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Abstract. The coupled mechanics of fluid-filled granular media controls the physics of

many Earth systems such as saturated soils, fault gouge, and landslide shear zones. It is well

established that when the pore fluid pressure rises, the shear resistance of fluid-filled granular

systems decreases, and as a result catastrophic events such as soil liquefaction, earthquakes,

and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the

shear resistance of these geosystems increases. Despite the great importance of the coupled

mechanics of grains-fluid systems, the basic physics that controls this coupling is far from

understood. Fundamental questions that need to be addressed are what are the processes

that control pore fluid pressurization and depressurization in response to deformation of the

granular skeleton? and how do variations of pore pressure affect the mechanical strength of

the grains skeleton? To answer these questions, a formulation for the pore fluid pressure and

flow is developed from mass and momentum conservation, and is coupled with a granular

dynamics algorithm that solves the grain dynamics, to form a fully coupled model. The pore

fluid formulation reveals that the evolution of pore pressure obeys a viscoelastic rheology in

response to pore space variations. Elastic-like behavior dominates with undrained conditions

and leads to a linear relation between pore pressure and overall volumetric strain. Viscous-like

behavior dominates under well drained conditions and leads to a linear relation between pore

pressure and volumetric strain rate. Numerical simulations reveal the possibility of liquefac-

tion under drained and initially over-compacted conditions, which were often believed to be

resistant to liquefaction. Under such conditions liquefaction occurs during short compactive
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phases that punctuate the overall dilative trend. In addition, the more established generation

of elevated pore pressure under undrained compactive conditions is observed. Simulations also

show that during liquefaction events stress chains are detached, the external load becomes

completely supported by the pressurized pore fluid, and shear resistance vanishes.

1 Introduction

Fluid-filled granular media are ubiquitous in the Earth, mostly in the upper crust. Soils, fault

gouge and landslide shear zones located below the water table are geosystems that are best

described as fluid-filled granular media. Geometrically, such materials are composed of a 3D

skeleton built out of contacting grains, whose exact configuration defines the pore space where

fluid may reside. The mechanical strength of such systems is a function of both phases: the

pore fluid and the grains. Already at the beginning of the 20th century [e.g. Terzaghi, 1943],

Terzaghi understood that it is not the stress which controls the solid-fluid system strength,

but instead a quantity termed the ’effective stress’:

σ′
ij = σij − δijP, (1)

where σij is the applied stress tensor, P is the pressure experienced by the fluid within the

pores of a granular or porous material, δij is Kronecker’s delta, and σ′
ij is the effective stress

tensor. Later on, the effective stress was found to depend also on the properties of the bulk

material composing the grains, the properties of the granular skeleton, and the properties

of the pore fluid. These dependencies were formulated using an effective stress coefficient,

0 < α ≤ 1, that multiplies P , where α was found to be different for different physical

quantities [Wang, 2000, Pride, 2005]. Still, it was shown that generally α is very close to one

and when the material composing the solid matrix is incompressible relative to the pore fluid,

α = 1, and Terzaghi’s formulation is valid [Nur and Byerlee, 1971, Robin, 1973, Wang, 2000,

Pride, 2005].

The most important consequence of the law of effective stress, equation (1), is that the

shear stress, τ , required to shear the system is not a function of the normal stress as in

Coulomb’s law, but a function of the effective stress instead:

τ = µ(σn − P ), (2)

where σn is the total applied stress normal to a shear surface, µ is the surface friction coeffi-

cient, and the cohesion is neglected. It is immediately observed that if P increases to be equal

to σn then the system completely loses its shear strength, while if P decreases the system
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has higher resistance to shear. Therefore, the pore fluid pressure is of critical importance

in the mechanics of fluid-filled granular (and porous) systems undergoing shear. What is

less clear is (1) what is the physics behind the pore pressure control over the shear strength

(equation (1) and (2))?, and (2) what are the mechanical processes that control the evolution

of pore pressure? These two questions are at the heart of this work, and their answer lays

the foundations for predicting the coupled mechanics of grains and pore fluid.

Characterization and understanding of shear deformation is of particular importance in

geosystems: Any differential forcing or gradients in material properties may lead to shear

deformation. For example: the passage of seismic shear waves through a soil column induces

shear deformation of the soil; tectonic loading accumulated in a fault zone will eventually lead

to shear sliding of the fault; and gravitational forces may lead to landslides that shear along

a confined zone at their base. In these examples, the presence of pore fluid changes the onset

and dynamics of shear deformation in response to forcing, because the fluid pressure affects

the resistance to shear, in accordance with equation (2). Next, we review in details the role

of pore pressure in soil liquefaction and in motion along fault zones and landslide shear zones.

Soil liquefaction. In the process of earthquake induced soil liquefaction, the passage of

seismic waves deforms the granular matrix and the fluid in such a way as to lead to pore

pressure rise [Das, 1993, Kramer, 1996]. The consequent reduction of shear resistance causes

the granular system, which under normal conditions behaves like a solid that resists shear, to

flow as a fluid. Once liquefied, soils can no longer support the infrastructure and a catastrophic

collapse of buildings, roads, bridges and other structures may take place (e.g., damage during

earthquakes at Niigata, 1964, [Kawakami and Asada, 1966], or Izmit, 1999, [Cetin et al.,

2004]).

The coupled physics controlling soil liquefaction is not completely understood. The clas-

sical approach suggests that cyclic loading (such as the passage of shear waves during an

earthquake) leads to irreversible collapse of initially under-consolidated pore volume. When

drainage is poor, ’the tendency for volume reduction’ of the loose granular skeleton may lead

to pore fluid pressurization and to liquefaction [Sawicki and Mierczynski, 2006]. This basic

understanding guides most engineering practices, yet the classical approach still leaves open

questions: What is the role of fluid compressibility in the pressurization process [Garga and

Zhang, 1997]?, What are the relevant drainage conditions — can liquefaction occur also when

fluid inflow and outflow to and from the system are allowed [Seed et al., 1976, El Shamy and

Zeghal, 2007]? And what is the role of the initial packing — can densely packed layers still

liquefy [Soga, 1998, Gabet and Mudd, 2006]?

The importance of these questions is demonstrated when comparing two numerical mod-

els of grain-fluid systems that study soil liquefaction. Okada and Ochiai [2007] model an

3



undrained system (with impermeable boundaries) with a highly compressible pore fluid, forced

by a compressive constant strain rate. The results of Okada and Ochiai [2007] may be in-

terpreted as an example of the classical mechanism of soil liquefaction, as they observe pore

fluid pressurization when compacting an initially loosely packed layer subjected to undrained

conditions, a situation that was observed also experimentally to lead to pore pressure rise

and liquefaction [e.g. Seed and Lee, 1966, Peacock and Seed, 1968, Seed, 1979]. Unlike this

classical approach, El Shamy and Zeghal [2007] model a drained system (where the fluid is

allowed to flow freely across the top boundary), with completely incompressible pore fluid,

an assumption that follows many engineering interpretations of experiments [e.g. Garga and

Zhang, 1997, Kozlov et al., 1998]. El Shamy and Zeghal [2007] report on significant pore fluid

pressurization and liquefaction when forcing their system with periodic shear acceleration at

its base. These results are somewhat unexpected because the drained boundary conditions

contradict the classical view of liquefaction, which requires poor drainage.

Fault zones and landslides. In fault zones, deformation often localizes along a fault

plane filled with fault-gouge. Fault-gouge is a granular layer formed from fragments that are

the product of wear during shear between the fault-walls. In gouge layers and in similarly-

formed landslide’s shear zones, pressurization and depressurization may occur as a result

of irreversible rearrangement of the granular skeleton during continuous shearing. In these

cases, drainage conditions and porosity evolution were shown to affect the evolution of pore

pressure and the strength of the shear zone. Porosity within gouge and shear zones is a

function of shearing velocity [Marone et al., 1990] and stress conditions [Aharonov and Sparks,

1999, Iverson et al., 2000]. When the fault is sealed, porosity increase (i.e. dilation) during

shear is often suggested to prohibit unstable sliding via pore pressure reduction leading to

strain hardening following equation (2) [Scholz et al., 1973, Scholz, 1978, Rudnicki and Chen,

1988, Segall and Rice, 1995, Moore and Iverson, 2002, Scholz, 2002, Samuelson et al., 2009],

while compaction of under-compacted gouge was shown experimentally to lead to extreme

weakening and unstable sliding [Blanpied et al., 1992].

However, similarly to soil liquefaction, the mechanisms that are responsible for pore pres-

sure evolution in shear zones and the effect of pore pressure variation on the mechanics of

grains-fluid shear zones are not completely clear. A basic question that is still debated is

the possibility of significant pressurization, and as a consequence reduction of shear strength,

in an initially densely packed shear zones. This is an important question since despite our

knowledge that natural shear zones are in most cases initially over-consolidated and thus,

according to conventional thought, resistant to liquefaction [e.g. Iverson et al., 2000], ample

observations point to significant pore fluid pressurization during earthquake and landslides:

hydrofractures and liquefied injection are reported in sesmically active fault zones [Boullier
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et al., 2009, Sagy and Brodsky, 2009] and along landslide shear zones [Anders et al., 2000],

and transient liquefaction was observed in experimental landslides that were constructed with

an initially densely packed grain and rod layers [Iverson and LaHusen, 1989].

1.1 Overview of existing research approaches

To study the mechanics of pore pressure evolution in deforming granular skeleton, and its

implications to shear strength, there is a need for a fully coupled theory for the mechanics

of fluid-filled granular systems. Such full coupling should include two-directional mechanics:

(1) the effect of granular matrix deformation on the pore fluid pressure and flow, and (2)

the effect of fluid flow and pressure gradients on the deformation of the granular matrix.

A continuum theory for the first direction (the solid effect on the pore fluid) is available

and reviewed below. However, the second direction requires a continuum description for the

general dynamics of a collection of grains. Despite a recent advance in this field in the form of

constitutive relations for the flow of dry granular material [Pouliquen et al., 2006, Jop et al.,

2006], it is not clear if these relations may apply also to the case of frictional dominated dense

suspension of grains immersed in fluid [Rondon et al.], which is the system that we study

here. Therefore a well-founded continuum theory for the second direction of our system (the

fluid effect on the grains and the resultant grain dynamics) is probably still missing. In the

absence of such a theory, alternative approaches are used. One approach that is adopted

in many engineering applications for the study of the coupled mechanics of grains and pore

fluid is the use of phenomenological models that are based on continuum mixture theory

formulations [Zienkiewicz et al., 1999], and include many parameters that require calibration.

A second approach combines the continuum theory for the fluid with a discrete elements

numerical method for the solid grains dynamics. Indeed, a common physical method, devel-

oped over the last 30 years for dry granular systems, is to use simple interaction laws between

individual grains, with few parameters to characterize their interactions [Cundall and Strack,

1979]. The granular rheology then arises from their collective behavior. The combination of

the continuum and discrete constitutes allows solving the first direction of the solid effects on

the fluid with the continuum component, and the second direction of the fluid effect on the

grain dynamics with the discrete component. Such an approach was used in the modeling of

instabilities in the flow of granular media and gas fluids [McNamara et al., 2000, Vinningland

et al., 2007a,b, Johnsen et al., 2006, 2007, 2008, Vinningland et al., 2010] and liquids of various

compressibilities and viscosities [Niebling et al., 2010], for modeling hydrofractures [Flekkøy

et al., 2002], and for the study of soil liquefaction [El Shamy and Zeghal, 2007, Okada and

Ochiai, 2007]. Such an approach is adopted in the current work.

The continuum component is developed in Goren et al. [2010] for compressible pore fluid
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pressurization and flow in response to general (reversible and irreversible) granular matrix

deformation (the first direction of the full coupling). This paper couples this continuum

component for the fluid with a discrete element granular dynamics algorithm following the

scheme presented in McNamara et al. [2000], to form a fully coupled model that may be used

in the study of any general granular matrix deformation, and any form of drainage boundary

conditions.

The analysis of the continuum component by itself already supplies interesting results. The

equation describing the evolution of pore pressure in response to grain matrix deformation is

shown here to lead to a viscoelastic type of behavior, where the pore pressure (stress) depends

on both the pore volume change (overall volumetric strain) and the rate of porosity change

(volumetric strain rate). Two end-member behaviors for the evolution of pore pressure emerge

from the pore pressure equation: Viscous-like response, in which the pore pressure is linearly

dependent on the volumetric strain rate, dominates when the shear zone is well drained.

