiles from the photographs. It consists on isolating the black pixels constituting651

the clay particles in the stylolite from photographs converted in grey level pictures. The652

profiles will be used as functions in the spectral analysis (integral transforms) and thus are653

required to be single-valued. Stylolites show a self-affinity geometry [Schmittbuhl et al.,654

1995; Barabási and Stanley , 1995] meaning that they are statistically invariant under an655

affine transformation. Thus, for ∆x and ∆y the horizontal direction amplitude and ∆z the656

vertical direction amplitude: ∆x → λ∆x, ∆y → λ∆y and ∆z → λζ∆z, where λ can take657

any value and ζ is the Hurst exponent which describes the scaling invariance [Schmittbuhl658

et al., 2004; Renard et al., 2004]. As in Ebner et al. [2009b] we used both the Fourier power659

spectrum [Schmittbuhl et al., 1995] and the averaged wavelet coefficient [Simonsen et al.,660
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1998] signal processing methods to analyse the profiles (Figure 10). We used two different661

methods to check the repeatibility of the results. First we calculated the Fourier power662

spectrum P (k), which is the square of the modulus of the Fourier transform, as a function663

of the wave-number k (k = 2π/L, where L is the wavelength). The power spectrum664

expressed as a function of the length for a self-affine profile behaves as P (L) ' L2ζ+1. We665

calculated also the averaged wavelet coefficient spectrum as a function of the scale a with666

Daubechies 4 wavelets which behaves as W (a) ' a1/2+ζ .667

The results show the two scaling regimes predicted by the theory presented above,668

described by two different power laws. Figure 11 shows the Fourier power spectrum for669

the profile 1 as a function of the length L. The raw data are more concentrated at670

small scale. The lower limit for the length corresponds to the Nyquist length which is the671

resolution multiplied by 2. As the profiles have a finite-size the upper limit for the analysis672

(corresponding to small wave-number) is given by the size of the profile. To analyze the673

data, we apply a logarithmic binning so that the weight on each point is equal. To estimate674

the cross-over length, we used a linear-by-part fit with a cross-over function changing the675

scaling law from small to large scale as explained in Ebner et al. [2009b]. The averaged676

wavelet coefficient spectrum (Figure 12) does not require a binning. The same kind of677

fitting was used to appraise the cross-over length L∗.678

The intersection between both regimes (whose slopes are imposed by ζS = 1 and ζL = 0.5679

for small and large scale respectively) gives the cross-over length L∗. We summarize the680

estimated cross-over length for all the analyzed profiles with both methods in Table (9).681

The uncertainties on the cross-over length (68% and 44% for Fourier power spectrum682
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and averaged wavelet coefficient respectively) are due to the spatial variability of the683

intersection between the small and large regimes.684

5. Discussion

5.1. Interpretations of the estimated paleostress

We discuss three theories about the meaning of the estimated paleostress for the studied685

sedimentary stylolite:686

• Present day stress: if the conditions for pressure-solution (lithostatic pressure in com-687

petition with the presence of a fluid at an appropriate state of equilibrium) are present,688

a stylolite should show the present day state of morphology and is still evolving. This689

means that we should measure the current applied stress and see the last evolution of690

the morphology. This can be compared with recent studies where vertical and horizon-691

tal stresses were measured in boreholes at Bure [Wileveau et al., 2007; Gunzburger and692

Cornet , 2007] to assess if the estimated stress corresponds to the measured ones.693

• Evolution stopped: this can occur if the lithostatic stress becomes too small to694

encourage the process (change in the magnitude due to a tectonic phase for example). It695

can also be associated with the closing of the porosity by recrystallization. Indeed, if the696

pore size decreases because of recrystallization at the pore surface, the surface tension697

increases preventing more recrystallization. Thus, the water is getting more charged in698

dissolved materials and the chemistry of the water changes and can stop the stylolite699

evolution. Moreover, the decrease of the pore size can limit or stop the fluid flow and700

close the system.701

• Reactivation: both previous theories can act on the history of a stylolite. After its702

initiation, a stylolite can see its growth stopped by the kind of process we developped703
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just before. If in the geological history an event as emerged soil and/or erosion allows to704

change the applied stress or to meteoritic fluids to flow in the soil, the system can have705

its properties changed and pressure-solution process can start again until it is stopped or706

it can still evolve.707

These three theories will be discussed with regard to the paleostress results.708

