
HAL Id: hal-00701961
https://hal.science/hal-00701961

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An experimental study of secondary oil migration in a
three-dimensional tilted porous medium

Jianzhao Yan, Luo Xiaorong, Weimin Wang, Renaud Toussaint, Jean
Schmittbuhl, Guy Vasseur, Fang Chen, Alan Yu, Likuan Zhang

To cite this version:
Jianzhao Yan, Luo Xiaorong, Weimin Wang, Renaud Toussaint, Jean Schmittbuhl, et al.. An experi-
mental study of secondary oil migration in a three-dimensional tilted porous medium. AAPG Bulletin,
2012, 96 (5), pp.773-788. �10.1306/09091110140�. �hal-00701961�

https://hal.science/hal-00701961
https://hal.archives-ouvertes.fr


- 1 - 

An Experimental Study of Oil Secondary Migration in a Three 

Dimensional Tilted Porous Medium 

Jianzhao Yan, Xiaorong Luo, Weimin Wang, Renaud Toussaint, Jean Schmittbuhl, Guy Vasseur, 
Fang Chen, Alan Yu, Likuan Zhang  

 

Abstract: A three-dimensional physical experiment was carried out to study the oil 

secondary migration under an impermeable inclined cap. Light colored oil was 

released continuously at a slow rate of about 0.1 ml/min from a point at the basis of  

initially water saturated porous model. With the buoyancy as a primary driven force,  

a vertical cylindrical shape of oil migration pathway was observed first and then a 

layer-shaped of lateral migration pathway beneath the top inclined sealing plate once 

the oil cluster had reached the top cap. The Magnetic Resonance Imaging (MRI)  

was used to observe the migration processes – e.g. morphology of the migration 

pathway, intermittency of oil bubbles and variation of oil saturation within the 

migration paths. Results show that the snap-off phenomenon (related to fast local 

imbibition processes) occurred more often during vertical migration than it is during 

lateral. The lateral migration pathway which parallels to the top inclined cap has a 

typical vertical thickness of 2-4 cm (i.e. roughly 40-80 pores). This thickness is 

consistent with the prediction derived from the scaling laws related to the pore size 

and the Bond number. Along the lateral migration direction, the sectional area and the 

horizontal width of the migration pathway fluctuate drastically while the average oil 

saturation along the pathway remains almost the same. After stopping initial oil 

injection, the sectional area of migration pathway shrinks significantly. Therefore, it is 
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believed that this drastic shrinking of the migration pathway is the main reason why 

only relative small volume of oil and gas has been lost during the secondary 

migration. 

Keywords: Secondary migration, Analog model, MRI, Oil saturation, Instability 

biphasic flow  

1. Introduction 

  Secondary migration is the movement of hydrocarbons as a separate fluid through 

water-saturated rocks, faults, or fractures. The lateral secondary migration in a 

specific carrier bed is considered to be the major process accounting for large–scale 

oil and gas accumulations in most reservoirs (Schowalter, 1979; Thomas and Clouse, 

1995). However, the secondary migration typically occurs over a long geological time 

period and is impossible to be observed directly in situ.  In the field, it is very 

difficult also to locate or identify any active migration pathway even the remaining 

structure left after the migration. Therefore, laboratory experiment gives a unique 

mean of observing real oil and gas migration processes in porous media and studying 

the transport mechanism (Schowalter, 1979; Dembicki and Anderson, 1989; Catalan 

et al., 1992). 

  As commonly expected, hydrocarbon lateral migration actually takes place in 

three-dimensional (3D) within strata, bounded by sealing rocks (Schowalter, 1979; 

England, 1987; Hindle, 1997; Carruthers and Ringrose, 1998). Due to the limitations 

of experimental model building and observation technique capability, it is difficult to 

design a proper 3D model to simulate secondary migration process fully appropriately. 
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Most published experiments dealing with lateral migration were based on 

one-dimensional (1D) or two-dimensional (2D) models (Emmons, 1921; Lenormand, 

1988; Catalan et al., 1992; Wagner et al., 1995, 1997; Thomas and Clouse, 1995; 

Meakin et al., 2000; Tokunaga et al. 2000; Zhang et al., 2003; Hou et al., 2004, 2005; 

Luo et al., 2004), which may not reflect the complexity of hydrocarbon lateral 

migration within the carrier-seal system. Therefore the main objective in this study is 

to carry out a 3D physical experiment using a relative large box model which should 

be closer to realistic than the previous experiments to investigate the characteristics of 

oil migration in the 3D space. 