Elastic-like response, in which the change of pore pressure is proportional to the volumetric

strain and is inversely proportional to the fluid compressibility, dominates when the shear zone

is effectively undrained. This basic recognition of viscoelastic behavior of the pore pressure was

predicted in Goren et al. [2010] assuming the pore fluid responds to grain rearrangement, but

grains deformation is not affected by the fluid (infinitely stiff approximation). An important

goal of this current work is to check whether the two end-member behaviors also characterize

the fully coupled two-way model.

1.2 Overview of current research

The first goal of the current paper is to develop the full coupling between the pore pressure

model of Goren et al. [2010] and a granular dynamics model, and to validate it. Such a

coupled model is presented in section 2, and its validation is presented in section 3. Since

the pore pressure evolution and its two end-member behaviors were predicted to control the

coupled grain-fluid response, section 4 is dedicated to reviewing in detail the pore pressure

evolution that emerges from the formulation of the pore fluid, and the conditions that control

the pore pressure response to granular deformation.

The rest of the paper is dedicated to simulations with the fully coupled model, their

analysis, and comparison with theoretical prediction: The simulations (presented in section 5)

investigate shear of a closely-packed fluid-filled granular layers, under constant shear velocity

and normal stress. During the simulations we monitor the evolution of pore pressure, porosity,

and apparent friction, µa, which is the friction the layer appears to have (the shear stress that

is required for shearing the layer at a constant velocity divided by the applied normal stress).

The importance of the apparent friction is a result of our inability to define a single value of
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pore pressure that may be assigned in equation (2). Thus, equation (2) is often substituted

by

τ = µaσn. (3)

We have performed two types of simulations using the fully coupled grains and pore fluid

model that differ in their boundary conditions: undrained and drained. Simulation results

indeed agree with the two end-member behaviors predicted by the simple pore pressure model

in section 4 and in Goren et al. [2010]: when the boundaries are undrained, the pore pressure

response is elastic-like. Dilation with respect to the initial configuration causes pore pressure

reduction and system hardening (increase of µa). Conversely, when shear leads to compaction,

the elastic-like behavior causes rapid liquefaction with pore pressure that becomes equal to

the applied normal stress throughout the system, and to a steady-state loss of shear resistance.

This behavior corresponds to the classical mechanism of liquefaction.

Less intuitive results arise when simulations are conducted with well-drained boundary

conditions. Here, viscous-like evolution of pore pressure may lead to high pore pressure

values even if the granular system is undergoing long term dilation. The pressurization occurs

during short compactive phases that always punctuate the dilative trend. In some cases,

instantaneous events of localized high pore pressure may overcome the applied normal stress

and lead to transient liquefaction with a complete loss of shear resistance, (µa ≤ 0). Thus,

we predict here that liquefaction in an initially densely packed system is possible, provided

that drainage is good. This surprising result agrees with the simplified model of Goren

et al. [2010], and suggest a new look at liquefaction potential of natural systems. Section

6 discusses the implications of our model and simulations to natural systems of grains and

fluids. We show that the two end-member behaviors we observe are seen both in other

simulations and were seen previously in experiments and natural conditions, but because

they were not understood well, they were not dwelled upon. In this section we also introduce

a new measurable parameter, the liquefaction potential, that is derived from our model and

may be used for evaluating the potential for liquefaction of various natural systems with

various scales and boundary conditions.

2 Coupled grains and fluid model

The numerical model for the coupled dynamics of grains and pore fluid is constructed as a

two-phase two-scale model. The granular phase makes up the finer scale where each grain is

modeled as a discrete lagrangian element. The fluid phase composes the coarser scale and

is modeled on an eulerian grid that is super-imposed on the granular level. The fluid grid

spacing is approximately the size of two grain diameters. This choice of grid spacing ensures
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that each cell is larger than a Darcy representative volume element. Similar models reported

in Johnsen et al. [2006] and Vinningland et al. [2007a] have shown that simulation results are

mostly insensitive to the exact choice of grid spacing when it is between 2-10 grain diameters.

The fluid does not see the detailed pore space geometry imposed by the grains, but instead

an average field of porosity and permeability as explained below. Furthermore, although the

current model is 2D, the porosity is assumed to be always connected via the third dimension

to allow simultaneous percolation of both the grains and the fluid.

2.1 Granular phase

To simulate the mechanics of a collection of grains we use a two dimensional discrete elements

granular dynamics algorithm [Cundall and Strack, 1979]. Each individual grain is treated as

an inelastic soft disc. Grain interactions, body forces and the force induced by the interstitial

fluid lead to linear and rotational acceleration of the grains. Interaction force between two

grains i and j is resolved when the distance between the centers of the two grains, rij, is less

than the sum of their radii, Ri + Rj. The grain overlap is expressed as ξij = Ri + Rj − rij .

Interaction force on a contact has a normal component, Fn, and a shear component, Fs, that

are resolved with Hertz-Mindlin contact model (figure 1):

Fn
ij(t) =

[

k̃nξij − γmij(ṙij · n̂ij)
]

n̂ij, (4)

where the first term on the right hand side of equation (4) is a nonlinear repulsive force and

the second term is a damping force that depends on the damping coefficient, γ, the harmonic

mean of the grains mass, mij, and the relative velocity between the grains along the direction

of the contact ṙij · n̂ij, where rij is a vector connecting the grains centers and ṙij is the relative

grain velocity. n̂ij = (rij · x̂, rij · ŷ)/rij is a unit vector normal to the contact. The coefficient

of the normal repulsive force is the nonlinear normal stiffness [Schäfer et al., 1996]:

k̃n =

√
2E

3(1− ν2)
(Rijξij)

1/2 (5)

where E and ν are the grains bulk modulus and Poisson’s ratio, respectively, and Rij is the

harmonic mean of the grains radii. The shear force is determine using an elastic/friction law:

Fs
ij(t) = −

[

min(k̃s∆s, µFn
ij)
]

ŝij, (6)

where ∆s is the shear displacement since the formation of the contact, µ is the surface friction

coefficient, and ŝij = (rij · ŷ,−rij · x̂)/rij is a unit vector tangent to the contact. The coefficient
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of the tangent repulsive force is the nonlinear tangent stiffness:

k̃s =
2
√
2E

(2− ν)(1 + ν)
(Rijξ)

1/2. (7)

Equation (6) implies that the shear force opposes the sense of the relative tangential motion

between the grains. It is important to note that as long as Fs
ij < µFn

ij no sliding occurs along

the contact, but there might still be relative tangential displacement between the centers of

grains i and j. When Coulomb failure criteria along the contact is met, i.e. k̃s∆s ≥ µFn
ij, the

contact slides with a constant shear force, µFn
ij, (figure 1).

The motion of each particle is determined by monitoring collisions between grains, resolv-

ing the induced contact forces and torques and using them in the momentum equations:

miu̇i = mig +
∑

j

Fij −
∇P · Vi

1− Φ
, (8)

Iiẇi =
∑

j

Rin̂ij × Fij , (9)

where ui and wi are the translational and rotational velocity vectors of grain i (a superposed

dot indicates time derivative). mi is the grain mass, g is the gravitational acceleration, Ii is

the grain moment of inertia, and Fij refers to inter-grain force at the contact between grain

i and grain j. The arm of the force in the torque balance, equation (9), is expressed as Rin̂ij

because all grains are perfect discs. The last term on the right-hand side of equation (8)

refers to the force exerted on grain i by the pressure gradient, ∇P , of the fluid surrounding

it, normalized by the solid fraction, (1− Φ), in its vicinity, where Φ is the porosity and Vi is

the volume of grain i [McNamara et al., 2000].

2.2 Fluid phase

The formulation for the physics of the pore fluid is developed in Goren et al. [2010]. For

clarity, we briefly review it here. First, mass conservation equations are written for the grains

and for the fluid:
∂[(1− Φ)ρs]

∂t
+∇ · [(1− Φ)ρsus] = 0, (10)

∂[Φρf ]

∂t
+∇ · [Φρfuf ] = 0, (11)

where t is the time, ρs and ρf are the densities of the solid grains and fluid, respectively, and

us and uf are the solid and fluid velocity fields, respectively. These velocities are defined for

mesoscopic volumes containing at least a few grains, where Darcy’s law is applicable. In that
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Figure 1: When two grains come into contact, a repulsive force arises. The normal component
(left) is a function of an elastic normal spring with constant k̃n, and damping that depends
on the relative velocity of the grains. The tangential component (right) is a function of a
tangential spring with constant k̃s. When the tangential spring is stressed beyond Coulomb
friction criterion, the contact starts sliding with a constant shear force, µFn. Figure adopted
from El Shamy and Zeghal [2007].

sense us is an average of ui over spatially close grains.

The full fluid momentum equation includes inertial terms and forcing terms of pressure

gradient and viscous drag. Here we choose to neglect fluid inertia to allow a theoretical

analysis of the pore fluid equation. Goren et al. [2010] show that for the deformation field

and parameter range that are used here, fluid inertia is mostly negligible, but it is important

to note that such an approximation is more suitable when the permeability and grain size

are relatively small. The full fluid momentum equation is treated for example in El Shamy

and Zeghal [2007], and although it is hard to compare the two models, the overall observed

behavior when drainage is good (the scenario treated in El Shamy and Zeghal [2007]) is

similar. When neglecting inertial terms the fluid momentum equation is approximated by

Darcy’s law:

Φ(uf − us) = −ki
η
∇P, (12)

where ki is the permeability, η is the fluid viscosity and P is the excess (over hydrostatic) fluid

pressure. In the small system we will consider, we take hydrostatic pressure to be uniform

throughout the system. The fluid density is given by the fluid state equation:

ρf = ρ0(1 + βP ), (13)

where ρ0 is the fluid density at hydrostatic pressure level, and β is the adiabatic fluid com-
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pressibility. We assume that the compressibility of a grain is negligible relative to the fluid

compressibility, so that ρs can be approximated as constant. We also assume that βP ≪ 1

[Goren et al., 2010]. Equations (10) to (13) then lead to:

βΦ
∂P

∂t
−∇ · [k

η
∇P ] +∇ · us + βΦus · ∇P = 0. (14)

By further assuming that the length scale of pore pressure diffusion is always larger than the

diameter of a single grain [Goren et al., 2010], the last term of equation (14) may be neglected.

This assumption is revisited in section 4 where a non-dimensional analysis of equation (14) is

presented. As a result, the pore pressure evolution equation becomes a three terms equation:

∂P

∂t
− 1

βΦη
∇ · [k∇P ] +

1

βΦ
∇ · us = 0. (15)

The first term of equation (15) expresses the temporal evolution of pore pressure, the second

term expresses pore pressure diffusion, and the third term is the forcing to the pore pressure,

which arises due to divergence in the grains velocity. When this divergence is negative, the

pore volume collapses, and the fluid pressurizes and flows away from the collapsing pores.

When the divergence is positive, the pore volume expands, and the pore fluid depressurizes

and flows into the expanding pore volume.

It is sometimes convenient to express the forcing term as a function of the porosity evolu-

tion rather than the divergence of the solid grains velocity. From the grains mass conservation,

equation (10), it can be shown that

(1− Φ)∇ · us −
∂Φ

∂t
− us · ∇Φ = 0. (16)

The grains velocity divergence term scales with local compaction and dilation (local grains

rearrangement), while the porosity gradient term that describes the advection of porosity

scales with the imposed shear velocity over the whole layer thickness. Because the length

scale associated with the former term is expected to be much smaller than the whole layer

thickness (which is associated with the later term), the advection of potosity is neglected, so

that

(1− Φ)∇ · us ≈ ∂Φ/∂t. (17)

(A similar conclusion is adopted in Walder and Nur [1984] and Snieder and van der Beukel

[2004]). Under this approximation, equation (15) may be rewritten as

∂P

∂t
=

1

βΦη
∇ · [k∇P ]− 1

βΦ(1− Φ)

∂Φ

∂t
. (18)
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Equations (15) and (18) were shown in Goren et al. [2010] to be a general form of previous

formulations in Biot [1941], Wang [2000] and Bachrach et al. [2001] that assume only elastic

deformation of the grains skeleton, and Walder and Nur [1984] that assume a specific law for

the evolution of porosity. Similar formulations also appear in Iverson [1993], Rudnicki and

Chen [1988], Miller and Nur [2000], Snieder and van der Beukel [2004] and Samuelson et al.

[2009].

