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Down-scaling of fracture energy during brittle creep 1 experiments 2

We present mode I brittle-creep fracture experiments along fracture surfaces that contain strength heterogeneities. Our observations provide a link between smooth macroscopic time-dependent failure and intermittent microscopic stress-dependent processes. We find the large scale response of slow propagating sub-critical cracks to be well described by an Arrhenius law that relates the fracture speed to the energy release rate. At the microscopic scale, high resolution optical imaging of the transparent material used (PMMA) allows detailed description of the fracture front. This reveals a local competition between subcritical and critical propagation (pseudo stick-slip front advances) independently of loading rates. Moreover, we show that the local geometry of the crack front is self-affine and the local crack front velocity is power law distributed. We estimate the local fracture energy distribution by combining high resolution measurements of the crack front geometry and an elastic line fracture model. We show that the average local fracture energy is significantly larger than the value derived from a macroscopic energy balance. This suggests that homogenization of the fracture energy is not straightforward and should be taken cautiously. Finally we discuss the implications of our results in the context of fault mechanics.

Introduction

Heterogeneities in geological media have a strong impact on deformation processes in Earth's crust that are difficult to assess. Indeed, deformation is often multi-scaled due to numerous local rheological variations (e.g. variability of rocks, mineralogy) and geometrical discontinuities (e.g. faults). These discontinuities are themselves often characterized by complex morphologies that lead to local stress concentrations [Okubo and Aki,1 9 8 7 ;[START_REF] Schmittbuhl | Are stress distributions along faults the signature of asperity squeeze?[END_REF]. Micro-structures like grains, cracks and mineral assemblage also contribute to the inhomogeneity of rock structures [Scholz ,2 0 0 2 ; [START_REF] Paterson | Experimental Rock Deformation -The Brittle Field[END_REF].

Measurements of large scale crustal deformation, usually done at the Earth surface e.g. by GPS and Insar [Blewitt,2 0 0 7 ;[START_REF] Simons | Interferometric synthetic aperture radar geodesy[END_REF], allow limited constraints on the deformation at small scales, in particular at depth. Measurements in laboratory rock mechanics experiments suffer from the same limitations as sensors are located at the surface of rock specimens. Macroscopic information averaged over the sample size might be different from direct observations at the smaller scales at which the physical mechanism responsible for the deformation is at play.

Creep of faults and rocks produces smooth and continuous deformation when recorded at the system size, at large scales along faults [e.g. [START_REF] Titus | Thirty-five-year creep rates for the creeping segment of the San Andreas Fault and the effects of the 2004 Parkfield earthquake: Constraints from alignment arrays, continuous global positioning system, and creepmeters[END_REF] and at small scales during creep laboratory tests [START_REF] Heap | Timedependent brittle creep in Darley Dale sandstone[END_REF]. However, the presence of microearthquakes and transient deformation in creeping faults [START_REF] Lengliné | Inferring the coseismic and postseismic stress changes caused by the 2004 m w = 6 Parkfield earthquake from variations of recurrence times of microearthquakes[END_REF] and acoustic emission (AE) in laboratory experiments [Lei et al.,2 0 0 0 ;[START_REF] Heap | Timedependent brittle creep in Darley Dale sandstone[END_REF] suggest that the deformation process is more intermittent and distributed over a wide range of veloci-
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May 22, 2011, 4:24pm DRAFT ties. The deformation induced by microearthquakes is generally not significant, although damage-related inelastic deformation contributes to the global deformation [START_REF] Wang | Postseismic deformation induced by brittle rock damage of aftershocks[END_REF].

The differences in behavior between macroscopic and microscopic deformations highlight the importance of analyzing the physical processes at local scales at which observations can unambiguously be linked to a given mechanism. Moreover these differences question homogenization procedures, i.e. the upscaling of physical parameters from microscopic to macroscopic scales. The focus of our study is the relation between macroscopic smooth creep deformation and microscopic complex intermittent dynamics during crack propagation experiments. We address the link between macroscopic and microscopic scales where local strength heterogeneities are important.