  There were a few physical experiments of 3D immiscible flow which had been 

done and published by others under very different experimental conditions (system 

size) and with limited observational device capability. Frette et al. (1992) carried out 

an experiment in a glass box to study the migration process of non-wetting phase 

driven by buoyancy. The glass box was filled with cylindrical grains of Röhm 

Plexiglas Formmasse 7N Glasklar [poly(methylmethacrylate)] (PMMA) and saturated 

with dibutyl-phthalate as the non-wetting phase. The model was transparent because 

PMMA and dibutyl-phthalate have the same refraction index allowing the internal 

structure of the migration pathway to be observed directly. Stöhr et al. (2003) used the 

planar laser-induced fluorescence (PLIF) technique to simultaneously visualize the 3D 

pore-scale flow of two immiscible liquid phases in porous media. Although the PLIF 

technique is capable to reconstruct the 3D fluid flow pathway and can observe the 

internal structure and morphology directly by selecting the solid and liquid phases 
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with the same refractive index, there are some strict requirements for the nature of the 

porous medium and the fluid, which were not satisfactorily met by this technique. The 

X-ray absorption technique (Selle et al., 1993) and Ultrasonic technique (Thomas and 

Clouse, 1995) were also tentatively used to observe the migration pathway structure in 

a porous model and to measure oil saturation, but only for the quasi-2D media. Sharma 

et al. (1997) and Hou et al. (2009) used an X-ray CT (Computed Tomography) 

technique to observe fluid flow and measure fluid saturation in the 3D porous medium. 

Although this CT technique has a high resolution, it is unsuitable to be applied for a 

large migration model since the Field Of View (FOV) is limited (Seright et al., 2002; 

Turner et al., 2004). 

  Comparing all the techniques mentioned above, the MRI, which is a nondestructive 

probing technique, has its innate advantages for observing the migration pathway 

geometry (Luo et al., 2004, 2008) and measuring oil saturation within the 3D 

migration path (Miao et al., 2004). It can directly detect fluids and their flow pattern 

through the pores (Koptyug et al., 2002), and is not affected by the shape, 

transparency and the refraction index of the media (Wang et al., 1996). Mandava et al 

had used the MRI to observe two-phase flow and estimate the fluid saturation in 

porous media in 1990. And Wang et al. (1996) had proved that the MRI is a suitable 

method to evaluate the residual oil saturation in cores. Fukushima (1999) introduced 

the MRI to observe fluid velocity field, diffusion processes, and modification of the 

porous medium. Koptyug et al. (2002) applied the MRI to study gas flow and 

diffusion in a glass bead packing model. 
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  In this paper, we focused on the 3D effects of secondary oil migration and studied 

the lateral migration pathway characteristics through the physical experiments by 

designing a large 3D packing porous medium box-shaped model.  Dyed oil was used 

as non-wetting phase to conduct the physical secondary migration experiments with 

the 3D box model. The MRI technique was applied to observe the migration pathway 

morphology and to measure oil saturation within the migration pathways. Some 

insightful outcomes including the lateral migration pathway thickness, which is in 

good agreement with theoretical value, and hydrocarbon migration morphology 

vertically and horizontally were obtained through this experiment measurements 

under the given condition of an impermeable top inclined cap and the limitation of the 

experimental settings. 

The paper is organized as follows. In section 2, we introduce the 3D experimental 

model and the MRI observation method. In section 3, we describe experimental 

results qualitatively and quantitatively. In section 4, we discuss the relation between 

characteristic migration pathway sizes and the Bond number, and the fractal 

characters of the lateral migration pathway at different scales. The last section is 

conclusion. 

2. Physical experiment preparation and observation methods 

2.1. Sample preparation 

A plane-parallel 3D box model of 100×40×14 cm3 has been constructed (Fig. 1). 