2.3 Coupling between the grains and the fluid phases

In the current model, we couple a 2D granular dynamics algorithm with a continuous solver

of the pore fluid pressure and flow. To allow the coupling, information must be transferred

between the two phases of the model. Fluid pressure gradients are needed in order to solve

the grain force balance, equation (8), and the divergence of grains velocity and the porosity

are required for the solution of the fluid pressure, equation (15). To achieve this full coupling

we use a 2D linear interpolation scheme between the two scales of the model. For a grain

whose center is located in coordinate xi and for a fluid grid point located in coordinate x the

interpolation scheme is represented by the function s:

s(xi − x) =

{

(

1− |xi−x|
lx

)(

1− |yi−y|
ly

)

, |xi − x| < lx, |yi − y| < ly

0 otherwise
(19)

where lx and ly are the horizontal and vertical grid spacing. Each grain contributes its s-

weighted area and momentum to the grid points surrounding it. The porosity along a grid

point is calculated as

Φ(x) = 1− As(x)

A
, (20)

where A is the area of a grid cell, and

As(x) =
N
∑

i=1

s(xi − x)Ai, (21)

Ai being the area of grain i, and N is the number of grains. The solid velocity field is defined

as the ratio of granular momentum and granular mass. For equal density grains the mass

dependency is reduced to an area dependency, and the solid velocity field may be evaluated

as:

us(x) =

∑N
i=1 s(xi − x)Aiui

∑N
i=1 s(xi − x)Ai

. (22)
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In the simulations presented here, the grain size distribution is close to being monodispersed

and equation (22) is reduced to:

us(x) =

∑N
i=1 s(xi − x)ui

∑N
i=1 s(xi − x)

, (23)

where
∑N

i=1 s(xi − x) is the on-site mass density [McNamara et al., 2000]. Interpolated gran-

ular velocities are calculated on a staggered grid with respect to the porosity, so that the

velocity divergence is defined exactly on the porosity grid.

The ratio of pressure gradient to the solid fraction, ∇P/(1 − Φ), that is calculated on

the fluid grid by solving equation (15), is interpolated back from the fluid grid to the grains

surrounding this grid using the same interpolation function s, equation (19).

The permeability is calculated with a Carman-Kozeny-like relation. However, Carman-

Kozeny relation gives the permeability as a function of the volume fraction of spheres, while

the porosity in our model is computed with area fraction of discs. Consequently, we transform

the area fraction in the simulations (1 − Φ)(2D) to an equivalent volume fraction in 3D. The

simplest map of 2D to 3D solid fraction, which ensures that the pure fluid state and the

random close packing state correspond between the two dimensionalities, is (1 − Φ)(3D) =

(2/3)(1 − Φ)(2D) [McNamara et al., 2000]. This mapping results in the following relation

between porosity and permeability:

ki =
kc(1 + 2Φ)3

(1− Φ)2
. (24)

where kc is a prefactor with unit of m2, and Φ is the 2D porosity.

Stability and accuracy requirements force us to take a time-step small enough to resolve

the evolution of forces during collision of grains. In each time step, equations (8) and (9) are

solved to find the new location, velocity and acceleration of each grain. Then, the granular

velocity and the porosity are interpolated from the granular level to the fluid grid. In the

next stage, an alternating-direction-implicit (ADI) algorithm is used in the solution of the

fluid pressure, equation (15), and the pressure gradients are interpolated back to the granular

level and assigned in the last term of equation (8) at the next time step.

3 Model validation

In order to validate the coupled grains-fluid model, we perform three tests in which we compare

simulation results to analytical predictions.
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Effective stress validation test. The first test verifies that the model reproduces cor-

rectly the law of effective stress. Nur and Byerlee [1971] develop an effective stress law for

volumetric strain of fluid-filled porous material: σ′
ij = σij − αδijP , where α, the effective

stress coefficient, is a function of the compressibility of the solid grains and of the matrix.

For the case of incompressible grains α = 1. Nur and Byerlee [1971] assert their law by a

series of experiments showing that there is no correlation between the applied stress and the

resulting measured volumetric strain, while they find a linear relation between the effective

stress and the measured volumetric strain, with a stress-strain curve similar to dry samples

[Nur and Byerlee, 1971, their figure 2]. In our test we reproduce numerically the experimental

series of Nur and Byerlee [1971]. We perform a series of numerical simulations where in each

simulation a system of variable size grains is packed under confining stress. The systems are

periodic in direction x so that a normal stress, σn, applied to the top and bottom walls corre-

sponds to a uniform confining stress. The upper and lower boundaries are composed of half

grains that are glued together to form rough walls. In each simulation, a fluid pressure, P , is

introduced and maintained constant during the simulation as if the pore fluid in the granular

system is connected to a big reservoir. The top and bottom boundaries are undrained and

fluid may not flow out or into the system across these boundaries. Simultaneously with the

introduction of pressure, the applied unidirectional stress is increased by ∆σn. Thus, each

experiment is characterized by a couple, ∆σn and P . We measure the volumetric (vertical

due to periodicity) strain, ∆ǫ, that results from the extra loading, ∆σn, under constant pore

pressure, P . The setup of the numerical simulations is depicted in figure 2.

Figures 3a and 3b show ∆ǫ, the volumetric strain, as a function of ∆σn and ∆σn − αP ,

respectively, similarly to Nur and Byerlee [1971, figure 2]. A set of dry simulations, with no

pore fluid, serves as a reference and is depicted by ’x’. Wet simulations are depicted by ’o’.

Figure 3a shows that ∆ǫ and ∆σn in the wet simulations are poorly correlated. In contrast,

figure 3b shows a linear relation between ∆ǫ and ∆σn − αP , for α = 1 (as expected for

incompressible solid grains), with the same slope as the dry simulations. Simulation results

show that the model successfully reproduces the effective stress behavior that is observed

experimentally in fluid-filled porous and granular material.

Since pore pressure is maintained constant within the system, ∇P = 0. Therefore, the

fluid does not exert a force on internal grains, and the last term of equation (8) vanishes.

However, since the system is undrained and the pore pressure outside the system is assumed

zero, boundary grains do feel the effect of fluid pressure because it is exerted on them only from

one side (from the bottom on the top boundary and from the top on the bottom boundary).

Thus, a pressure gradient force acts on the boundary grains in the outward normal direction

to the boundaries, and opposes the external force induced by σn. We note here an important

insight regarding the effective stress: in models, one could be tempted to apply the effective
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Figure 2: Setup of a numerical experiment designed to verify that the grains-fluid model
reproduces correctly the law of effective stress. In each experiment, a unidirectional stress,
∆σn, is applied, and a constant pore pressure, P , is maintained. The vertical strain, ∆ǫ, is
measured. The white pore area in between the grains is filled with fluid.

stress law at each grain contact, but that would lead to an incorrect formulation of the forces,

as only pressure gradients exert a net force on grains. The effective stress law may therefore

be viewed as the macroscopic manifestation of microscopic gradients of pore pressure.

Sedimentation validation test. The second test compares the sedimentation velocity

under gravity of grains suspended in fluid, with the theoretical prediction that assumes that

particles fall without acceleration (following McNamara et al. [2000]). The volume of grains

transported downward must be compensated by an equal volume of fluid upflow. Thus (1−
Φ)us = −Φuf . Combining this equation with Darcy law, equation (12), results in us =

k(Φ)∇P/η. The pressure force must balance the weight of the grains, so that∇P = ρsg(1−Φ).

Assigning equation (24) for k(Φ), with kc = r2/540 [McNamara et al., 2000], r being the

average grain radius, leads to:

us

used

= − [1− 2
3
(1− Φ)]3

(1− Φ)
ẑ, (25)

where used = r2ρsg/20η, and ẑ is a unit vector in the opposite direction of gravity. Each

sedimentation simulation starts with a different uniform porosity. Then, every 50,000 time

steps we average the porosity and the granular velocity over the grid points. In order to
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Figure 3: Effective stress validation test. Dry simulations are marked by ’x’ and wet simula-
tions by ’o’. (a) Volumetric strain, ∆ǫ, is plotted against the change of confining stress, ∆σn,
and show no correlation for the wet simulations. (b) Volumetric strain is plotted against the
effective stress showing linear relation with the same slope as dry simulations.
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Figure 4: Sedimentation validation test. Comparison between theory, equation (25), and
simulations for the relation between solid fraction, 1−Φ, and sedimentation velocity, us/used.

exclude material that was already settled on the bottom, and the clear region above the

settling grains, we do not include in the average grid points with granular velocity smaller

than 0.5max(us), and grid points with (1−Φ) < 0.25. Finally, each simulation is temporally

averaged to obtain a space and time average of us and (1 − Φ) for the simulation. These

couples are depicted by ’o’ in figure 4 and show good fit to the theoretical prediction of

equation (25).

Fluidization validation test. The third test is of fluidization of a granular layer. Initially

the grains rest at the bottom of the system after sedimentation. Then, a constant fluid

pressure gradient is applied between the top and the bottom of the system. It is predicted

that when ∇P = −(ρs−ρf )(1−Φ)g, the force exerted by ∇P will exactly balance the weight

of the grains that rest at the base of the system [Richardson, 1971]. For larger ∇P the grains

will be lifted, while for smaller ∇P the grains will not move. Figure 5 shows the granular

velocity averaged in space over the grains and in time over the first million time steps, ūs,

plotted vs. ∇P for several simulations. The grains move only when ∇P is larger than the

predicted critical value, while for smaller values of ∇P , ūs = 0.

4 Pore pressure evolution mechanisms

After presenting the fully coupled model and verifying it, we turn to discuss the two mecha-

nisms that are responsible for the evolution of pore pressure, and that arise from the pore fluid

formulation presented in section 2.2. These mechanisms, which are generic and independent
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Figure 5: Fluidization validation test. Comparison between theory and simulations for the
minimal pressure gradient, ∇P , required to fluidize a layer of grains with porosity Φ under
gravity g. ūs is the average grains velocity. ρs and ρf are the densities of the solid grains and
of the fluid, respectively.

of the specific deformation of grain dynamics, are discussed at length in Goren et al. [2010].

The two mechanisms depend on the system boundary conditions, and on the relative magni-

tude of the different terms in equations (15) and (18). In order to estimate the magnitude of

these terms we perform a non-dimensional analysis of equation (14). The characteristic scales

of the variables in the system are defined as: P = P̂ /β, us = ûsu0, k = k̂k0, and t = t̂t0,

where the ˆ notation denotes non-dimensional variables, and u0, k0, and t0 are the velocity,

permeability, and time scale factors, respectively. The divergence operators resulting from

grain mass conservation, equation (10), represent grain-scale rearrangements, and therefore

are scaled by d−1, where d is a characteristic grain diameter. The gradient operators that

result from Darcy law, equation (12), and act on the pressure, P , are scaled by l−1, where

l = min(ζ,Di/u0) is a larger length scale that corresponds to the distance that is reached by

the pore pressure signal. ζ is the system half thickness, which is also the distance between

the system’s center and its boundaries. Di = ki/βηΦ is the internal diffusion coefficient of the

system that depends on the internal permeability, ki, with accordance to equation (24) (while

ignoring the boundary permeability), and Di/u0 is the internal diffusion length. Di/u0 may

be cast as a (more common) diffusion length scale of the form
√
Dit1, with t1 = Di/u

2
0. To

understand the meaning of t1 note that when grains move at velocity u0, the pressure next to

where the motion takes place changes first due to diffusion and later due to advection. t1 is the

time at which the diffusive and advective influences balance. According to the definition of l,

if the system is relatively small or the internal permeability is relatively large, then ζ < Di/u0
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and a pore pressure signal will interact with the boundaries since the system is well connected

with diffusion, leading to l = ζ. If ζ > Di/u0, then diffusion does not have the necessary time

to level out the pressure changes advected with the matrix at velocity u0 during shear, and

l = Di/u0. The time scale factor, t0, is defined as the time scale of deformation:

t0 =
d

u0

. (26)

The permeability scale factor, k0, requires further discussion. When, ζ > Di/u0 and l =

Di/u0, then the boundaries are not expected to interact with a pore pressure signal originating

at the system interior, and therefore, k0 = ki. However, when ζ < Di/u0 and l = ζ, k0

should represent the effective permeability that accounts both for the value of the internal

permeability, ki, over a layer with thickness 2ζ, and for the value of the boundary permeability,

kb, over a thin (but finite) boundary layer with thickness δ. As the permeability is proportional

to Darcy velocity, k0 is estimated as harmonic mean:

k0 = 2ζkikb/(δki + 2ζkb), (27)

where 2ζ+ δ ≈ 2ζ. The harmonic mean is for permeabilities transverse to the boundaries and

so it gives larger weight to the smaller permeability. As a result

k0 =



















ki for well drained systems with ki ≪ kb

2ζkb/δ for poorly drained systems with ki ≫ kb

0 for completely undrained systems with kb = 0.