Creep deformation results from sub-critical crack growth mechanisms and plays a significant role in time-dependent failure of rocks [START_REF] Atkinson | Subcritical crack growth in geological materials[END_REF]. Among the numerous models of creep, the brittle creep model results from time-dependent microfracturing at the crack tip [Scholz , 1968a]. The smooth large scale response in this model is a statistical response of a complex population of interacting micro-cracks [START_REF] Scholz | The Mechanics of Earthquakes and Faulting[END_REF][START_REF] Lockner | Room temperature creep in saturated granite[END_REF][START_REF] Baud | Damage accumulation during triaxial creep of Darley Dale sandstone from pore volumometry and acoustic emission[END_REF]. The time-dependence might result from chemical processes like corrosive mechanisms. In particular, rocks feature a strong action of water on Si-O bonds. For polymers or metals, lateral motion of atomic kinks along the crack front, microplasticity or diffusion induce strength variation in time [Lawn,1 9 7 5 ;Atkinson and Meredith, 1987a]. This time-dependence of slow kinetic crack propagation is usually well represented by a thermally activated mechanism where the strain rate obeys an Arrhenius law dependent on the energy release rate G (i.e. the energy available to drive the crack DRAFT May 22, 2011, 4:24pm DRAFT per unit area) [START_REF] Lawn | Fracture of Brittle Solids[END_REF]. In this approach, the crack growth is directly influenced by environmental factors (applied stress, temperature, chemical concentrations) that affect the free energy, and thus the energy barrier, via numerous competing mechanisms like stress corrosion, diffusion, dissolution, plasticity and thermal effects [Atkinson and Meredith,1 9 8 7 a ; [START_REF] Lawn | Fracture of Brittle Solids[END_REF]. Experimentally, several empirical relations have been often reported to divide the slow crack propagation in three main characteristic regimes [START_REF] Freiman | Effects of Chemical Environments on Slow Crack Growth in Glasses and Ceramics[END_REF]: 1) at very slow velocity, external variables are dominant and result in an increasing speed of crack growth with increasing G; 2) a weak stress-sensitive regime follows where transport is limiting and 3) at higher stress crack growth kinetics is little influenced by environment.

The energy release rate, G, is thus of primary importance when studying the creep mechanism and its scaling effect. G is often associated with a critical energy release rate, G c , defined from the Griffith energy balance concept: the energy release rate equals the energy available to drive the crack per unit area G = G c . Such fracture energy criterion is relevant to many geological processes like fault rupture or dike propagation [e.g. [START_REF] Rice | The stabilization of spreading shear faults by coupled deformation-diffusion effects in fluid-infiltrated porous materials[END_REF][START_REF] Rubin | Tensile fracture of rock at high confining pressure -implications for dike propagation[END_REF]. Estimation of G c is difficult and relies on laboratory rock experiments [START_REF] Wong | Shear fracture energy of westerly granite from postfailure behavior[END_REF] or earthquake rupture modeling using recorded waveforms or geological observations. Most measurements of the fracture energy are associated with a macroscopic quantity defined as a system-size representative value, hence ignoring all fluctuations of G c present at smaller scales. Here, we examine the relation between the macroscopic quantity and the smaller scale variations in G c . We do not investigate dynamic rupture (e.g. earthquakes) but slow, creeping fractures. This slow regime is relevant to many geophysical phenomena such as earthquake nucleation [START_REF] Bouchon | Extended nucleation of the 1999 mw 7.6 Izmit earthquake[END_REF], slow slip We present a series of quasi-static mode I fracture experiments performed on an experimental setting introduced by Schmittbuhl and [START_REF] Schmittbuhl | Direct observation of a self-affine crack propagation[END_REF]; [START_REF] Delaplace | High resolution description of a crack front in a heterogeneous plexiglas block[END_REF] and [START_REF] Grob | Quake catalogs from an optical monitoring of an interfacial crack propagation[END_REF]. The system allows to track a propagating crack in a brittle heterogeneous medium. We use samples of polymethylmethacrylate (PMMA), which, contrary to polycrystalline rocks, are transparent and allow for direct observation of crack deformation at the scale of the heterogeneities. The high temporal and spatial resolution of the experiment provides detailed information on the deformation process induced by the crack at the microscopic scale.
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We first present the macroscopic behavior of the fracture and an estimation of the relationship between fracture energy and average fracture velocity at the sample scale [Scholz , 1968a]. The brittle-creep propagation of the crack is characterized by an intermittent dynamics at the microscopic scale and is well modeled by an activation energy mechanism.