5.2. Estimation of the paleostresses

5.2.1. Hypothesis on the basin evolution709

To estimate the paleostress from the model developped in this study, we use the average710

of the cross-over lengths determined for the four profiles. The cross-over length is related711

to the stresses by equation (38). However, this equation can be simplified by making712

assumptions on the surrounding rock formation. We use the same assumptions as in Ebner713

et al. [2009b] for the stylolites from Cirque de Navacelle (Cévennes, France) considering714

that the initiation of stylolites occurs at the early stage of a basin. The major principal715

stress is vertical (σzz) as we analyzed a sedimentary stylolite. The principal horizontal716

stresses are isotropic (σxx = σyy). Thus the mean stress p0 and the shear stress σS are:717

p0 = −(2σxx + σzz)/3 (51)718

σS = σxx − σzz (52)719

As stylolites are known to develop in the early stage of sedimentation of basins, the strain720

is assumed to be uniaxial:721

σxx = σyy =
ν

1 − ν
σzz (53)722

Using equations (51-53), equation (38) becomes:723

σ2
zz =

γE

αβL∗
(54)724
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where725

α =
1

3

(1 + ν)

(1 − ν)

(1 − 2ν)

(1 − ν)
(55)726

is a dimensionless geometrical factor. The geometrical factor β (equation 37) is β =727

ν(1 − 2ν)/π. Using the average cross-over length L̄∗ in equation (54), we can estimate728

the main principal paleostress σzz. The Poisson’s ratio ν of the host rock was determined729

by measuring the P and S elastic wave velocities (ν = 0.5(VP /VS)2−1
((VP /VS)2−1)

). The relative errors730

for the measurements of VP and VS are 1 and 2% respectively [Benson et al., 2005]. The731

relative error for the Poisson’s ratio is thus equal to 12%. Consequently, α and β have732

error bars equal to 2% and 22%, respectively. The last constant to be determined is the733

Young’s modulus. The next paragraph details our choices for this matter.734

5.2.2. Uncertainties on the Young’s modulus E735

In their paper, Ebner et al. [2009b] determined E assuming the vertical stress is equal736

to the lithostatic stress as in equation (56) where z is the current depth of their samples.737

They plotted the determined stress as a function of L−1/2. The slope of the curve is738

proportional to E1/2 (see equation (54)). They found E = 15 GPa which is the lowest739

acceptable limit for limestones [Clark , 1966]. Based on uniaxial loading made in our740

laboratory, we determined E = 36.2 GPa for the rock surrounding the analyzed stylolite.741

Considering that the limestones from Bure replaced in the geological context of the Paris742

basin cannot be excessively harder than what we observe today, the value determined in743

the laboratory is taken as the upper limit for E. Thus we can estimate the paleostress in744

a small range of E. The values used for the calculation of the paleostress are summarized745

in Table (5.2.1).746
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To calculate the paleostress σzz, we take into account the error bars for each parameter.747

The computed error for the calculation of σzz is 66% for the Fourier power spectrum748

method and 54% for the averaged wavelet coefficient method. The results are summarized749

in Table (5.2.2).750

5.3. Geological context

By doing some assumptions on the sedimentary overburden, the depth of development751

of the stylolite can be assessed. The lithostatic pressure σzz can be expressed as:752

σzz = ρgh (56)753

where ρ is the density in g · m−3, g is the Earth’s gravity (g = 9.81 m · s−2) and h is the754

depth in m. We make the assumption that at the initiation of the stylolite, linked to the755

early stage of formation of the sedimentary basin, the overburden was made of limestones756

only. Thus, we consider the density of limestones ρ = 2710 g ·m−3. The estimated depths757

of development of the stylolites are summarized in Figure (12). The error bars on h are758

of the same order as for the paleostress.759

Now we can wonder what is the interpretation of the estimated paleostress with regard760

to the three theories exposed previously:761

1. Wileveau et al. [2007] and Gunzburger and Cornet [2007] measured the vertical stress762

at Bure which is equivalent to the lithostatic pressure as in equation (56). Our results763

show that the calculated depth corresponds to the depth where we cored the analyzed764

stylolite. Thus the studied stylolite is more likely to be still active and to show the present765

day stress.766
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2. André et al. [2010] discussed about a reactivation of the stylolitization during the767