(28)

Assigning the non-dimensional variables in equation (14) results in:

∂P̂

∂t̂
−De−1∇̂ · (k̂∇̂P̂ ) +

1

Φ
∇̂ · ûs +

d

l
ûs · ∇̂P̂ = 0. (29)

The last term of equation (29) is negligible with respect to the first and third terms because

for any natural system, and in particular for our choice parameters, the diffusion length is

significantly larger than the diameter of a single grain, i.e. d ≪ l [Goren et al., 2010]. Equation

(29) then becomes:

∂P̂

∂t̂
−De−1∇̂ · (k̂∇̂P̂ ) +

1

Φ
∇̂ · ûs = 0, (30)
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which is the non-dimensional form of equation (15). The coefficient of the second term in

equation (30) is a function of the Deborah number,

De =
td
t0
, (31)

that is defined as the ratio of relaxation time scale and a characteristic process time scale

[Osswald, 1998, p. 54]. Here, the relaxation time scale, td = ld/D, is the time scale for pore

pressure diffusion, where D = k0/βηΦ is the system diffusion coefficient (note that D ≤ Di).

The characteristic process time scale, t0, is simply the time scale of deformation (equation

(26)). In terms of the system parameters, De may be expressed as:

De =
lu0

D
=

lu0βηΦ

k0
. (32)

Deborah numbers are normally used in the characterization of viscoelastic materials for esti-

mating the relative importance of the viscous and elastic rheologies. In the following we show

that viscoelasticity is a good analog for the description of the pore fluid pressure evolution.

4.1 Small system (ζ < Di/u0)

When the system is relatively small compared to the diffusion length, then we take l = ζ in the

definition of De, equation (32). If the boundaries are undrained, k0 is zero and De−1 = 0. As a

result, the diffusion term in equations (15) and (18) should be ignored. The non-dimensional

equation (30) then becomes

∂P̂

∂t̂
+

1

Φ
∇̂ · ûs = 0. (33)

Under such conditions, the dimensional equation (18) can be solved for the spatially averaged

pore pressure P̄ :

∆P̄ = − ∆Φ

βΦ(1− Φ)
, (34)

where Φ(1−Φ) is approximated as a constant, ∆P̄ = P̄ (t′′)− P̄ (t′), for any t′′ > t′, and ∆Φ is

defined in a similar manner. Here, changes of average pore pressure, ∆P̄ , are linearly related

to the overall change of porosity, ∆Φ, with a proportionality factor that depends on the fluid

bulk modulus, β−1, so that pore pressure responds ’elastically’ to pore strain. Pore fluid that

is trapped within a shrinking pore volume (∆Φ < 0) is pressurized, while pore fluid trapped

in expanding pore volume (∆Φ > 0) is depressurized.

When the boundaries are well drained (k0 is approximated as ki), then always (by the

definition of De and by the condition ζ < Di/u0) De < 1. If De ≪ 1, for example when

ζ is small or k0 is large, then the non-dimensional equation (30) reveals that the first time
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dependent term is negligible relative to the second diffusion term. The reason the forcing

term is not negligible with respect to the diffusion term is that the forcing is the source of

pore pressure variations and therefore it is considered the pivot of the equation [Goren et al.,

2010]. The non-dimensional pore fluid equation, (30), then takes the form:

De−1∇̂ · (k̂∇̂P̂ ) =
1

Φ
∇̂ · ûs. (35)

Appendix A presents the solution of the dimensional equation (18) for the pore pressure,

while neglecting the time dependent term. Appendix A shows that the pore pressure within

a system that is characterized by De ≪ 1 may be approximated as:

P (z, t) = − η

2k0

d〈Φ(ζ, t)〉
dt

(

ζ2 − z2
)

, (36)

where 〈Φ(ζ, t)〉 is the overall or average porosity in the zone between the center of the system

and its boundary, that is located at distance ζ from the center (see figure 7). In the derivation

of equation (36) it was assumed that the top and bottom boundaries are completely drained,

i.e. P (ζ, t) = P (−ζ, t) = 0, and that the rate of change of the average porosity is uniform in

space. Note that since (ζ2−z2) ≥ 0, compaction with d〈Φ(ζ, t)〉/dt < 0 leads to pressurization,

while dilation with d〈Φ(ζ, t)〉/dt > 0 leads to depressurization. Here, the evolution of pore

pressure is controlled by the strain rate of porosity d〈Φ(ζ, t)〉/dt, with a coefficient that

depends on the fluid viscosity, η, and is inversely proportional to the permeability. Therefore,

the pore pressure responds ’viscously’ to the deformation of the matrix.

When De . 1, which may occur for larger ζ or smaller k0, the diffusion term is not

strictly larger than the time dependent term, and both terms are expected to contribute to

the evolution of pore pressure. Still equation (36) should give a rough estimation of the pore

pressure evolution.

4.2 Large system (ζ > Di/u0)

When the system is large compared to the diffusion length, then we take l = Di/u0 and

k0 = ki in equation (32), which always results in De = 1 (and td = t0). In this case, the

diffusion and time dependent terms are of the same order. The non-dimensional equation

(30) then becomes

∂P̂

∂t̂
− ∇̂ · (k̂∇̂P̂ ) +

1

Φ
∇̂ · ûs = 0, (37)

and the dimensional evolution of the pore pressure is governed by the three terms equations

(15) and (18).
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4.3 The behavior of the pore pressure evolution

This analysis shows that the pore pressure equations (15) and (18) express a viscoelastic-like

rheology. The two end-members of this rheology, elastic and viscous, lead to two mechanisms

that control the evolution of pore pressure, and operate under different drainage conditions.

A schematic representation of the two mechanisms is depicted in figure 6. Elastic-like pore

pressure evolution dominates when the system is effectively undrained (De ≫ 1). Under

such conditions, pore fluid that cannot escape and is trapped within a shrinking pore volume

is pressurized (figure 6a), while pore fluid that is trapped in an expanding pore volume is

depressurized. The evolution of the average pore pressure will follow equation (34), and

the magnitude of pressurization and depressurization depends on the inverse of the fluid

compressibility, β−1, and is controlled by the overall change of porosity, ∆Φ. In that sense,

the elastic end-member holds memory of the initial state of porosity.

Viscous-like pore pressure evolution dominates when the system is effectively drained

(De ≪ 1), and is a less intuitive mechanism. Here, because of mass conservation, convergence

(or divergence) of grains causes the pore fluid that resides between the grains to flow out of

(or into) this region (figure 6b). Because of fluid momentum conservation (here Darcy law),

pressure gradients must arise between the location of converging (or diverging) grains and

the surrounding region, to generate these flows. Here, pore pressure evolves from the arising

pressure gradients, and is governed by equation (36). The evolving pore pressure depends

linearly on the fluid viscosity, η, and inversely on the permeability, k0. The magnitude of pore

pressure is controlled by the instantaneous strain rate of porosity, d〈Φ(ζ, t)〉/dt. Therefore,

this mechanism holds no memory of previous states of porosity. Note that when De ≈ 1, an

intermediate behavior is expected with some short term memory.

The viscous end-member has normally not been offered as a mechanism for liquefaction,

although it may lead to significant pressurization. Moreover, because of its ’lack of memory’,

this mechanism may lead to generation of high pore pressure even when an initially dense

granular matrix is sheared. Indeed, upon shearing an over-compacted layer, it will first

dilate (figure 6b, left to center), and then oscillate around its critical porosity [Aharonov and

Sparks, 2002, Gabet and Mudd, 2006]. In the oscillatory stage, any compaction phase, with

d〈Φ(ζ, t)〉/dt < 0, will lead to pressurization despite the fact that the instantaneous porosity

may be significantly larger than the initial porosity (figure 6b, center to right).

It is of interest to note that the viscous-like rheology arises when De ≪ 1, and the elastic-

like rheology arises when De ≫ 1. Indeed, a Deborah number of zero represents a viscous fluid

and an infinite Deborah number represents an elastic solid [Osswald, 1998]. In the following,

we present our simulation results in light of the pressurization mechanisms that are reviewed

here.
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Figure 6: Two mechanisms control the evolution of pore pressure in equation (18). (a) When
the boundaries are undrained (marked by double solid lines) leading to De ≫ 1, pore pressure
responds elastically to any strain of pore volume. Compaction will lead to pressurization and
dilation will lead to depressurization. The magnitude of pore pressure change depends on the
overall porosity change, ∆Φ, and on the inverse of fluid compressibility, β−1. (b) When the
boundaries are drained (marked by dashed lines) and De ≪ 1, pore pressure evolves viscously
in response to instantaneous strain rate of porosity, dΦ/dt. Upon dilation (left to center) fluid
will flow into the system. In order to facilitate this flow, pressure gradient must arise with
low pressure within the system interior. Upon compaction (center to right), fluid escapes
from the system, and an opposite pore pressure gradient arises with higher pore pressure in
the system interior. In this mechanism the evolving pore pressure depends linearly on fluid
viscosity, η, and inversely on the permeability, k0.
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5 Simulations of shearing granular layers

To study the coupled mechanics of granular matrix deformation and pore fluid pressurization

and flow we perform simulations of shearing a fluid-filled granular layer at a constant shear

velocity. The simulations are performed in a rectangular system with about 1680 (24 × 70)

or 864 (24×36) grains. Grain diameters are drawn randomly from a Gaussian distribution

with an average d, and a standard deviation d, clipped at plus/minus 0.2d. Although there is

no gravity in the simulations, we define the vertical and horizontal directions for convenience.

The top and bottom walls are composed of half grains of variable size that are glued together

along their centerlines to form rigid rough walls. In the horizontal direction the system is

periodic, and is thus analogous to a rotary shear apparatus. Each simulation is initiated

by compacting a system of loosely packed grains under some normal stress, σn, until the

porosity equilibrated. Then, we assume the pore space is filled with fluid at zero excess

fluid pressure. Variations of pore pressure are measured with respect to the initial zero value

that corresponds to hydrostatic conditions. For that reason, σn is interpreted as the applied

external stress minus hydrostatic pore pressure, i.e. the initial effective stress. Finally, a

constant shear velocity, Vsh, is applied on the top wall. During a simulation, σn and Vsh are

maintained constant, and we follow the systems’ compaction and dilation, the shear stress

that is required in order to shear the top wall at a constant velocity, and the evolution of

pore pressure. Dividing the shear stress by σn results in the apparent friction coefficient,

µa, equation (3). As the grains themselves are considered incompressible, compaction and

dilation are accommodated by change in pore volume. Figure 7 summarizes the settings of

the simulations.

In the simulations, we take the pore fluid to be water, and as a consequence fluid com-

pressibility and viscosity are β = 4.5 × 10−10 Pa−1 and η = 10−3 Pa s, respectively. The

granular phase is assumed quartz grains with a bulk modulus, E = 8 × 1010 Pa, Poisson’s

ratio, ν = 0.25, density of 2640 kg· m−3, surface friction coefficient µ = 0.5, and damping

coefficient (in equation (4)), γ = 0.8. We further assume that the grains have an average

diameter d = 10−3 m. As we are interested in studying the role of the permeability on the

evolution of pore pressure, and since the permeability varies by orders of magnitude between

different natural terrains [e.g. Saar and Manga, 2004], we vary kc in our simulations, where

kc is the permeability prefactor that appears in equation (24). For the original 2D Carman-

Kozeny relation with average grain diameter of d = 10−3 m, kc = 4.6× 10−10 m2, but in the

present simulations we use a range of kc = 4.6 × 10−10 − 4.6 × 10−15 m2. The lower value

of kc may alternatively be obtained by choosing a smaller grain diameter of d ∼ 10−6 m, or

by taking a heterogeneous grain size distribution. We choose to work with relatively large

grains in order to allow simulations of thick layers (up to ∼ 0.07 m) during 0.5 second, in a
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Figure 7: Grains-fluid simulations setup. In each simulation a collection of grains are packed
within a rectangular box with wrap around boundary conditions along the horizontal direction.
The equation for the pore pressure, equation (15), is solved on a super-imposed grid. Normal
stress, σn, and shear velocity, Vsh, are applied and maintained constant. The spatial and
temporal evolution of porosity, Φ, and of pore pressure, P , and the temporal evolution of
the apparent friction µa are measure. ki is the internal permeability that is set by the local
porosity with accordance to equation (24). kb is the boundary permeability that expresses
the drainage boundary conditions. When the top and bottom boundaries are drained, P = 0
on the boundaries as if kb = INF. When the top and bottom boundaries are undrained, no
pressure flux arises accros the boundaries as if kb = 0.
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Table 1: Numerical simulations.
#a σn [MPa] ζ [m] b k0 [m2] c Vsh [m/s] De d LP e

D1 24 0.035 1.97× 10−10 0.76 1.21× 10−5 2.8× 10−5

D2 24 0.035 1.97× 10−10 7.6 1.21× 10−4 2.8× 10−4

D3 24 0.035 1.97× 10−11 0.76 1.21× 10−4 2.8× 10−4

D4 24 0.035 1.97× 10−11 7.6 1.21× 10−3 2.8× 10−3

D5 24 0.035 1.97× 10−12 0.76 1.21× 10−3 2.8× 10−3

D6 24 0.035 1.97× 10−12 7.6 1.21× 10−2 2.8× 10−2

D7 24 0.035 1.97× 10−13 0.76 1.21× 10−2 2.8× 10−2

D8 24 0.035 1.97× 10−13 7.6 1.21× 10−1 2.8× 10−1

D9 24 0.035 1.97× 10−14 0.76 1.21× 10−1 2.8× 10−1

D10 24 0.035 1.97× 10−14 7.6 1 9.7× 10−2

D11 2.4 0.035 1.97× 10−14 0.76 1.21× 10−1 2.8
D12 2.4 0.018 1.97× 10−14 0.76 6.41× 10−2 1.4
U13 2.4 0.035 0 (1.97× 10−9) 0.76 INF -
U14f 2.4 0.035 0 (1.97× 10−9) 0.76 INF 1.7

aIn the simulations numbering, D stands for drained and U stands for undrained.
bWe report here the maximal vertical half thickness of the system during a simulation. ζ fluctuates by as

much as 3%
ck0 is defined in equation (28). When k0 = ki, equation (24) is used with Φ = 0.2. When k0 = kb = 0, the

value of ki is reported in parenthesis.
dIn the calculation of the Deborah number, Φ = 0.2, and the velocity scale factor, u0, is estimated as Vsh.