The length of 100 cm was selected to ensure that oil can migrate laterally far enough 

without impacted by boundary limit; the horizontal width of 40 cm was based on the 
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inner diameter of the MRI testing chamber which is about 50cm wide; the height of 

14 cm was chosen to make sure that the thickness of the lateral migration pathway is 

not affected by the size of the model and also to keep reasonable weight and size of 

the model as we had to move around the entire model for measurements. The material 

made of the box is one center meter (1 cm) thick plexiglass plate, selected because of 

the requirements of being a non-magnetic material for MRI and possessing a 

sufficient mechanical strength to hold the model. The base inlet plate and four sides of 

the box were stuck together directly with glue while the outlet plate (of dimensions 

40×14×1 cm3) was left re-moveable so that the model can be filled with glass beads 

conveniently. The outlet plate and the sides were connected with nylon bolts and 

sealed with back-shaped rubber gasket under pressure during the experiment. The 

tubes for fluid flow were installed respectively in the inlet and outlet plates. The glass 

plate was used to avoid the oil migration pathway to be affected by a different 

wettability of the boundary compared to the porous medium (Thomas and Clouse, 

1995). 

Glass beads with the diameter of 0.4 – 0.6 mm were used in the experiment as 

porous medium. To make sure that they were water-wet, all glass beads used were 

carefully washed with acid and alkaline solutions and then heated to a temperature of 

500℃ for at least 30 minutes (Luo et al.,2004). 

When filling the box with the glass beads, the 3D box model was first positioned 

vertically and filled with water. The outlet plate was removed and a special sieve was 

fastened on the top of the model. And then the mixture of glass beads and water was 
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poured into the sieve and the glass beads deposited uniformly and continuously so that 

the porous medium was as homogeneous as possible. At the same time, the sides of 

the model were knocked with a rubber hammer around the model in a continuous and 

uniform way in order to make sure that the glass beads were closely packed. After 

filling the glass beads, the back-shaped rubber gasket and the outlet plate were placed 

onto the top of the model and bolted to seal the model carefully. 

The permeability of the medium is 36.82 μm 2 and the radii of pores are in the range 

of 0.185 to 0.225 mm, as measured by Hou et al. (2004). Once the model was entirely 

saturated with water (of density ρ=1000 kg/m3), it was then placed obliquely with a 

horizontal angle (α) of 36° during the experiment (see Fig. 1). Dyed kerosene oil with  

a density ( ρ) of 778 kg/m3 was injected into the model through the base inlet tube at 

the bottom by a micro pump at a constant rate of 0.1 ml/min. Given this open design 

system, a normal pore pressure is expected within the box, and the excess water 

consequently was driven out of the box through the outlet tube. The interfacial tension 

between the oil and water was measured to be γ=0.0289 N/m. Since oil was dyed in 

red, the movement of oil could be traced visually as well in the vicinity of the box 

limits. 

2.2. The MRI methods of observation 

The Wandong medical 1.5T superconducting MRI system was utilized to observe 

the migration process in the experiment. The presence of 1H in both oil and water 

induces MRI signals while scanning through the migration pathway. Due to the 

molecular structural difference between water and oil, the relaxation rates of 1H  in 
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oil and water are different and, in fact, the relaxation rate of 1H associated to water 

molecules is quicker than that in oil. That is when water-soluble Mn2+ is added into 

water, the relaxation rate of 1H in water molecules fastens but the relaxation rate of 1H 

in oil remains unchanged (Chang et al., 1993; Wang et al., 1996). Therefore the Mn2+ 

(0.7g/L) solution could be added to water to distinguish the oil MRI signal from that 

of water. It was confirmed that the adding Mn2+ into water did not change the 

interfacial tension between water and oil. 

Since the box model occupies a significant portion in the MRI testing chamber, the 

scanning parameter options were set as follows: the largest available magnetic coil 

and a FOV of 384×384 mm2, corresponding to a slice resolution of 1.5 mm. These 

scanning conditions imposed by the size of the model have impact on the resolution of 

the scanner because the image quality and the SNR (signal to noise ratio) decrease 

with the increase of both the coil size and the FOV (Mei et al., 2008). Therefore, an 

image noise reduction process (or a filter) is required to re-process the scanned images. 

After analyzing the signal distribution of the migration pathway, a “noise reduction 

filter” based on adjacent pixels was adopted as described here. First, the noise 

threshold Th was set as the maximum value of signal in the clear-of-oil areas near the 

migration pathway, and then a threshold concerning the 8 neighboring pixels in 2D 

space was applied with ensuring of oil present. This threshold nk was set to 3. If the 

pixel gray value of images was smaller than Th the pixel was considered as a noise 

point and its gray value was set to 0, In addition, the number n of the adjacent pixels 

whose gray value was larger than Th was counted. If n was larger than nk, the pixel 
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was considered as a point covered by oil and its gray value was confirmed, otherwise 

it was considered as a noise point and its gray value was also set to 0. Figure 2 shows 

the results of the migration pathway image before and after this noise reduction 

procedure. It demonstrated that the noise was filtered out almost completely from the 

background image while the characteristics of dominant migration pathway are 

preserved. 