Then, we present the microscopic behavior of the fracture front roughness, the local fracture velocity and the local fluctuations of the energy release rate along the crack front line.

The microscopic distribution of fracture energies spreads over a wide range and is directly linked to the disordered morphology of the interface. The fracture energy determined at the local scale is on average higher than the fracture energy computed at the global scale. This highlights the importance of local defects in controlling the rupture process in heterogeneous media. It also suggests that homogenization of the fracture energy is not straightforward and should be taken cautiously. We choose PMMA in our experiment because: 1) it is easy to handle and has a high transparency adequate for optical imaging, 2) its low Young modulus (3.2 GPa) allows fine tuning of small stress changes under imposed deformation and 3) its surface energy, substantially larger than that of glass [Brace and Walsh,1 9 6 2 ; [START_REF] Katsamanis | Fracture surface energy measurements of PMMA: a new experimental approach[END_REF], limits the propagation of cracks at low applied stress. These combined properties enable a better control of the experimental system. Another advantage of PMMA compared to glass is its lower melting point which allows the welding of the PMMA plates at a much lower temperature and accordingly in an oven with a better temperature monitoring. In addition to these technical motivations, PMMA exhibits viscoelastic behavior. and different minerals [START_REF] Bean | On the cause of 1/f-power spectral scaling in borehole sonic logs[END_REF] that may increase the energy absorbed in the damage zone. Our PMMA material does not exhibit such strong disorder, and consequently the expected energy consumed around the crack tip by local plastic deformations is reduced.
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Acquisition and Image Processing

Once the sample is ready, we clamp the widest PMMA plate to a stiff aluminum frame.

A stepping motor applies the loading over the top side of the narrow plate in a direction normal to the plate interface (Figure 1). We measure the vertical displacement of the loading point with a linear variable differential transformer (LVDT) and the loading force use a slow speed camera (Nikon D700) with up to 5 fps to follow the progression of the average front position over long time scales (Figure 1).

Optical images of the interfacial mode I rupture show dark and bright regions respec-

tively corresponding to open crack and unbroken parts of the sample (Figure 2). Image processing determines the transition between dark and bright areas that defines the fracture front. We first compute the difference between each image and the first image of the experiment. The image difference highlights the fracture front while removing permanent artifacts. Then, grayscale images are transformed into black and white images according to a gray level threshold separating bright and dark regions. Then, we compute the gradient in the direction of front propagation to highlight the transition zone. We finally extract connected pixels from the gradient images that correspond to the front position, a(x, t) (Figure 2). The front propagates along the y axis with the origin defined at the load point and is positive in the sense of crack propagation. The x axis is perpendicular to y and defines the coordinate of a point along the front (see [START_REF] Måløy | Local waiting time fluctuations along a randomly pinned crack front[END_REF] and [START_REF] Grob | Quake catalogs from an optical monitoring of an interfacial crack propagation[END_REF] for details).

Loading Procedure

The The macroscopic mechanical energy release rate during mode I crack propagation Ḡ is related to the total strain energy U stored in the system by [Lawn,1 9 9 3 ]

Ḡ(t)=- 1 b dU (t) dā(t) , ( 1 
)
where b is the plate width (Figure 1) and ā(t) is the average position of the front, i.e.

the spatial average of each profile a(x, t). Owing to the geometry of our setup, Ḡ can be estimated by beam theory. In the approximation of small, purely elastic deformation and neglecting the weight of the plate, small compared to the loading force, the force F and load point displacement u (the deflection at the free end of the beam) are related by [Lawn,1 9 9 3 ]

F = Ebh 3 4ā 3 u, ( 2 
)
where E is the Young's modulus and h the height of the lower PMMA plate. We observe a linear relation between the observed average front position as a function of the predicted position (i.e. [u/F ] 1/3 ) that proves the validity of the elastic beam theory applied to our experiments (Eq. 2). The energy stored in the plate is

U = uF 2 . ( 3 
)
Combining equations ( 1) to (3) we obtain This is the usual expression of the energy release rate for a simple cantilever beam under imposed displacement and neglecting mode II loading [START_REF] Lawn | Fracture of Brittle Solids[END_REF]. Equation ( 4) can be written in terms of the observables F , u and ā as

Ḡ = 3 Eh 3 8 u 2 ā4 . (4 
Ḡ = 3 Fu 2 b ā (5)
using equation ( 2). We prefer expression (5) instead of ( 4) because it involves measured variables raised to lower powers, which reduces the uncertainties. We track the evolution of Ḡ (Eq. 5) during crack propagation as F , u and a are continuously monitored (Figure 3).