In simulations D10, l = Di/u0, for the rest of the simulations l = ζ
eLiquefaction potential. For simulations D1 – D9 and D11 – D12 equation (40) is used. For simulation

D10 equation (??) is used. For simulation D14 equation (41) is used.
fSimulations U13 and U14 differ in their initial porosity.

reasonable computation time, but we still desire to study the role of the permeability. The

applied shear velocity, Vsh, is either 0.76 m/s or 7.6 m/s. We use applied normal stresses of

σn = 24 or 2.4 MPa, corresponding to depths of about 2 km and 200 m, respectively. Two

types of simulations are performed that differ in their drainage boundary conditions: drained

and undrained. Table 1 summarizes the system parameters in the simulations: normal stress,

σn, half thickness, ζ, permeability scale factor, k0, and shear velocity, Vsh. The dimensionless

Deborah number, De, whose significance is explained is sections 4, and the dimensionless

liquefaction potential, LP, that is based on section 6.3, are also presented in table 1.

5.1 Drained systems

Completely drained systems are simulated by setting the pore pressure to be zero along the top

and bottom walls. All drained simulations start with a well compacted system that dilates in

the initial stages of shear deformation. After the dilation stage, the porosity oscillates around

some mean critical value. Figure 8 compares the temporal evolution of three spatially-averaged
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quantities (porosity, average pore pressure, and apparent friction, µa) between simulations D3

and D9 that differ only in their permeability. Two differences are observed for the average

pore pressure in these simulations: First, the peaks of the average pore pressure are smaller

by an order of magnitude in the high-permeability simulation D3 (figure 8c) with respect

to the low-permeability simulation D9 (figure 8d). This results from the dependency of the

pore pressure on the inverse of the permeability for drained systems with De ≪ 1. Indeed,

equation (36) predicts that when the permeability is smaller, as is the case for simulation D9,

the pore pressure will be higher. Second, the average pore pressure is negative during the

first half of the low-permeability simulation D9, while for the high-permeability simulation

D3, the average pore pressure oscillates around zero from the onset of the simulation. This is

due to the competition between the rate of deformation and the rate of pore fluid flow, and

will be discussed further in section 6.1.

The differences in the evolution of pore pressure between simulations D3 and D9 causes

their apparent frictions to differ. The apparent friction starts with a larger value and exhibits

larger peaks in the low-permeability simulation D9 (figure 8f). The higher initial value results

from the initially negative pore pressure that increases the effective normal stress and the shear

resistance following equation (2). Similarly, the larger peaks in the apparent friction result

from a larger magnitude of negative values in the pore pressure.

In the drained simulations D1 – D7 (with De ≪ 1) the average pore pressure, P̄ , is well

correlated with the temporal derivative of the porosity, dΦ/dt, but is not correlated with

the actual value of the porosity, Φ. An example of these relations is depicted in figure 9

for the drained simulations D7. Indeed, equation (36) predicts that when the boundaries

are well-drained and De ≪ 1, the evolution of pore pressure is controlled by the temporal

derivative of the porosity. Although equation (36) was developed based only on the pore

pressure formulation, the good correlation that is depicted in figure 9a indicates that viscous-

like evolution of pore pressure occurs also when the grain and pore fluid are fully coupled.

In the drained simulations D8, D9, and D11 (with De . 1) and in simulation D10 (with

De = 1), it is less clear which of the two correlations (P̄ vs. dΦ/dt and P̄ vs. Φ) is more

dominant. In fact, the average pore pressure seems to be influenced both by the temporal

derivative of the porosity, dΦ/dt, and by the actual value of the porosity, Φ, as can be seen

in figure 10 for simulation D9. Indeed, according to the mechanistic analysis presented in

section 4, when De . 1 or De = 1 both dependencies are expected. The drained simulation

D12 (with De = 6.41× 10−2) shows a fairly good correlation between P̄ and −dΦ/dt (that is

slightly less distinct than this correlation for simulations D1 – D7), and also a minor influence

of −Φ on the evolution of P̄ .

Simulations D1 – D10 are conducted under normal stress of σn = 24 MPa. The average

pore pressure in these simulations is significantly lower than the applied normal stress, with
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for simulation D7 are plotted as a function of time to show good correlation as predicted by
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Figure 10: Results of drained simulation D9. (a) dΦ/dt (blue) and average pore pressure
(green). (b) Φ (blue) and average pore pressure (green). Both dΦ/dt and Φ show some
correlation to the average pore pressure as expected for De . 1. Note that P̄ increases
downwards.

peaks that are one or two orders of magnitude smaller than σn. Still, in runs D8 – D10 that

are characterized by small permeabilities and De . 1 or De = 1, there were short events where

P > σn. These events, being also very localized in space, did not seem to affect the system’s

strength. For that reason, we next consider simulations where the applied normal stress is

reduced to σn = 2.4 MPa. It is observed that although σn does not enter the formulation of the

pore fluid, its reduction leads to decrease of pore pressure. However, an order of magnitude

reduction in σn did not cause the pore pressure peaks to decrease by an order of magnitude,

but only by a factor of 2-3. Therefore, the average pore pressure peaks may become of the

order of the applied stress and lead to a significant reduction of the system strength. Here,

the system strength is expressed as the apparent friction coefficient, µa, where small µa results

from small shear resistance. If the apparent friction becomes zero or even negative, then the

shear resistance of the system is completely lost, and it is liquefied.

Figure 11 shows the evolution of µa and of the average pore pressure for the drained

simulation D11. A brief liquefaction event with a reduction of the apparent friction below

zero (circled) is observed. This short event is correlated with system average pore pressure

of P̄ = 1.9 MPa. Although P̄ < σn, this liquefaction event is characterized by horizontal

layers that experience high pore pressure of P ≃ σn, and few localized zones with P > 4 MPa

(figure 12e).

Figure 12 shows three snapshots of the grain system configuration and the corresponding

pore pressure map, before, during and after the liquefaction event circled in figure 11. In

frames 12a – 12c the thickness of the lines connecting grain centers indicate force on grain

contacts. Stress chains are observed as connected force lines that percolate from the top of the

system to its base. The color code of the grains corresponds to the overall normal stress that a
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Figure 11: Apparent friction (blue) and average pore pressure (green) for drained simulation
D11 are plotted as functions of time, and show good correlation. Note that the pore pressure
axis increases downwards. The apparent friction reduces below zero (circled) at time 0.32
s, when the average pore pressure becomes high, P̄ ∼1.9 MPa, which is of the order of
magnitude of the applied normal stress, σn = 2.4 MPa. Negative apparent friction is defined
here as liquefaction. Framed letters mark the time when the snapshots in figure 12 are taken.

30



grain sustains due to contact forces, with warmer colors for higher stress. In each of the frames

12a – 12c, the grain color code is relative to the frame itself, where the grain that supports

the maximum load is red and the grains with minimal load are light blue. Therefore, grains

that are connected by thick lines and participate in the major stress chains that support the

external loading are more reddish. It is clearly observed that the stress chains that support

the external load before the liquefaction event, in figure 12a, disappear during the liquefaction

event in figure 12b, and the grains at the top and bottom of the system become light blue,

indicating that the compressive stress on them arising from granular contacts is minimal.

Percolating stress chains reappear after the event, in figure 12c. The pore pressure before

the liquefaction event in figure 12d is mostly negative (lower than hydrostatic). During the

event the pore pressure at the top and bottom of the system becomes highly positive (figure

12e), and exceeds σn. Zones of very high pore pressure in figure 12e correlate to zones with

no stress chains in figure 12b, and indicate that the high pore pressure replaces the stress

chains in supporting the external load. This high pore pressure also allows for the apparent

friction to become negative. Shear localization is observed along the highly pressurized layers,

but It is not clear if the localization preceded (and triggered) pressurization or vise versa.

Simultaneously with the reappearance of stress chains in figure 12c, the pore pressure reduces

(figure 12f), and the system strengthens.

To study the effect of system size, simulation D12 is conducted with the same parameters

as simulation D11, but with a layer half as thick. Figure 13 shows a liquefaction event (circled)

during simulation D12 that occurs simultaneously with an increase of average pore pressure,

P̄ . The average pore pressure during this event, P̄ ≃ 2.4 MPa, is very close to the applied

normal stress. Figure 14 shows snapshots of the granular configuration and the corresponding

pore pressure map before, during, and after this liquefaction event. While in simulation D11,

high pore pressure is localized close to the top and bottom boundaries (figure 12e), here,

when the layer is thinner, stress chains disappear and pore pressure rises throughout the

whole system interior, as seen in figures 14b and 14e. It should be noted that several such

liquefaction events occurred during simulations D11 and D12.

5.2 Undrained systems

Undrained systems are simulated by assigning zero fluid flux across the top and bottom

boundaries, and as a result, fluid mass is conserved within the grains layer. In the undrained

simulations we assign large internal permeability that allows for rapid fluid flow within the

system interior, and as a consequence rapid homogenization of pore pressure. Two simulations

are performed, both with σn = 2.4 MPa and Vsh = 0.76 m/s, but with different initial

porosities. Simulation U13 starts with the same initial configuration as the drained simulation
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Figure 12: Snapshots of the granular configuration (top) and corresponding pore fluid pressure
map (bottom) for drained simulation D11, before, during, and after the liquefaction event
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D11, with an initial 2D porosity of 0.1719. This simulation is referred to as dense. In

simulation U14, before the onset of shear, all grains that have no contacting neighbors and

thus are not participating in stress chains are removed to form high initial 2D porosity of

0.2385. Simulation U14 is referred to as loose.

Dense simulation, U13, dilates when sheared and the pore pressure decreases and becomes

negative (i.e., smaller than hydrostatic). Due to the large internal permeability, the pore

pressure is uniform throughout the system so that the average pore pressure is very close to

the pore pressure at any point within the system. Unlike the drained simulations, here, the

evolution of pore pressure is correlated with the evolution of porosity, Φ, (figure 15b), and not

with the temporal derivative of the porosity, dΦ/dt, (figure 15a). The dependency between

the average pore pressure and the porosity when the boundaries are completely undrained

and De = INF is predicted by equations (34). Therefore, although equation (34) is developed

based only on the fluid formulation, simulation results indicate that an elastic-like evolution

of the pore pressure is observed also when the two phases of the system, pore fluid and

grains, are fully coupled. The apparent friction coefficient, depicted in figure 15c, increases

with decreasing pore pressure. High apparent friction results from high shear resistance due

to increasing effective normal stress, following equations (1) and (2). An alternative view

might be that the reduced pore pressure within the system interior exerts a suction force that

hardens the system. Simulation U13 thus exhibits ’dilatancy hardening’.

Loose simulation, U14, exhibits a short transient dilation phase with pore pressure decrease

upon the onset of shear, but then compaction occurs very fast. Upon compaction, pore

pressure increases to the value of the normal stress, P = 2.4 MPa, and the system liquefies

(figure 16a). Here, the liquefaction event is a steady state and the pore pressure remains equal

to σn until the end of the simulation. During this long liquefaction event, grains detach, stress

chains disappear, and the external load is completely balanced by the pore pressure (figures

17). With the exception of very few contacts arising due to small collisions, the force balance

on the grains is zero and they do not touch. Since grains do not slide past each other (and

since viscous resistance to sliding is not accounted for in our model), there is no resistance to

shear and the apparent friction drops to zero, as depicted in figure 16b.