Another processing step needed is to eliminate the different image results because 

of the scans taken at different times. A linear transformation was applied to normalize 

all slice signals before reconstructing the 3D migration pathway. 

Also, in order to measure and calibrate oil saturation value within the migration 

pathway from the MRI images, a small glass tube filled with 100% oil was placed 

along with the model and scanned too at the same time when scanning the migration 

path, and used it for the oil saturation calibration.  

In a preliminary experiment, the longitudinal relaxation time (T1) and the 

transverse relaxation time (T2) of an oil-saturated glass bead packing similar to the 

model, were measured , using the inversion recovery method and echo spin method 

respectively (Tyryshkin, 2003). T1 was found to be 1011 ms, and T2 to be 810 ms. 

The Fast Spin Echo-Proton Density Weight Image (FSE-PDWI) sequence was 

selected here in this work to scan the migration pathway. According to the measured 

relaxation times from above, echo time (TE) and repetition time (TR) were set 

respectively to 108 ms and 9000 ms. Accordingly, conditions for the spin density 

image, e.g. — 1TR T  and 2TE T (Xiao et al., 1995), — were satisfied. The 
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acquisition time of for each slice is proportional to TR and it was about 13.73 second 

in our experiment.  

Under these given conditions, the MRI signal varies linearly as a function of the 

volumetric oil concentration. The oil saturation within the migration pathway can thus 

be quantitatively estimated from magnetic resonance images (Miao et al., 2004). The 

gray level of the image is just proportional to the proton density (in oil) and oil 

saturation in the migration pathway can be calculated as (Chen et al., 1992; Luo et al., 

2004) below: 

  100%s y B                           （1） 

where s is the oil saturation; y is the gray level of the migration pathway; B is the gray 

level of the calibration; and φ is the porosity of the model, which is about 0.36,  

calculated by measuring the total volume and the water volume filling the pore space 

in the glass tube. 

During the scanning process, the thickness of the slice and the interval between the 

slices were respectively set to be 3.0 mm and 0.3 mm. The resolution along the slice 

was 1.5mm×1.5mm (size of a pixel). 

This 3D physical experiment lasted about six days (150 hours) and the Table 1 

gives the progressive steps of the experiment. While the model was placed obliquely 

at 36°during oil migration, it was set horizontally when the migration pathway was 

being scanned by MRI , a constraint due to scanning device. 

3. Experimental results 

  The experiment on secondary migration in our 3D physical model was carried out 
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successfully. The migration process and pathway morphology were observed visually 

and recorded through MRI images and oil saturation within the migration path was 

computed based on the magnetic resonance images. 

3.1. Qualitative observation by visual inspection and by MRI 

3.1.1. Results observed visually 

Since injected oil was dyed, the process of oil migration and the morphology of the 

oil pathway were initially observed by visual inspection. Because the model is not 

completely transparent through the glass bead column, the migration pathway along 

the vertical path could not be detected optically before the oil front had reached the 

impermeable top inclined cap. As soon as the oil front had reached the top inclined 

cap, oil started to move laterally under the top inclined glass plate. It was noted that 

the development of the migration pathway is not a continuous process but often 

occurs through suddenly jumps which are similar to the so-called Haines jumps 

(Morrow, 1970). The migration feature of such jumps was due to the motion of the oil 

migration front paused from time to time although the oil was continuously injected. 

While the front was stagnant, the pathway became thicker and therefore tended to 

develop transversely, and consequently new fingers emerged from this enlarged head. 

There were usually several fingers in the front of the lateral migration path and these 

fingers could merge or split from time to time. In some occasions, water was trapped 

in the migration pathway when two fingers, especially two non-adjacent fingers, 

coalesced. Figure 3 is a picture of the migration pathway taken by a digital camera. It 

shows that the migration pathway was meandering and very irregular in shape. The 
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horizontal width of the migration cluster fluctuated drastically along the main 

direction of the lateral migration. The front of the fingers did not touch the edges on 

sides of the model horizontally which proved that oil could migrate transversely freely 

without any constraints because of the boundaries of the box model. 