The crack propagates at steady speed when the macroscopic energy release rate Ḡ reaches a plateau that defines the macroscopic fracture energy Ḡc (Figure 3), consistently with a macroscopic Griffith equilibrium. Ḡc is in the range 122

J • m -2 -190 J • m -2
for the set of experiments presented here. The fracture front also propagates during the relaxation regime (final stage of the experiment in Figure 3) with decreasing velocity. This propagation happens while Ḡ< Ḡc , which is not predicted by the Griffith theory with time-independent Ḡc .

We also estimate the global energy release rate directly from Eq. ( 1). The strain energy loss due to the crack propagation is the area, ∆A, defined in the deflection-force (u -F ) space, between the loading and unloading curves. We numerically integrate ∆A and divide it by the crack length increase, ∆ā, and the plate width, b. This approach provides an independent estimate Ḡarea and validates the beam approach employed above under the assumption of a constant energy release rate during the entire crack propagation regime.

We report the energy release rates and fracture energies for a subset of experiments in Table (1). Although some discrepancies exist between the two methods, we observe that a 
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u =1 0 -2 ± 10 -6 m, b =2 .8 ± 0.
2cm and ā =1 0± 0.2cm). This relative uncertainty in Ḡ partially accounts for the small differences observed between the two methods used for its calculation. However, discrepancies might also be due to viscoelastic effects and yielding at the crack tip which contribute to energy loss during crack propagation but are neglected in our calculation. These effects are unfortunately difficult to estimate and we did not attempt to quantify their importance. It is worth noting that fracture energies in PMMA are of the same order of magnitude as those for rocks in mode I experiments at room conditions [Atkinson and Meredith, 1987b] and significantly higher than those for minerals [Scholz ,2 0 0 2 ] .

Brittle Creep Crack Propagation Model

The crack propagation we observe at Ḡ< Ḡc is not accounted for by the Griffith criterion (Figure 3). This is particularly pronounced towards the end of experiments where the loading displacement is fixed, which induces crack propagation at decreasing speed while Ḡ also decreases. Many mechanisms produce time-dependent subcritical crack advance where the velocity, v, follows an Arrhenius law [Wiederhorn and Bolz ,1

9 7 0 ] v(G)=v o exp βG -E RT , ( 6 
)
where G is the energy release rate, E is an energy barrier, R is the universal gas constant and T is the temperature. We consider our fracture interface as a set of discrete sites of varying energy release rate along which the crack front line is pinned [Scholz , 1968b]. We describe the energy release rate by a probability density function, f (G, Ḡ). It is the probability of a point along the front line to have an energy release rate G given an average energy release rate Ḡ along the front. The probability distribution arises from the interplay between local toughness fluctuations on the interface and elastic interactions among sites of the front line. Equation ( 6) is understood as the local propagation criterion. It can be viewed as proportional to the inverse time to failure for a site locally loaded by a constant energy release rate G. The average crack front velocity, dā/dt, is defined by

dā dt = +∞ G=-∞ f (G, Ḡ)v(G)dG. ( 7 
)
We assume a normal distribution for f (G, Ḡ) with mean Ḡ and standard deviation σ G

208

[Scholz ,1 9 6 8 a ] ,

209 dā dt = +∞ -∞ v 0 √ 2πσ G exp   - 1 2 G - Ḡ σ G 2 + βG -E RT   dG (8)
which integrates to

dā dt = v o exp β Ḡ -E RT + β 2 σ 2 G 2R 2 T 2 =v o exp β RT Ḡ ( 9 
)
where vo = v o exp 9) plainly shows that the evolution of the crack front velocity at the macroscopic scale is described by the same functional form as in the microscopic scale (equation 6). Equation ( 9) implies v ∝ exp Ḡ independently of the loading conditions, extending its validity to the entire duration of the experiment.

β 2 σ 2 G 2R 2 T 2 -E RT . Equation (
Equation ( 9) also reproduces the average evolution of the crack speed as a function of the macroscopic energy release rate Ḡ (Figure 4). It is also applicable when du/dt =0 .