6 Discussion

This paper uses a continuum equation ((15) or (18)) to describe the pore pressure response

to granular media deformation, coupled with a discrete description of the grain dynamics.

First in the discussion we address the pore pressure behavior under any general deformation

of the granular skeleton, as it turns out that this behavior by itself is very rich (as already

suggested by a simplified model [Goren et al., 2010]). Section 4 reveals that the evolution of the
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Figure 15: Results of undrained initially dense simulation U13. (a) No correlation is found
between dΦ/dt (blue) and average pore pressure (green). (b) Good correlation is found
between porosity (blue) and average pore pressure (green). (c) Correlation is shown between
apparent friction (blue) and average pore pressure (green). (d) Correlation between −∆Φ and
∆P in the simulation (circles) are well matched by the linear relation predicted by equation
(34) (red line). Note that in (a), (b), and (c) the average pore pressure increases downwards.
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Figure 16: Results of undrained initially loose simulation U14. (a) Good correlation is found
between porosity (blue) and the average pore pressure (green). Framed letters corresponds to
the time when the snapshots in figure 17 are taken. (b) Correlation is shown between apparent
friction (blue) and the average pore pressure (green). (c) Correlation between −∆Φ and ∆P
in the simulation (circles) are well matched by the linear relation predicted by equation (34)
(red line). Note that in (a) and (b) the pore pressure increases downwards.
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pore pressure in response to granular skeleton deformation obeys a viscoelastic-like rheology.

Indeed, equation (18) resembles the Maxwell model of viscoelasticity: dǫ/dt = η−1σ+βdσ/dt,

where the strain rate, dǫ/dt, is a linear combination of the stress, σ, and of the time derivative

of the stress, dσ/dt. In equation (18), the time derivative of the porosity, dΦ/dt, stands for

the strain rate, and the pore pressure, P , stands for the stress. The pore pressure diffusion

term in equation (18) acts as the term η−1σ in Maxwell model (where the spatial derivative

can be approximated as P/ld). Section 4 also shows that the system parameters, as expressed

by the Deborah number, De, lead to the emergence of two end-member mechanisms for the

evolution of pore pressure that are encapsulated in this rheology – elastic and viscous.

Goren et al. [2010] showed that these two end-member mechanisms describe well the

evolution of pore pressure when the loading is assumed infinitely stiff, i.e., when granular

deformation is externally prescribed and pore pressure gradients do not enter the grains mo-

mentum balance. Here, our simulation results show that the two end-member mechanisms

also apply for the fully coupled system, i.e., when the skeleton deformation affects the evolu-

tion of pore pressure, and pore pressure gradients add up to the force balance on the grains

and contribute to the deformation of the skeleton. Therefore, we claim that a viscoelastic

analog for describing the evolution of pore pressure applies generally to fluid-filled granular

(and porous) systems, and it is independent of the exact details of grain dynamics.

Following these insights, one would like to understand how to estimate De, as it plays

a crucial role in determining the pore pressure behavior in real systems. Some parameter

groups are of particular importance in the estimation of De. For example, when the sys-

tem is large with respect to the internal diffusion length, i.e. ζ > Di/u0, (where ζ is the

system half thickness, Di is the internal diffusion coefficient in the system that ignores the

drainage boundary conditions, and u0 is the rate of deformation), then pore pressure signals

originating close to the layer center are unaffected by the boundaries. This situation leads to

De = 1, which means that the pore pressure responds both to volumetric strain rate and to

overall volumetric strain, resulting in a combined viscoelastic-like behavior. When the layer

is relatively thin, as is often the case for experimental systems and field configurations (see

for example the cases discussed in section 6.3), then ζ < Di/u0, De 6= 1, and the drainage

boundary conditions play an important role in the evolution of pore pressure. These drainage

conditions are accounted for in the permeability scale factor, k0. Here, we have considered

only completely drained and completely undrained systems. However, our choice to express

k0 as the harmonic mean of interior and boundary permeabilities is general: It may be used

to evaluate De for relatively complex systems, composed of several layers with different per-

meability, and to evaluate the expected effect of more complex drainage boundary conditions

that assume a linear combination of pressure and pressure gradient leading to an intermediate

situation of partial drainage.
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Although the pore pressure equations (15) and (18) are rich and highly predictive of the

classes of behavior observed in the simulations, there are some non-linear effects that arise

due to the coupled response with the grain dynamics, which cannot be predicted analytically.

Such an effect is the relation between the pore pressure and the applied normal stress, σn.

The pore fluid pressure formulation, equations (15) and (18), predicts that the evolution of

pore pressure is independent of σn. Yet, it is observed that when σn decreases, the pore

pressure is generally smaller. This indirect relation between the applied stress and the pore

pressure arises due to coupling with grain contact forces that transmit stresses of the order of

σn. In response to grains convergence, pore fluid pressurization resists the converging grains

by exerting pressure gradients across them. Grains then rearrange so that the skeleton forcing

on the fluid is relaxed and so is the pore pressure. If σn is large, large pressure gradients (and

large pressures) are needed to push the grains aside and overcome the contact forces. If σn is

smaller, then smaller pressure gradients are sufficient to overcome the granular contact forces,

push aside converging grains, and relax the fluid forcing.

6.1 The evolution of pore pressure with drained conditions

Next, we turn to analyze the behavior of the pore fluid pressure in simulations with drained

boundary conditions. Figure 9a shows the good correlation between the spatially averaged

pore pressure and the temporal derivative of the porosity for a representative drained simu-

lation with De ≪ 1, following the prediction of equation (36). In order to further validate

this correlation, we compare the slopes of the graphs of P vs. −dΦ/dt between the drained

simulations D1 – D10 and equation (36). For each time step in a simulation, we plotted the

global extremum of the pore pressure and the instantaneous −dΦ/dt. We then take the slope

of the linear regression line of P vs. −dΦ/dt and plot it as a function of the permeability,

k0, in figure 18, as ’o’. In the figure, the slope predicted by equation (36), η(ζ2 − z2)/2k0, is

depicted by a solid line, where the center of the grains layer is assigned for z, i.e. z = 0. A

good fit is found between simulation results and the analytical prediction. It is of interest to

note that also simulations D8 and D9 that have De . 1, and simulation D10 with De = 1 show

good fit to the analytic prediction of equation (36) that is developed under the assumption

of De ≪ 1.

Although the overall behavior of pore pressure with drained conditions follows equation

(36), there are some differences in between the drained simulations that arise from the different

parameters that are used. To study these differences we use again the value of the Deborah

number. The definition of De in equation (32) may also be viewed as a velocity ratio between

the velocity of deformation, u0, and the velocity of diffusion D/l [Samuelson et al., 2009].

When De ≪ 1, the deformation is slow enough to allow for a pore pressure front originating
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Figure 19: Snapshots of horizontally averaged pore pressure as function of depth within the
grains layer. (a) Drained simulation D2 with De ≪ 1 showing a parabolic pore pressure profile
following equation (36). (b) Drained simulation D8 with De . 1 showing a non-regular pore
pressure profile along the center of the grains layer due to elastic-like transient effects.

at any depth in the layer to reach the drained boundaries in the time scale of deformation.

When De approaches 1, the deformation becomes more rapid, or the boundaries are further

away from the center of the grains layer, and pore pressure cannot always diffuse across the

whole system during the time scale of deformation. In simulation D2, De ≪ 1. Therefore,

pore pressure diffusion originating at any depth may reach the drained boundaries at the time

scale of deformation. As a result, the pore pressure everywhere in the system is expected to

follow equation (36), resulting in a parabolic profile, as depicted in figure 19a. In contrast,

in simulation D8, De . 1. Therefore, a pore pressure front originating at the center of

the layer may not always reach the drained boundaries during the deformation time scale.

For that reason, non-parabolic profile is observed along the center of the layer (far from the

boundaries), as depicted in figure 19b. Deviation from the parabolic profile is probably the

result of transient elastic effects arising from the relation between P and Φ when De ≈ 1.

The Deborah number may be used to explain also the differences in the evolution of the

average pore pressure between the high-permeability simulations D3 (with De ≪ 1) and the

low-permeability simulation D9 (with De . 1), which are observed in figure 8. Upon the

onset of the simulations, dilation occurs that increases pore space. In simulation D3, the

small Deborah number allows for an immediate compensation of the newly generated pore

space by fluid inflow from the drained boundaries, because the rate of PP diffusion across the

system is fast with respect to the rate at which pore volume expansion occurs, due to the high
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permeability. For that reason, a transient effect of PP reduction is not observed (figure 8c).

In simulation D9, the larger Deborah number causes a delay in fluid inflow that compensates

for the expanding pore space, leading to a transient negative pore pressure (figure 8d).

An additional result of the drained simulations is the observed correlation between the

average pore pressure and the apparent friction, as depicted in figues 11 and 13. Such corre-

lation is predicted by equation (2). However, it is important to note that the law of effective

stress, equation (1), and the relation between pore pressure and shear resistance as appears in

equation (2), apply either only locally, or when the pore pressure is uniform within a granular

or porous layer. Therefore, application of equations (1) and (2) to a meso-scale implicitly

assumes uniform pore pressure, a situation that only arises in quasi-static and undrained

conditions. In the drained simulations, the pore pressure is not uniform within the layer, but

it varies dynamically in space and in time during shear. Still, the correlations between the

average pore pressure and the shear resistance in figures 11 and 13 are good, indicating that

although equation (2) may not be valid quantitatively for drained conditions, the concept of

a meso-scale effective stress is still useful when the boundaries are drained, albeit, it merits

further investigation.

6.1.1 Simulations of liquefaction events with drained conditions

After studying the general evolution of pore pressure and shear resistance in the drained

simulations, we turn to discuss special events that are characterized by high pore pressure

and low shear resistance. In the drained simulations D11 and D12 the average pore pressure

has peaks that are of the order of magnitude of σn, with zones that experience pore pressure

that significantly exceeds σn. During such events the effective stress vanishes, and the shear

resistance becomes negative (figures 11 and 13). We define these events of µa ≤ 0 as liquefac-

tion. As long as P < σn throughout most of the grains layer, granular stress chains support

the external normal load by transmitting stress from top to bottom (figures 12a and 14a ).

During liquefaction events, stress chains disappear in zones that have P > σn (figures 12b

and 14b), and the external load can no longer be transmitted through the granular phase.

Instead, it is supported by the highly pressurized pore fluid (figures 12e and 14e).

The localization of high pore pressure close to the drained boundaries during the lique-

faction event in simulation D11, (figures 12b and 12e), may be explained by its close to 1

De. In simulation D11 high pore pressure is not generated within the center of the layer since

the De . 1 limits the distance of pore fluid flow during the time scale of deformation. As

a result, communication by pore pressure diffusion between the drained boundaries and the

layer’s center is uncommon. In simulation D12, the system half size, ζ, is smaller, and as a

result, the Deborah number is smaller. For that reason, the pore pressure is high throughout
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the whole layer during the liquefaction event, and is not localized close to the boundaries

(figures (14b) and (14e)).

Such transient liquefaction events may have significant implications to natural systems

that are driven by dynamic forcing, such as tectonic loading. The simulations presented

here are driven kinematically, i.e. a constant shear velocity is imposed on the top wall, and

the systems cannot accelerate. It is speculated that if the systems would have been driven

dynamically, by shear stress boundary conditions, then the short liquefaction events would

have generated instabilities leading to acceleration. Following this initial acceleration, the

absolute value of the porosity strain rate is expected to increase, potentially leading to even

larger pressurization and further acceleration.

Previously, the only mechanism that was suggested to induce liquefaction was compaction

of loosely packed grains under undrained conditions [Sawicki and Mierczynski, 2006], leading

to an elastic-like pore pressure evolution, (as modeled in our undrained loose simulation,

U14). Therefore, the occurrence of liquefaction events with densely packed drained conditions,

leading to viscous-like evolution of pore pressure, is a surprising result of our model (that was

also obtained in our approximate model [Goren et al., 2010]). Such conditions are traditionally

believed to be unfavorable for liquefaction [Seed et al., 1976] despite field and experimental

evidence that suggest otherwise. Such evidence are reviewed next.