3.1.2. Results observed by MRI 

The whole migration pathway 

The entire 3D migration pathway was reconstructed using the MRI slices (Figure 4). 

Figure 4A presents the top view image to show the entire migration pathway 

morphology along the direction parallels to the top glass cap, showing that many 

small fingers developed along the main pathway and some water-saturated areas (e.g. 

migration shadows) were formed. Generally, the width of horizontal migration path 

decreased along the direction of lateral migration, and its mean value (ξ) was 

measured to be about 8.36 cm. Figure 4B is the lateral view image (vertical cross 

section of the model) to illustrate the change of thickness of the migration pathway 

along the lateral migration direction. It shows that the oil had migrated upwards first 

from the point of where injected into the model, and then changed its direction once 

the oil front reached the impermeable top inclined cap. The lateral migration pathway 

is a thin layer-shaped zone, paralleling to the top inclined cap with a generally stable 

vertical thickness (H) of 2 to 4 cm in the lateral migration direction, under the given 

conditions of the 3D box geometry and experiment settings. A closer examination of 

the inside texture of the lateral migration path with nearly constant thickness, it was 

consisted by many small clusters of complex morphology embedded within the 
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bounding volume paralleled to the top inclined impermeable cap, as could be 

observed when rotating the 3D image. 

Vertical migration pathway and snap-off 

The first movement of oil after injection in the model was upward driven by 

buoyancy. The vertical pathway was scanned several times using MRI after the front 

had reached the top cap. The shape of the vertical migration path was roughly 

cylindrical and there were many little fingers around the main pathway (Figure 5A). 

The vertical migration pathway shrank and snapped off obviously when the oil front 

had reached the location 53cm away from the inlet plate and most of the pathway split 

into oil drops or small oil bands (Figure 5B). With continuing injection, it then was 

refilled and at the meanwhile the migration front moved further forwards (Figure 5C). 

Compared with Figure 5B, the size of the vertical pathway in Figure 5C was increased, 

but it was still smaller than the size of the vertical pathway when the oil front had 

initially reached (Figure 5A). The initial lateral pathway shrank and snapped off at the 

beginning point of the lateral migration pathway (or the end of vertical migration) 

while the vertical pathway was refilled (see Figure 5C). 

Lateral migration front 

During the time period of oil migrating laterally, the migration pathway was 

scanned at the different locations along the lateral migration direction so that the 3D 

migration pathway could be reconstructed according to these scanned 2D slices 

(Figure 6), and oil migrating phenomena and behavior could be recorded clearly 

during the migration process. Figure 6A and 6B show respectively the 3D migration 
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front when it was at the locations of 41 cm and 70 cm away laterally from the inlet 

plate. As shown in Figure 6A, new fingers were formed “suddenly” along the oil front 

once the migration front became thicker and started to move transversely. Figure 6B 

shows the coalescence of oil fingers and its consequent effect of the “trapped-area” 

where no oil had migrated into and left behind the migration front, as well as the 

splitting of fingers after coalescence. 

The lateral migration path evolution with time 

  The migration pathway was also scanned repeatedly at the same location in order to 

observe the migration path development with time. Figure 7 shows the slices taken at 

the location of 30 cm away from the inlet plate at the moments when the lateral oil 

front arrived at the locations of 53 cm (Fig-7A), 70 cm (Fig-7B), 84 cm (Fig-7C) and 

the outlet point (Fig-7D). These slices shows that the overall morphology of the 

pathway remained almost the same during the lateral migration but the coalescences 

(Figure 7B and C) and snap-offs occurred locally (Figure 7A and D) within the 3D 

migration pathway.  

3.2. Quantitative observation by MRI 

3.2.1 Size of the lateral migration pathway and oil saturation within pathway 

After the migration front had reached the top end of the model in the experiment, 

the entire migration pathway was scanned and oil saturation within the migration path 

was calculated according to the 2D MRI slices. In order to observe the 3D path 

size/shape and oil saturation distribution, a 2D slice was taken for every 10cm along 

the lateral migration direction, starting from the location of 25 cm (167 pixels) away 
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from the inlet plate of the model (Figure 8). It can be seen from Figure 8 that the 

thickness of the lateral migration pathway was stable about a constant value of 2-4 cm 

vertically in the Y direction. On contrary, the horizontal width (in the X direction) of 

the lateral migration pathway fluctuated dramatically along the lateral migration 

direction Z. The entire lateral migration pathway was not consisted of a single 

connected pore layer beneath the top inclined glass cap, but instead had many small 

fingers developed surrounding the main survived path and the ends of the upward 

fingers reached the glass cap. Figure 8 also shows that the oil saturation distribution 

was heterogeneous in the lateral migration pathway. The oil saturation within most 

area was between 40% and 60%, and it could reach 80% only at a few points. 