DRAFT May 22, 2011, 4:24pm DRAFT Since ā(t) is small in the creeping regime, we use a first order expansion around the initial position ā0 :

Ḡ(ā)= Ḡ0 + d Ḡ(ā 0 ) dā (ā -ā0 ) (10)
where ā0 is the average position of the front at the onset of the creeping regime and Ḡ0 = Ḡ(ā 0 ). Substituting into ( 9), we get

dā dt =v o exp [-C 0 ā] ( 11 
)
where v o =v o • exp(5β Ḡ0 /RT )a n dC 0 =4β Ḡ0 /RT ā0 . After integration we get

ā(t) -ā0 = 1 C 0 ln [C 0 v 0 (t -t 0 ) + exp(C 0 )] ( 12 
)
where t 0 is the time at the onset of the creeping regime.

We also investigate the prediction of the model in the case du/dt = 0. When the front reaches a steady-state regime, the crack propagates with Ḡ = constant. This condition is similar to the Griffith energy criterion. A propagation with a constant energy release rate is described from equation ( 4) by

Ḡ = u 2 ā4 3Eh 3 8 and a(u)= √ u 3Eh 3 8 Ḡ 1/4 . (13) 
Eq. ( 12) provides a good description of the macroscopic evolution of the crack front in the relaxation regime (Figure 5, bottom) and Eq. ( 13) a good description in the forced regime (Figure 5, top). The macroscopic evolution of the front advance is well reproduced by a subcritical crack growth mechanism (Figures 4 and5) that explains the propagation of the crack even for an energy release rate (or similarly the stress intensity factor) lower than the interface fracture energy (or similarly the toughness). It is also valid even when
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the front is propagating at a constant speed. In order to supplement our estimation of the fracture energy, next we present a procedure to estimate G at the local scale.

Microscopic Behavior

4.1. Scaling of the fracture front So far, we only considered straight crack fronts. These are expected if the toughness is uniform along the interface. However, departures from the straight front geometry suggest lateral variation of material resistance due to the sand-blasting procedure applied during the sample preparation (Figure 6). The morphology of propagating interfacial cracks has been intensely studied [Schmittbuhl and Måløy,1 9 9 7 ;[START_REF] Delaplace | High resolution description of a crack front in a heterogeneous plexiglas block[END_REF] and reproduced numerically [Schmittbuhl et al., 2003a]. The in-plane morphology of crack fronts is self-affine and can be characterized by a roughness exponent. We show that a similar scaling of the fracture front morphology exists in our experiments. The Fourier transform of each front line, for a given experiment, is computed after detrending and tapering the original profile a(x, t). We then obtain the average power spectrum representative of all fronts in this experiment (Figure 6). We observe a power law decay of the power spectrum in agreement with a self-affine morphology and the roughness exponent is in agreement with previously reported values (H = 0.6) [START_REF] Santucci | Fracture roughness scaling: A case study on planar cracks[END_REF]. Variable geometry of the crack front line suggests that heterogeneities over the interface should be taken into account when evaluating the fracture energy.

Distribution of local velocities

The waiting time spent by the crack front at each local site is power law distributed [START_REF] Måløy | Local waiting time fluctuations along a randomly pinned crack front[END_REF]. The intermittent dynamics at the microscopic scale is also indirectly We follow a first-order analysis based on a perturbation method for nearly straight crack fronts, valid for small relative variations of the fracture energy [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF]]. This local fluctuations of the front position given by:
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G(x i ,t k )= Ḡ(t k )(1+γ(x i ,t k )) (14 
γ(x, t)= 1 π PV +∞ -∞ a(x ,t) -a(x, t) (x -x ) 2 dx (15)
where PV denotes the principal value. This expression is the Hilbert transform of the local slope of the front [START_REF] Ampuero | Earthquake nucleation on rate and state faults -Aging and slip laws[END_REF], which explains why small scale variations in the γ(x) profile are larger than in the a(x) profile. The discretized version of Eq. ( 15)

is γ(x i ,t k )= 1 π l/2 j=-l/2,j =i a(x j ,t k ) -a(x i ,t k ) (x j -x i ) 2 .dl ( 16 
)
where dl is the width of a pixel and l is the width of the picture. A small error may arise in the determination of γ for points close to the edge of the images of the fracture front.