Tertiary age (end of Cretaceous more precisely) by the change in the stress orientation768

or by the emergence of the Cretaceous sediments which were eroded and permitted to769

meteoritic fluid to spread in the sediments. This reactivation process could have acted on770

the growth of the studied stylolite until today. But still it seems that the theory of the771

present day stress is more applicable on that example.772

6. Conclusions

Analysing the local boundary conditions due to the fact that the inside of a stylolite773

does not sustain shear stress and an elastic surrounding, we derived the dependence of774

the free energy along a stylolite surface on the shape of the stylolite. Adding up a surface775

energy term we derived a dynamic surface evolution model for a stylolitic interface. This776

model, in the situation where a stylolite is perpendicular to the largest principal stress axis777

- as in most case - includes terms that lead to the stabilization of the surface dynamics,778

i.e. to the vanishing of initial perturbations towards a flattening surface. Hence, the779

presence of disorder linked to the heterogeneities of the material properties is required to780

explain the rough nature of stylolites. Introducing such non correlated quenched disorder,781

the model predicts the occurence of two scaling laws. At small scale, a destabilizing782

disorder competing with a stabilizing surface energy term give a model similar to the783

Edwards Wilkinson model in a quenched noise leasing to a saturated surface with a Hurst784

exponent around 1. At large scale, the competition between destabilizing disorder and785

stabilizing elastic interactions is similar to models of evolution of an elastic interface in786

quenched disorder leading to a Hurst exponent of 0.5.787
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The cross-over scale between these two scaling regimes was shown to be directly linked788

to the stress magnitude. Hence, the determination of this cross-over and other physical789

rock properties allows to use stylolites as markers of the paleostress magnitude.790

Both scaling laws and the dependence of this cross-over scale on the stress magnitude791

were derived in two ways: by purely analytical derivation and similarity to known models792

in section 2 and by numerical integration in section 3.793

Importantly, it should be noted that the elastic forces, depending on the boundary794

conditions, can be stabilizing, as here, or destabilizing. The existence of several models795

and techniques of global or local calculation of the free energy can raise the question796

of a stabilizing or destabilizing nature of the elastic forces in the context of a stylolite.797

Independently from the derivation carried out in details in this paper, we note the following798

argument that can distinguish between stabilizing and destabilizing terms. The only799

difference between models with stabilizing or destabilizing elastic kernel is the sign of the800

prefactor in front of the elastic operator in the dynamic equation. However, when this sign801

is reverted, all large scale wavelength Fourier modes become unstable (with a selection of802

fastest growing mode, as e.g. shown in Misbah et al. [2004] or Bonnetier et al. [2009]).803

Numerical simulations similar to the ones shown above, with a destabilizing mode, do804

not lead to any saturation of the amplitude of the large modes at long times, and the805

Fourier power spectrum at a given time does not display any scaling law at fixed time for806

the large scales. Thus, the scaling laws observed in field stylolites are compatible with a807

model where elastic forces are stabilizing: we take this as a good sign of validity of the808

proposed approximations to take the boundary conditions into account in the proposed809

model.810
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The results from both analytical and numerical independent resolutions presented in811

this study are also consistent with three other independent observations:812

• The existence of two Hurst exponents at small and large scales, as observed in Schmit-813

tbuhl et al. [2004], in the stylolites from the log cores of Bure (section 4).814

• The results of recent molecular dynamic models of dissolution with pressure reliance815

and surface energy terms in the free energy displaying similar scaling laws and an identical816

law for the dependence of the cross-over length over the applied stress [Koehn, 2012].817

• The model was applied in a previous study to stylolites found at various depths in a818

limestone formation at Cirques de Navacelles (Cévennes, France). The inferred formation819

stresses were compatible with the derived weight of overburden at the time of formation820