Comparing the oil saturation within this 3D lateral migration path to the vertical 

migration pathways (Luo et al., 2004, 2008), the oil saturation distribution was not 

artificially affected by the glass cap in the lateral migration pathway. Figure 9 and 10 

are plots of the sectional area of the lateral migration path and average oil saturation 

within the pathway, respectively, with the distance along the lateral migration (in Z 

direction). It can be seen that the sectional area of the lateral migration pathway 

fluctuated drastically with its maximum value of 14 cm2 and minimum of only 1 cm2 

but the average oil saturation remains relative stable about 47%. 

3.2.2 Size of the migration pathway and oil saturation at different stages 

The previous research (Zhang et al., 2003; Luo et al., 2004) has noticed in their 

experiments that the oil saturation within pathway varies according to various 

migration stages, e.g. from 70-80% during the growing stage to 25-35% during the 
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shrinking. Therefore both the migration pathway morphology and oil saturation within 

the pathway at the different stages were considered during this 3D physical 

experiment. 

We had scanned the migration pathway  at the location of 45 cm away from the 

inlet plate of the model at the various stages of oil injection – e.g. (1) during initial 

injection when first pathway formed , (2) during the residual oil stage after injection 

stopped, and (3) during re-injecting stage after the pause of injection. Figure 11 shows 

the results of the sectional area of the pathways and the average oil saturation in the 

pathways. The sectional area of residual pathway was significantly smaller than it 

when migration pathway initially formed. The sectional area was increased again 

when the oil re-injected, but it was still smaller than the initial stage.Although oil 

saturation with initial injection is the largest and the re-injecting stage is still larger 

than it in the residual stage, the differences of oil saturation among different stages are 

not large. 

4. Discussion 

Aforementioned MRI images show that the lateral migration pathways beneath an 

impermeable top cap appear as a sheet like shape with a certain thickness. That seems 

like those formed in 2D Hele-Shaw equipment (Hou et al., 2005; Yan et al., 2011) and 

different from those expected in 3D space (Thomas and Clouse, 1995). Thesefore, it is 

necessary to discuss the agreement between theory and measurements for the 

morphology of the migration pathways.  

Previous studies (Tukugaga et al., 2000; Luo et al., 2004; Luo, 2011) indicate that 
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the dimensionless Bond number (Bo) (Wilkinson, 1984, 1986), describing the 

relationship between buoyancy and interfacial forces at the scale of pore, provides a 

suitable characterization of the migration pathway. In our experiment, Bo can be 

estimated as: 

2
grav

int

sinp ga
Bo
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                      (2) 

Where ∆pgrav and ∆pint are hydrostatic pressure difference and interfacial pressure 

difference respectively,  ρ=222 kg/m3 is the density difference of the oil and water, g 

=9.8 2/m s  is the gravity acceleration, a=4.1×10-4 m is the mean pore diameter, 

 =0.0289 N/m is the interface tension between oil and water. So Bo=7.44×10-3. In 

contrast with the vertical migration pathway, the lateral migration pathway can be 

assimilated to a 2D one because the thickness of the lateral migration pathway 

remained stable to 2-4 cm. The vertical extent (V) of the lateral migration pathway can 

be scaled as: 

  BoaV /                              (3) 

due to the balance between the buoyancy force and capillary force. The thickness 

perpendicular to the inclined cap is thus: 

      BoaVH /coscos                         (4)               

So H is expected to be around 5cm. The measured lateral migration pathway thickness, 

between 2 and 4 cm is in rough agreement with the theoretical value. These results 

suggest that the 3D experimental lateral migration study can be divided into two 

subsets of 2D experiments. One is to study the thickness of the migration pathway 

when the 2D model is placed obliquely and vertically, as used in Thomas and Clouse’s 
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experiment (1995); the other is to study the morphology of the migration pathway 

under the impermeable cap when the 2D model is placed obliquely and horizontally, 

as used in Birovljev et al’s study (1991). 