Since the decay of the elastic kernel with distance is fast (∝ 1/x 2 ), the loss of information at the edge only affects a small region near the edge of the picture. The computation of γ, as presented in Eq. ( 16), assumes a half plane crack in an infinite body. If the finite height of the plate is taken into account, the elastic kernel transitions from the 1/x 2 behavior of Eq. ( 15) to a faster (exponential) decay at distances x larger than the plate height.

We calculate the local value of γ at the middle of a front line in order to quantify the impact of the truncation and the finite height. We progressively extend the bounds of the summation up to l/2. Two different front lines originating from two different experiments are processed in this way to represent the typical convergence of γ as a function of the integration range. We observe that ∼ 90% of the final estimate of γ is recovered in the first 100 pixels which corresponds to a dimension of 2 mm (figure 8). This shows that γ is controlled by the closest neighboring sites. The infinite medium approach is valid since DRAFT May 22, 2011, 4:24pm DRAFT the length-scale influencing the estimate of γ is smaller than all other dimensions of the plate. An example of a γ profile for a given front is shown in Figure 6.

1D Time Evolution

The matrix γ(x, t) represents normalized fluctuations of the energy release rate at any time and position along the front. The mean of the γ distribution, along a given front line, for a given image, is zero by definition. We track the evolution of γ(x 0 ,t) for a particular position, x 0 , along the front (Figure 9). The local movement of the front a(x 0 ,t) reveals potential correlations between the evolution of γ and local variations of a (Figure 9).

The local motion of the front is not continuous but rather exhibits a stick-slip pattern with long resting periods followed by jumps of the front position (Figure 7 and9). In contrast, the large scale evolution of the average crack position is continuous.

2D Maps

The energy release rate increases at pinned positions along the front line. This increase has two contributions : 1) a large-scale contribution from the external loading applied to the system (increase of the load point deflection) and 2) local contributions resulting from local elastic interaction due to the differential movement of neighboring points. As G increases, it rises the probability of the local site to fail in the next time interval as defined by Eq. ( 6). This probability increases until G reaches G c , at which point the local site breaks. Accordingly, we define γ c as the last value of γ just before a local variation of the front position and we estimate the fracture energy at this site as 

G c (x i ,a(x i ,t * k )) = Ḡ(t * k )(1+γ(x i ,a(x i ,t * k ))) (17 
G = G0 1 A 0 - π L A 1 , (18) 
where G and G0 are the Fourier modes of order 1 and 0 respectively. The variation of fracture energy at long wavelength between the center of the plate and its border is

G center c G border c ≈ b -πA 1 b + πA1 2 (19)
for A 0 b/π which is the case for our experiments. As A 1 is on the order of several hundred of micrometers and b is ∼ 2cm, the long wavelength shape of the front is explained by a variation of fracture energy along the plate on the order of 10%.

2D Toughness fluctuations

We estimate spatial maps of local fracture energies G c (x, a(x)), i.e. everywhere along the interface, from Eq. 17 (Figure 11). The local fracture energy is broadly distributed over the range 18 to 395 J.m -2 , clearly expressing the heterogeneity of local fracture energies (Figure 11). Interface roughness, δz, is obtained from a broken sample, previously peeled off (Figure 11). The analyzed interface does not correspond to the same area where the G c map was computed but the statistical properties of the interface morphology are assumed to be representative of the whole sample interface. The morphology of the interface was measured by a laser profilometer with spatial and vertical resolution of 10 µm and ∼ 1µm respectively (Figure 11). Height fluctuations δz's have a standard deviation of several of µm.

Local toughness variations arise from the squeezing of local asperities along the interface. We extract all profiles of G c and δz along the front propagation direction and perpendicular to it. The power spectra, S(k), is averaged over the two in-plane directions DRAFT May 22, 2011, 4:24pm DRAFT

for both the distributions of G c and δ z . The autocorrelation function, C(∆r), is then obtained as the inverse Fourier transform of the power spectrum,

C(∆r)= ∞ -∞ S(k)e j2πkτ dk, ( 20 
)
where k is the wavenumber. Figure 12 shows correlation functions of the fracture energy and the surface morphology along with their power spectra S(k). The auto-correlation functions of G c and δz decrease with distance (Figure 12). The decrease is faster for G c than for δz. The power spectra shows an exponential form although we cannot exclude a model with power-law decay associated with a cut-off length. An exponential of the form

S(k) ∝ exp(-k/k c
) is an adequate fit. The length-scale 1/k c is the correlation length, the distance beyond which the distribution becomes uncorrelated. For the front morphology we find 1/k c ∼ 188 µm. The distribution of G c is characterized by a smaller correlation length ∼ 84 µm ∼ 4 pixels. These cutoff length-scales can also be appraised from the correlation functions as we observe that C(∆r) gets around 0 above these distances.