[Ebner et al., 2009b].821

We show finally on the example of sedimentary stylolites in Bure, how the confinement822

stress can be derived from morphological studies of stylolites. The ubiquitous nature of823

these pressure-solution features makes them a versatile marker for paleostress magnitude824

that can give access to the stress during the growth of stylolites. This easily available825

paleostress marker opens the way for systematic studies of paleostress in large rock for-826

mations for different stylolite families. However, it must be used carefully as the error827

bars are not minor. An important number of measurement is required to constrain the828

results. Together with dating indications for the time of occurence of such stylolites (as829

e.g. times of tectonic events) and current stress assessment methods it opens the way for830

the determination of stress evolution in large basins, which is a key to understand their831

evolution.832
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Figure 1. Initial stage of a stylolite: Trapped elongated fluid pocket.
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Figure 5. Surface normal to the largest stress (σzz) axis: stable case.
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Figure 6. Expected stability or instability of the dissolution front around a trapped

fluid pocket.

Figure 7. Snapshot of the pressure-solution profile.
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Figure 8. Average power spectrum of simulated stylolitic fronts, in bilogarithmic

representation. The k−unit is 2π/L, with L = 4096` and a grain size ` = 10µm. The

vertical unit is arbitrary. The crossover is obtained at 2π/L∗.

Figure 9. Profiles 1, 2, 3 and 4 from right to left. A core from the Dogger formation

(EST433 well) was cut in three parts to obtain four profiles. Each profile was photographed

at high resolution. The picture at the bottom shows the profile number 2.
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Profile number 1 2 3 4 Average, L̄∗

L∗

FPS (mm) 1.14 0.37 0.37 1.13 0.75±0.51

L∗

AWC (mm) 1.95 1.52 0.72 1.60 1.45±0.64

Table 1. Summary of the cross-over length found for the four profiles analyzed by

Fourier power spectrum (FPS) and average wavelet coefficient (AWC).

Figure 10. Functions obtained from profiles 1, 2, 3 and 4. A grey-level threshold was

imposed on the pictures to isolate the stylolites. The functions were then obtained by

selecting the mean limit of the pixels.
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γ(J · m−2) Eup(GPa) ν α β

0.27 36.2±0.4 0.37±0.04 0.32±0.01 0.033±0.007

Table 2. Summary of the estimated paleostress for the stylolites from the cross-over

length.

Paleostress (MPa) L̄∗, Elow L̄∗, Eup

σFPS 22.6±14.9 35.1±23.2

σAWC 16.3±8.8 25.3±13.7

Table 3. Results for the calculation of the paleostress σzz using the averaged cross-

over length for the Fourier power spectrum (FPS) and average wavelet coefficient (AWC)

methods. We calculated the paleostress taking into account the variability of the Young’s

modulus E where Elow is the lower limit for the Young’s modulus for limestones and Eup

is the determined Young’s modulus for the studied sample.

D R A F T March 31, 2012, 6:14pm D R A F T



ROLLAND ET AL.: MODELING THE GROWTH OF STYLOLITES X - 57

Figure 11. Fourier power spectrum of the profile 1. The raw data were binned

logarithmically to run a linear-by-part fitting on the data [Ebner et al., 2009b]. Two

different scaling regimes are observed at small and large scale with Hurst exponent around

1 and 0,5 respectively. The fit reveals a cross-over length L∗ around 1.14 mm.

Figure 12. Averaged wavelet coefficient spectrum of the profile 1. A linear-by-part

fitting were run on the data [Ebner et al., 2009b]. Two different scaling regimes are

observed at small and large scale with Hurst exponent around 1 and 0.5 respectively. The

fit reveals a cross-over length L∗ around 1.95 mm. This is in good aggreement with the

length inferred using the Fourier power spectrum method.
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Depth (m) L̄∗, Elow L̄∗, Eup

hFPS 850.1±561.1 1320.3±871.4

hAWC 613.1±331.1 951.7±513.9

Table 4. Results for the calculation of the depth for the Fourier power spectrum (FPS)

and average wavelet coefficient (AWC) methods. We consider an early stage of formation

of a sedimentary basin with an overburden made of limestones only.
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