6.1.2 Field and experimental evidence of liquefaction events with drained con-

ditions

A first field evidence for liquefaction of initially dense but well drained layers comes from the

report of Gabet and Mudd [2006] on debris flow mobilization from dense soils. Gabet and

Mudd [2006] find correlation between mobilization and fines/sand ratio, where soils with a

small ratio are mobilized. Assuming that a small ratio of fines contributes to good drainage,

then the emergence of debris flows may be attributed to viscous-like pressurization during

shear deformation induced by gravity. In such a case, the short compactive stages that

followed the initial dilative phase, a scenario that is reviewed in Gabet and Mudd [2006],

may have led to pore pressure rise, liquefaction, and mobilization to debris flow. A second

example comes from the famous liquefaction event in Kobe, Japan, that followed the 1995

Great Hanshin Earthquake (M=6.9). Soga [1998] reviewed the damage in the port facilities

that were built on reclaimed islands. It was found that soils that were vibro-compacted

were still liquefied, although they sustained less deformation. Such soils are expected to be

highly dilative, and according to previous conventional wisdom, liquefaction resistance. It is

suggested that the moderate liquefaction that was observed may be attributed to viscous-like

pore pressure rise during instantaneous and short compactive phases that punctuated the
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overall dilative path of the vibro-compacted fill material.

Another evidence for liquefaction with drained boundary conditions comes from two sets

of experiments conducted by Iverson and LaHusen [1989]. In the first set, a layer of initially

compacted uniform rods immersed in water was sheared at a constant shear velocity, while

fluid was allowed to drain out of the top boundary. During a significant portion of the

experiment, the ’rods above the slip surface lost contact with the underlying rods and glided

on a cushion of water’, i.e. ’the pressure gradients between the shearing layer and the top

boundaries were high enough to support the rods weight’ [Iverson and LaHusen, 1989]. In the

second set of experiments, natural fluid-filled sand was laid on a tilted table and slid under

gravity. At the onset of slide, the pore pressure declined, presumably due to dilation, but

then, when motion became steady, pore pressure rose and started fluctuating, with pressure

gradient transiently supporting the grains layer overburden. This description is very similar

to our observation of the pore pressure evolution during drained simulations D11 and D12

that showed transient liquefaction events.

6.2 The evolution of pore pressure with undrained conditions

Here we discuss the pore pressure response to granular skeleton deformation with undrained

boundary conditions. Figures 15b and 16a show good correlations between the evolution of

pore pressure and the evolution of porosity for our undrained simulations. Indeed, equation

(34) predicts that with undrained conditions (when De−1 = 0) pore pressure evolution should

be elastic-like, with ∆P that depends on ∆Φ. To further validate this relation, figures 15d

and 16c compare between undrained simulation (U13 and U14) results and the analytical

prediction of equation (34), for the relation between ∆P and −∆Φ, and show good fit when

assigning the initial porosity for Φ in equation (34).

6.2.1 Simulations of liquefaction and hardening events with undrained condi-

tions

Our simulations show that when the boundaries are undrained, the response of shear resistance

to shear deformation depends on the initial packing. When the system is initially densely

packed, then dilative shear causes the pore pressure to decrease with respect to its initial value

(figure 15b). Momentary compaction events will only slightly increase the pore pressure, but

if the porosity remains higher than its initial value, the pore pressure cannot increase above

its initial value. The decreasing pore pressure causes the effective normal stress and shear

resistance to rise. Such ’dilatancy hardening’ may have important implications for nucleation

of earthquakes along fault gouge [Scholz et al., 1973, Scholz, 1978, Lockner and Byerlee,

1994, Samuelson et al., 2009, Scholz, 2002], possibly retarding the onset of an earthquake
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instability. However, when the accumulating tectonic load will eventually reach the system

shear resistivity, then the slip may potentially be more rapid. This may occur for example

when the very initial slip damages the sealed boundaries, which allows for fluid flow into

the gouge layer. As a result, the effective stress will decrease abruptly, and the tectonic

shear stress will be far greater than the system resistivity, and runaway accelerating slip may

develop. This is a plausible mechanism for dynamic weakening by fluid inflow.

When the layer is initially loosely packed, then compaction occurs with shear, and pore

pressure quickly rises. Equation (34) predicts that for the pore pressure to increase to the

value of the normal stress, a relatively small change of porosity of ∆Φ = −2×10−4 is required

(for pore water). The volumetric strain in simulation U14 that results from such a small

reduction of porosity is 0.027%. Such a small strain may not be measurable in the lab, and

it may appear that liquefaction occurs without any volumetric strain. Simulation U14 shows

that from the onset of liquefaction and onward, the pore pressure remains at a constant value

that exactly balances the external load, P = σn. This steady state is achieved because a

normal force balance on the top and bottom walls is achieved, and further volumetric strain

is prevented. In simulation U14, the stress chains that detach at the onset of liquefaction

(figure 17b) do not rejoin. As a result, shear deformation is completely accommodated within

the fluid phase, and the system loses its shear resistance as depicted by the zero apparent

friction in figure 16b.

6.2.2 Experiments of liquefaction and hardening with undrained conditions

According to conventional understanding, poor drainage is believed to be a favorable condition

for liquefaction. For that reason most engineering studies of the process of soil liquefaction

used undrained boundary conditions. Empirical studies of both cyclic loading (simulating

the passage of shear waves during earthquakes) [e.g. Seed and Lee, 1966, Peacock and Seed,

1968, Finn et al., 1971], and continuous loading (simulating mass sliding under gravity) [e.g.

Castro, 1975] have confirmed that loosely packed systems are more prone to liquefaction with

undrained conditions. Furthermore, when cyclic loading was stress-controlled, sand layers

showed an abrupt increase in their strain amplitude at the point of liquefaction. Following

simulation U14, the increase of strain amplitude may be attributed to the detachment of

stress chains during liquefaction, which transfer the support of the external load from the

grains to the pore fluid, which exerts significantly smaller resistance to shear.

As for the mechanism of liquefaction, it was attributed to the tendency of loose soil to

compact with drained conditions [Sawicki and Mierczynski, 2006], a tendency that was ob-

served in dry and completely drained experiments [e.g. Youd, 1972]. However, to the best

of our knowledge, volume reduction was never reported during undrained experiments, and
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the relation between pore volume reduction and pore fluid pressurization was not acknowl-

edge with undrained conditions. The reason is probably the limitations in measuring the

tiny strains associated with compaction under undrained conditions, which may be as small

as tenth of per mill. Unlike experiments, even very small pore volume change may be eas-

ily measured during simulations. Indeed, pore volume reduction is measured in our loose

undrained simulation U14, and was shown to lead to liquefaction with accordance to equation

(34).

While undrained conditions have shown to cause liquefaction when loading a loose spec-

imen, they are also believed to cause hardening by pore volume increase (dilation) and pore

pressure decrease when loading a densely packed layer [Rudnicki and Chen, 1988, Scholz,

2002]. Moore and Iverson [2002] performed stress-controlled shear experiments of dilative

saturated granular layers. They report that shearing of fine-grained sediments produced

smaller deformation velocity than coarse-grained sediments, presumably because the fine sed-

iments contributed to poor drainage leading to pore pressure reduction and hardening (higher

shear resistance) upon dilation. When Samuelson et al. [2009] performed a double direct shear

experiment of well drained grain layers, they observed no hardening upon dilation due to the

good drainage that allowed for an immediate pore fluid inflow into the newly generated pore

volume, and prevented pore pressure reduction and layer strengthening. Indeed, simulation

U13 confirms that when an undrained initially dense system is sheared, then dilation will

cause pore pressure reduction and layer hardening (with increased aparent friction, figure

15c). When an initially dense but drained system is sheared, then hardening may occur tran-

siently (as in the onset of simulation D9, figures 8d and 8f) if the internal permeability is

relatively low (leading to De . 1). If the internal permeability is high and De ≪ 1, hardening

will not be observed at all (figures 8c and 8e).

6.3 Estimating liquefaction potential

Following the analysis presented so far we may attempt to estimate the potential for liq-

uefaction with various boundary conditions and different parameters. A precondition for

liquefaction is the occurrence of compaction. When drainage is poor the overall compaction

matters, and when drainage is good the rate of compaction matters. Indeed, many engineering

analyses of liquefaction focus on the compaction potential as a function of the initial packing

[e.g. Castro, 1975] and of the applied cyclic strain [e.g. Vucetic, 1994], where the applied

cyclic loading presumably induces progressive compaction of a loosely or unevenly packed

system[Youd, 1972]. In the current analysis of the pore pressure evolution mechanisms, pa-

rameters such as compaction potential or number of loading cycles are not accounted for

explicitly. For that reason, when we estimate the liquefaction potential in the following, we
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do not account explicitly for the initial packing and for the amount of imposed shear strain.

We do however introduce a statistical factor that accounts for the chances of getting high

enough pore pressure in large enough zone to completely detach a layer of stress chains by

the shear strain applied in the simulation. This statistical factor may be thought of as the

statistical equivalent to empirical measures such as the number of shear cycles needed for

liquefaction.

When estimating the potential for liquefaction, one should first calculate the system Deb-

orah number in order to decide which of the pore pressure evolution regimes will dominant.

Figure 20 summarizes the various options. If De ≪ 1 and viscous-like evolution of pore

pressure is expected to dominate, a first order approximation of the liquefaction potential is

possible via the use of equation (36). Equation (36) gives the expected pore pressure as a

function of the temporal derivative of the porosity and the system parameters. Approximat-

ing d〈Φ(ζ, t)〉/dt during compaction as −Vsh/ζ, and accounting for the pore pressure at the

center of the system, z = 0, equation (36) becomes:

P (z, t) ≈ ηVshζ

2k0
. (38)

Dividing equation (38) by σn gives a non-dimensional pressure ratio that expresses the lique-

faction potential:

LPd =
ηVshζ

2k0σn

. (39)

When LPd ≪ 1, liquefaction is not expected because the generated pore pressure due to

compaction is significantly smaller than the applied external stress, σn. When LPd ≥ 1

liquefaction is possible, because the evolving pore pressure may reach and even surpass the

value of σn. Calculating LPd from equation (39) for the simulations it is found that in

simulations D1 – D5, LPd < 1 and indeed no liquefaction is observed. In simulations D6

and D7, LPd ≈ 1 but still the pore pressure maxima are observed to be smaller than σn.

For simulations D8 – D9, LPd > 10, and pore pressure maxima surpass σn. However, these

maxima occur in highly localized zones, a situation that is shown to be insufficient for causing

a complete loss of shear strength and liquefaction. In simulations D11 – D12, LPd > 100, and

the pore pressure is shown to surpass σn in relatively large volumes and to cause liquefaction

(figures 12e and 14e). Note that simulation D10 is not accounted for here because it has

De = 1.

It is concluded that LPd > 1 is not a sufficient condition for liquefaction, however it is still

expected that larger LPd will lead to larger chances of liquefaction. Our simulations show that

when LPd > 100, (and when De < 1, where equations (36) and (38) are valid) liquefaction

occurs (Simulations D11 and D12). It is proposed that the threshold of LPd > 100 comes
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about as a statistical measure for the chances of getting fast enough compaction in large

enough area during the course of shear strain application. In that sense it is possible to

rewrite equation (39) as

LPd = λ
ηVshζ

2k0σn

, (40)

where λ ≪ 1 is a newly introduced statistical factor. The measure of LPd in accordance to

equation (40) with λ = 0.01 exactly distinguishes between simulations that do not generate

liquefaction and are characterized by LPd < 1, and simulations that show liquefaction and

are characterized by LPd > 1 (see table 1). Yet it is not completely clear wether and how λ

scales with system size and system dimensionality.

To estimate the liquefaction potential of field cases consider for example a layer of saturated

soil buried at depth 10 m (this is also the distance to the boundary, ζ), with permeability of

10−10 m2. For liquefaction to occur, the excess pore pressure should reach the initial effective

stress at depth of 10 m, which is ∼0.15 MPa. Following equation (40) with λ = 0.01, for

LPd > 1, the peak ground velocity (PGV) should be Vsh > 0.3 m/s. Indeed, Kostadinov and

Towhata [2002] estimated that the minimal PGV that may generate soil liquefaction is 0.1

m/s. This observation suggests that indeed also in the field λ may be approximated as 10−2

When De ≫ 1, the evolution of the average pore pressure in the system is elastic-like and it

follows equation (34). Here, liquefaction potential may be estimated with the non-dimensional

pressure ratio:

LPu = − ∆Φ

βΦ(1− Φ)σn

. (41)

Liquefaction is expected when LPu ≥ 1. For our undrained initially loose simulation U14,

figure 16a shows that a porosity reduction of ∆Φ = −2× 10−4 has led to liquefaction. Such

a porosity reduction gives LPu & 1 in equation (41). Note that a statistical factor is not

required here because equation (34) is for the average pore pressure, and since in simulation

U14 the pore pressure homogenizes fast within the system, LPu ≥ 1 means that the pore

pressure is of the order of the applied normal stress throughout the whole system.