Although the cut-off length is not the same, the exponential decay is observed for both G c and δ z . The existence of a finite correlation length for G c and δz does not necessarily imply that an approach using a representative element volume (REV) could be valid at scales greater than this length scale. Long range interactions, owing to elastic forces applied over long distances results in an interplay between the toughness fluctuations and these elastic forces. This is well demonstrated by the self-affine nature of the crack front line observed previously (section 4.1). 5) for each experiment (Figure 13).
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We only consider for the estimates of G c those locations where the front was present during more than one time interval. The estimate involves only values at equilibrium positions and thus related to the interface property [START_REF] Roux | Effective toughness of heterogeneous brittle materials[END_REF]. We also calculate the normalized distribution of G computed from Eq. ( 14) (Figure 13). The distribution of local energy release rate is wide and is centered on the macroscopic estimate of the fracture energy. This is expected from Eq. ( 14) and Eq. ( 16), because γ has zero mean.

Accordingly, the distribution of G should be approximately centered on the global value Ḡ, as observed. A more interesting feature emerges when analyzing the distribution of local fracture energy, G c (Figure 13). We clearly observe that the average of local fracture energy, G c , is higher than the macroscopic estimate of the fracture energy Ḡc .W e recall that the macroscopic estimate of the fracture energy Ḡc is defined as the maximum Therefore, γ c are on average higher than γ and the distribution of G c is shifted towards higher values compared to G. It is worth noting that the shift to higher values, going from macro-to micro-scale, does not depend of any particular choice of calculating Ḡ. For example, Eq. ( 4) and ( 5) produce a similar shift of G c compared to Ḡc because G c values are computed using Ḡ from Eq. ( 14). The observed toughening effect at the microscopic scale is thus independent on a particular calculation of Ḡ. The same argument is also valid when considering the variation of Ḡ owing to the uncertainties of the parameters defining Ḡ. Despite these uncertainties, local values of G c will still be, on average, higher than Ḡc . We note however that the amplitude of this toughening depends on the macroscopic value of the energy release rate.

There are some known geophysical scaling problems where a simple arithmetic mean (average) is not relevant for an upscaling of the problem. For example, bulk permeability of a heterogeneous material is bounded from above by the arithmetic mean and below by the harmonic average [START_REF] Zimmermann | Hydromechanical behaviour of fractured rocks, in Mechanics of fluid-saturated rocks[END_REF]. Contrary to the case of the permeability, for which the Darcy's law allows to make the transition link between scales, an equivalent expression does not exist in our problem. This prevents us to define the particular averaging procedure relevant in our system. Nevertheless, we test several forms of mean of our values of G c . We compute the harmonic, the geometric and the arithmetic means of the microscopic distribution of fracture energy for each experiment. We observe for all experiments that all types of average are systematically overestimating the DRAFT May 22, 2011, 4:24pm DRAFT X -25 macroscopic value. This suggests that scaling effects are non trivial and related to the observation scale and the mechanism of brittle creep as proposed.

6. Implications for Fault Mechanics The only difference with the mode I expression is a constant coefficient dependent on the Poisson ratio. One could refer to Schmittbuhl et al. [2003a] for an extended discussion on the relation between rupture modes.