The snap-off effect was found both in the vertical migration pathway and in the 

lateral one. The refilling of the vertical migration pathway after the snap-off and the 

alternating of coalescence and splitting meant there may be cyclical changes in the 

migration pathway. However this phenomenon appeared to occur more frequently in 

the vertical migration pathway than in the lateral one. This may be due to the interplay 

between local pinning forces and buoyancy leading to the snap-off of the migration 

pathway (Wagner and Birovljev et al., 1995, 1997) and the effect of the buoyancy in 

the vertical migration pathway was stronger than in the lateral migration pathway.  

The fractal dimension was measured using box counting method. Before fractal 

dimension computation, the slices were filtered using the method mentioned in 

section 2 and transformed into binary images. The lateral migration pathway is 

covered with boxes with side containing K pixels. The box is empty if it covers none 

of the migration pathway. The number N of non-empty boxes is counted. A series of N 

is obtained as function of gradually changing choices of K and points (Ki, Ni) are 

drawn in double logarithm coordinate system (Figure 12). The fractal dimension is 

equal to the minus slope of the linear section of the fitting line between the box size 

and the box number. As shown in Figure 12, the fitting line can be divided into three 

sections. At small scale (section 1, from 1 pixel to 11 pixels), the migration pathway 

was dominated only by the porous disorder, and the fractal dimension is 2.2±0.3, 
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which is in rough agreement with the value 2.50 expected for capillary fingering, 

consistent with three dimensional invasion percolation models (Wilkinson, 1986). At 

medium scale (section 2 on Figure 12), at scales between H and ξ, the migration 

pathway is essentially a thick plate parallel to the cap, i.e. it is dominated by the 

porous disorder and the buoyancy at the same time, and the fractal dimension is 

around 1.9. Up to the large error bar inherent to the narrow scale range in this analysis, 

this is both compatible with a large scale (larger than H, section 3 on Figure 12), the 

migration pathway was dominated only by the buoyancy, looks like an upwards linear 

structure, which is reflected by its fractal dimension which is almost 1. The separation 

scale W1=2.25 cm between sections 1 and 2 (left dash-dotted line on Figure 12) is 

close to the vertical thickness of the lateral migration pathway H~2-4 cm. The second 

separation scale W2 between sections 2 and 3 is 9.9 cm (right dash-dotted line on 

Figure 12), which is close to the mean width ξ of the lateral migration pathway. 

The relationship between injected and MRI measured oil volume is now discussed. 

With the average oil saturation in migration pathway of each slice and the sectional 

area of migration pathway, the oil volume within such slice can be calculated as: 

     * * *s s sv S A T 


                   (5) 

in which, sS


 is the average oil saturation of such splice in migration pathway, As is 

the sectional area of migration pathway, T the splice thickness of the slice. Though the 

part between two splices can not be MRI scanned, since the interval between splices is 

much smaller than the splice thickness, the oil volume in the gaps between splices can 

be interpolated from the two neighboring slices: 
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where n is the total number of total splices and G is the gap between the two neighboring 

slices. So the oil volume in the whole model is obtained as: 
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                               (7) 

The oil volume computed according to slice oil saturation and area is 82.17ml. On the 

other hand, the actually injected oil volume is computed by multiplying the injection 

rate by the injection time, which is 96.4ml. The computed oil volume is slightly less 

than the actually injected oil volume. It can be explained by two reasons. One is the 

pure oil is used as the calibration, which magnetic resonance signal relax slower than 

the oil in the pores, that induces the calculated saturation is less than the actual one. 

The other is the smallest connected features of the migration pathway may be 

suppressed during slice filtering. 