To estimate the liquefaction potential of a field case with De ≫ 1, consider for example

a thin gouge layer within a fault zone that is buried at depth of 1 km, and is bounded by

undrained blocks. Still it is assumed that initially the pore pressure within the gouge is

hydrostatic. For liquefaction of the gouge, the pore pressure should reach a value of σn = 15

MPa. Assuming the initial porosity of the gouge is 0.1, then according to equation (41), in

order to achieve LPu = 1, the reduction of porosity should be ∆Φ = −6× 10−4, which results

in a very small volumetric strain of less than 1%.

When De ≈ 1, the evolution of pore pressure is expected to be controlled both by viscous-

like and elastic-like behaviors. Following the approximated model presented in Goren et al.
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Figure 20: Diagram suggesting the path to estimate liquefaction potential for grains-fluid
systems under shear.

[2010, their Appendix B], it is suggested that under such conditions the pore pressure in these

mixed mode systems evolves as:

P (z, t) ≈
√

ηΦVshd

πβk0
. (42)

For our simulation D10 with De = 1, equation (42) predicts P = 233 MPa. This predic-

tion gives an order of magnitude approximation under the assumption that deformation is

localized at the system’s center [Goren et al., 2010, their Appendix B]. In simulation D10 the

deformation zone is more widespread and the maximum pore pressure that was generated is

80MPa. To estimate liquefaction potential, equation (42) is divided by σn and the statisti-

cal nature of the pore pressure evolution is accounted for using the prefactor λ, similarly to

equation 40:

LPm = λ

√

ηΦVshd

πβk0σ2
n

. (43)

For simulation D10, and using again λ = 0.01, equation (43) gives LPm ≈ 0.1. Indeed, high

pore pressure that surpasses σn is generated, but only in localized zones, and a complete loss

of shear strength is not observed in this simulation.

7 Conclusions

In this work, a fully coupled model for the mechanics of fluid-filled granular media is developed

from two components: A continuum formulation that describes the evolution of pore pressure

in response to granular matrix deformation, and a granular dynamics algorithm, that solves

the grain dynamics. The resulting fully coupled model is extremely general, as it is capable
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of simulating various loading scenarios leading to both reversible and irreversible granular

matrix deformation, with various drainage conditions for the pore fluid. Furthermore, in

the coupled model we do not explicitly implement the law of effective stress on the micro

(granular) level, but apply on the grains forces that arise from pressure gradient in the pore

fluid . Yet, we have validated that the effective stress law arises macroscopically. To the best

of our knowledge this is the first time that the micro origin of the macro effective stress law

was demonstrated.

Analysis of the pore fluid formulation together with simulation results reveals that the

evolution of pore pressure may be described as having two end-member behavior, ’viscous-like’

and ’elastic-like’. These two behaviors control pore fluid pressurization and depressurization

and the dominant terms in the pore pressure equation. The choice of which mechanism

dominates depends on the Deborah number, De, which determines whether the system is

effectively drained or undrained. When drainage is good (De ≪ 1), pore pressure evolution

is viscous-like as it is a function of the volumetric strain rate (pore volume strain rate), and

it depends on the fluid viscosity and the inverse of the permeability. When drainage is poor

(De ≫ 1), pore pressure evolution is elastic-like, with pore pressure variations being a function

of the overall volumetric strain (pore volume strain). Here, the pore pressure is a function of

the fluid compressibility. Depending on the systems parameters and the boundary conditions,

pore pressure evolution may follow one of these end-members, or be a mixture of the two.

Simulations of fluid-filled granular layers under constant normal stress and constant shear

velocity reveal that pressurization and liquefaction may occur also in initially densely-packed

layers as long as the boundaries are drained. Such conditions were previously often believed

to be resistant to liquefaction [e.g. Seed et al., 1976]. Here we show that liquefaction events

can occur under such conditions, since viscous-like pore pressure evolution (that arises when

some drainage exists) is a function of the instantaneous rate of change of porosity, and it

has ’no memory’ of the initial void ratio of the layer. Simulations with initially densely-

packed undrained boundaries show ’dilatancy hardening’ with pore pressure reduction and

an increase of the layer resistance to shear. Shear of loose initial-packing under undrained

conditions leads to a steady-state liquefaction upon very small volumetric strain (that may

not be measurable in the lab).

Finally, we conclude the manuscript by addressing the two questions that were posed in

the introduction: (1) what is the physics behind the pore pressure control over the shear

strength? and (2) what processes alter the pore pressure? To answer the first question we

have seen that when pore pressure rises to the value of the applied normal stress, then the

force exerted by pressure gradients across the grains may be large enough to counter-balance

the solid stresses, and thus acts to detach stress chains and separate previously contacting

grains. When a large enough region experiences large pressure gradient, frictional resistance
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to sliding of the layer is suppressed and shear is accommodated within the pressurized fluid

phase. The answer to the second question is that grain compaction causes the pore pressure

to rise and grain divergence causes the pore pressure to decrease. The magnitude of pore

pressure change depends on both the volumetric strain rate under well drained conditions

and on the absolute volumetric strain under undrained conditions.

Appendix A Pore fluid pressure evolution for De ≪ 1

In this section, the evolution of pore pressure is studied for drained boundaries with De ≪ 1.

Under such conditions, the time dependent term in equations (15) and (18) becomes negligible

with respect to the diffusion term because De ≪ 1 in the non-dimensional equation (30).

Equation (15) then becomes

∇ · [k(x, t)∇P (x, t)] = η∇ · us(x, t). (44)

Formulation similar to equation (44) is developed by Iverson [1993] for drained conditions.

For the 1D case, after integration, equation (44) becomes:

∂P (z, t)

∂z
=

η

k0
usz(z, t) + C(t), (45)

where C(t) is an integration factor, k(z, t) is approximated as the permeability scale factor,

k0, and usz is the horizontally averaged z component of the solid grains velocity. In order

to express the pressure as a function of the temporal derivative of the porosity, ∂Φ/∂t as in

equation (18), we use the 1D form of equation (17):

∂usz

∂z
=

1

1− Φ

∂Φ

∂t
. (46)
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Integrating equation (46) between the center of the layer at z = 0 and some distance z from

the center (see figure 7) results in:

∫ z

0

∂usz(z
′, t)

∂z′
dz′ =

∫ z

0

1

1− Φ(z′, t)

∂Φ(z′, t)

∂t
dz′ (47)

=

∫ z

0

−∂[ln(1− Φ(z′, t))]

∂t
dz′

= − ∂

∂t

∫ z

0

ln(1− Φ(z′, t))dz′

≈ − ∂

∂t

∫ z

0

(

−Φ(z′, t)− Φ(z′, t)2

2

)

dz′

≈ − ∂

∂t

∫ z

0

−Φ(z′, t)dz′

=
∂〈Φ(z, t)〉

∂t
z,

where 〈Φ(z, t)〉 is the average porosity between the system’s center and distance z from it.

Equation (47) then leads to the relation

usz(z, t) = usz(0, t) +
∂〈Φ(z, t)〉

∂t
z. (48)

Assigning equation (48) in equation (45) results in:

∂P (z, t)

∂z
=

η

k0

∂〈Φ(z, t)〉
∂t

z + C1(t). (49)

Integrating equation (49) between the layer’s center and distance z leads to:

P (z, t) = P (0, t) +
η

k0

d〈Φ(z, t)〉
dt

z2

2
+ C1(t)z, (50)

where the rate of change of the average porosity, d〈Φ(z, t)〉/dt, is approximated as uniform

in space. Requiring complete drainage across the boundaries, i.e. P (ζ, t) = P (−ζ, t) = 0,

equation (50) leads to:

P (z, t) = − η

2k0

d〈Φ(ζ, t)〉
dt

(

ζ2 − z2
)

. (51)
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Table 2: Notation

A Area of a grid cell

Ai Area of grain i

As Weighted area of grains along a grid point

D Diffusion coefficient

Di Internal diffusion coefficient (accounting only for ki)

De Dimensionless Deborah number

d Characteristic grain diameter

E Grains bulk modulus

Fij Interaction force at the contact between grain i and grain j

Fn
ij Normal component of the interaction force

Fs
ij Shear component of the interaction force

Ii Moment of inertia of grains i

kb Boundary permeability

kc Permeability prefactor

ki Internal permeability

k0 Permeability scale factor

k̃n Nonlinear normal stiffness

k̃s Nonlinear tangential stiffness

LP Dimensionless liquefaction potential

l Length scale

lx Horizontal grid spacing

ly Vertical grid spacing

mi Mass of grain i

mij Harmonic mean of the masses of grains i and j

n̂ij Unit vector normal to the contact between grains i and j

P Pore fluid pressure

Ri Radius of grain i

Rij Harmonic mean of the radii of grains i and j

rij Distance between the centers of grains i and j

rij Vector connecting the centers of grains i and j

ṙij Relative velocity between grains i and j

ŝij Unit vector tangent to a contact between grains i and j

s Interpolation (weighting) function

∆s Shear displacement since the formation of a contact between grains

t Time
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t0 Time scale of deformation

td Time scale of diffusion

ui Translational velocity vector of grain i

uf Velocity field of the pore fluid

us Smoothed velocity field of the granular phase

usz Horizontally averaged z component of the grains velocity

u0 Velocity scale factor

Vi Volume of grain i

Vsh Applied shear velocity

wi Rotational velocity vector of grain i

x Coordinate of a grid point

xi Coordinate of the center of grain i

z Vertical distance from the center of a granular layer

α Effective stress coefficient

β Adiabatic fluid compressibility

γ Damping coefficient

δ Thickness of a thin boundary layer (where kb is the permeability)

ǫ Strain

ζ Half thickness of a granular layer

η Fluid viscosity

λ Statistical factor for liquefaction potential

µ Surface friction coefficient

µa Apparent friction, τ/σn

ν Grains Poisson’s ratio

ξij Overlap between grains i and j

ρf Density of the pore fluid

ρs Density of the bulk material of the grains

ρ0 Fluid density at hydrostatic pressure level

σij Stress tensor

σ′
ij Effective stress tensor

σn Normal stress to a shear surface

τ Shear stress

Φ Porosity

〈Φ(z, t)〉 Average porosity between the center of the grains layer and distance z from it
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Ø. Johnsen, R. Toussaint, K. L. Måløy, and E. G. Flekkøy. Pattern formation during air

injection into granular materials confined in a circular Hele-Shaw cell. Phys. Rev. E, 74(1),

2006. doi: 10.1103/PhysRevE.74.011301.
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J. Schäfer, S. Dippel, and D. E. Wolf. Force Schemes In Simulations If Granular Materials.

J. Phys. I France, 6:5–20, 1996.

C. H. Scholz. Velocity anomalies in dilatant rock. Science, 201(4354):441–442, 1978.

C. H. Scholz. The Mechanics of Earthquakes and Faulting. Cambridge University Press,

Cambridge, UK, 2002.

C. H. Scholz, L. R. Sykes, and Y. P. Aggarwal. Earthquake prediction - physical basis. Science,

181(4102):803–810, 1973.

H. B. Seed. Soil liquefaction and cyclic mobility evaluation for level ground during earth-

quakes. ASCE J. Geotech. Geoenviron. Eng. Div., 105:201–255, 1979.

H. B. Seed and K. L. Lee. Liquefaction of saturated sand during cyclic loading. ASCE J. Soil

Mech. Found. Div. Proc., 92(SM6):105–134, 1966.

60



H. B. Seed, J. Lysmer, and P. P. Martin. Pore-water pressure changes during soil liquefaction.

Journal of the Geotechnical Engineering Division, 102(4):323–346, 1976.

P. Segall and J. R. Rice. Dilatancy, compaction, and slip instability of fluid-infiltrated fault.

J. Geophys. Res., 100(B11):22155–22171, 1995.

A. Snieder and A. van der Beukel. The liquefaction cycle and the role of drainage in lique-

faction. Granular Matter, 6, 2004. doi: 10.1007/s100035-0030151-9.

K. Soga. Soil liquefaction effects observed in the Kobe earthquake of 1995. Proceedings Of

The Institution Of Civil Engineers-Geotechnical Engineerin, 131(1):34–51, 1998.

K. Terzaghi. Theoretical Soil Mechanics. John Wiley, New York, 1943.

J. L. Vinningland, Ø. Johnsen, E. G. Flekkøy, R. Toussaint, and K. J. Måløy. Granular
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