Accurate estimates of the losses occurring during secondary oil migration are a 

vital part of valid exploration assessments (Sylta, 1993; Lewen et al., 2004; Luo et al.., 

2004, 2007, 2008). Secondary oil migration is a very complex process (McNeal, 1961; 

Harms, 1966; Berg, 1975; Schowalter, 1979). The ratio between migration pathway 

and the carrier is small, but it can change from 1% and 10% (Schowalter, 1979; 

England et al., 1987; Dembicki and Anderson, 1989; Catalan et al., 1992), which 

makes the estimates of residual oil saturation from different researchers are not 

consistent (Schowalter, 1979; England et al., 1987; Dembicki and Anderson, 1989; 

Hirsch and Thompson, 1995) and makes the accurate estimates of the losses occurring 
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during secondary migration difficult. So Carruthers and Ringrose(1998) pointed out 

that determining the oil-rock contact volumes is the basic work for accurate estimates 

of the losses occurring during secondary oil migration. Combined with our study, 

oil-rock contact volumes can be evaluated based on the thickness and the width of 

pathway during the lateral migration process. Knowing the oil saturation distribution, 

the oil losses can be estimated easily. While oil saturation in the residual pathway was 

slightly lower than that obtained when the pathway was forming, the residual 

migration pathway size shrinks dramatically and the section area of the residual 

migration pathway is about 30% of the initial pathway. So shrinking of the pathway 

after stopping injection appears as the main reason for the occurrence of small losses 

during the secondary oil migration. 

5. Conclusions  

Compared to the cylindrical shape of the vertical migration pathway, the lateral 

migration pathway was a layer-shaped zone under and parallel to the impermeable 

inclined cap. Under the given experimental conditions, the thickness of the lateral 

migration pathway, perpendicularly to the impermeable cap, was around a constant 

value between 2 and 4 cm while its horizontal width measured perpendicular to the 

slope of the cap fluctuated drastically.  

MRI was successfully used to observe the morphology of the secondary migration 

pathway in this 3D experiment, to measure the size of the pathway and the oil 

saturation within the path. Oil saturation was heterogeneous in the lateral migration 

pathway but was almost not affected by the cap; oil saturation of most regions was 
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between 40% and 60%, and only at a small amount of points it could reach 80%; the 

average oil saturation was stable at 47% following the lateral migration direction. 

Dominated by porous disorder, buoyancy, or the interplay between them, the mass 

fractal dimension of the lateral migration pathway was measured to be between 2 and 

2.5 at scales smaller than the thickness H, consistently with 3D capillary fingering, 

around 1.9 at scales between the pathway thickness H, consistently with 2D capillary 

fingering or fully two dimensional structures and its width  , consistently with the 2D 

capillary fingering or fully two dimensional structures, and around 1 above , 

corresponding to a linear uprising geometry of the pathway. 
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Figure 1. The sketch of the box model 

Figure 2. The contrast of image before and after noise reduction 

Figure 3. Picture of the lateral migration pathway 

Figure 4. The whole 3D migration pathway 

(A is the top view image to show the entire lateral migration pathway morphology, B presents 

lateral view image to show the change of the thickness of the lateral migration pathway.) 

Figure 5. The 3D vertical migration pathways at different time 

(The dot line indicates the location of the impermeable cap and the arrow indicates the lateral 

migration direction. A. when the front just reached the cap, the vertical migration pathway was 

roughly cylindrical; B. when the front migrated laterally, the vertical migration pathway 

snapped off obviously; C. the migration pathway was refilled.) 

Figure 6. The 3D migration front of lateral pathway at different locations 

（Oil migrated along the Z axis direction. A shows that new fingers formed suddenly along the 

front; B emphasizes the splitting of fingers after coalescence.） 

Figure 7. The evolution of the lateral migration pathway along a slice 30cm away from the 

inlet 

Figure 8. Oil saturation distribution in the lateral migration pathway 

Figure 9. Section area curve along the lateral Z migration direction 

Figure 10. The average oil saturation within the migration pathway varies in the lateral Z 

migration direction 

Figure 11. Characters of the migration pathways at different stages 

Figure 12. The box number as a function of the box size 
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(The fitting line can be divided into three linear sections corresponding to small, middle, and large 

scale respectively. W1=2.25cm, is the separator between section 1 and section 2; W2=9.9cm，is 

the separator between section 2 and section 3.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 the process of the experiment 
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Table 1 

Time(hour) Description 

0-3 
Oil migrated vertically and reached the glass cap; the vertical migration 
pathway was scanned. 

4-37 
Oil migrated laterally and breakthrough at the outlet plate; the lateral 
migration pathway (trapped under the top cover) was scanned. 

38-44 
Migration pathway evolved while oil was being injected and the 
migration pathway was scanned. 

45-121 
Oil migrated driven by buoyancy without oil being injected and the 
residual migration pathway formed. 

121-123 Residual migration pathway was scanned. 

124-150 
Oil was injected into the model again and the migration pathway was 
scanned. 
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