Importance of the Process Zone

Fracture in rock samples or faults exhibit a process zone that encompasses a region with complex microcracking because of the high stress field around the crack tip. Significant energy is dissipated in the formation of the process zone and in the frictional work on these microcracks. This energy loss is much higher than the surface energy associated with the separation of the two blocks in contact. As the size of the process zone is observed to increase with fault length, a scaling argument suggests that the energy release rate dissipated in the process zone also increases with the fault/system size [Scholz ,2 0 0 2 ] . May 22, 2011, 4:24pm DRAFT
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This results in an apparent scaling of the fracture energy with the system size, where the fracture energy includes all sources of energy dissipations [e.g. [START_REF] Abercrombie | Can observations of earthquake scaling constrain slip weakening?[END_REF]. Our system does not involve a pronounced process zone because of the small bulk disorder. As a consequence, estimates of the fracture energy in our experiments are close to the surface energy, in contrast to earthquake data where the growth of the process zone and friction greatly influence the dissipation process. Our observations do not directly address the issue of the scaling of G c with system size. The size of our system is fixed by the sample size (plate dimensions) and does not vary. The difference of fracture energy that we observe results from the change of the observation scale and not the sample scale.

Slow Slip Events

Our observations provide a guide for understanding the simultaneous presence of acous- (by few orders of magnitude) compared to values reported for dynamic fractures of the same size. This is the case for a creep event along the San Andreas fault reported by [START_REF] Rice | The stabilization of spreading shear faults by coupled deformation-diffusion effects in fluid-infiltrated porous materials[END_REF]. This is also suggested from the low slip to size ratio of slow events [e.g. [START_REF] Ide | A scaling law for slow earthquakes[END_REF], which combined with Eq. ( 67) from [START_REF] Rice | The stabilization of spreading shear faults by coupled deformation-diffusion effects in fluid-infiltrated porous materials[END_REF] yields low values of fracture energy compared to regular earthquake. These studies however do not resolve the spatial distribution of fracture energy on the fault plane during the slow events which would make possible the comparison with macroscopic estimates as in our study.

Conclusion

We provide a direct description of brittle creep crack propagation at different observational scales. At the local scale, the fracturing process is intermittent and is characterized by a complex fracture front morphology and a wide range of local crack velocities. At a given time, a mixture of slow and fast ruptures can be observed simultaneously. This complex pattern results from the presence of heterogeneities along the crack interface to-DRAFT May 22, 2011, 4:24pm DRAFT gether with significant elastic interactions. When observed at the macroscopic scale, the variability of the local scales disappears and the crack propagation is smooth. This suggests that macroscopic observation of slow deformation processes (for example for rocks samples or faults) should be analyzed in the light of the heterogeneous nature of the material. Therefore, the fracture energy depends on the observation scale and its macroscopic estimate is lower than the average over local values. The front starts to move slowly and Ḡ increases (light gray area) up to a nearly constant value when the crack front velocity reaches a steady-state value (gray area). The loading point position is finally set to a constant value and Ḡ decreases (dark gray area) before the loading point moves back to its initial position at the end of the experiment (in a part of the curve not displayed here).

Table 1.

Macroscopic energy release rate determined for all the seven experiments performed with the fast speed camera. The values of the fracture energies, Ḡc , are obtained by taking the maximum of Ḡ computed from Eq. ( 5) for each experiment. We also report the mean energy release rates during the crack propagation obtained by the beam theory, Ḡ and by integration under the deflection-force space, Ḡarea . All values are in J.m -2 .

Experiment n propagation, from the initiation phase up to the relaxation phase, the best fit using Eq. ( 6), displayed as a dashed line, provides a good description of the data. It suggests that the crack propagation is a process driven by time-dependent brittle creep. For each sample we carried out several experiments. The best fit using Eq. ( 13) is displayed as a black line for each sample. Crack front positions are shifted vertically for each sample in order to enhance the visibility. Bottom: Evolution of the average front position, ā during the relaxation regime (gray dots). The x-axis is the time after we stopped the loading. For each experiment, the best fit using Eq. ( 12) is displayed as a black line. A good match of the fitted line to the data is observed after several seconds which marks a transition period from the previous regime. Each of the three bottom figures represent a different sample. For each experiment, the vertical axis is shifted in order to enhance visibility. 
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  May 22, 2011, 4:24pm DRAFT events and postseismic slip [e.g. Das and Scholz ,1 9 8 1 ] .

  We use two transparent PMMA plates of dimensions 20×10×1.0 cm and 23×2.8×0.5 cm (Figure1). First, we sand-blast one surface of the narrow plate with glass beads of diameter φ ∈ [180 -300] µm. We clean the blasted plate to remove any electrically attached glass beads. Then we assemble the two plates in a stiff metalic loading cell with the blasted surface facing a surface of the larger plate. Finally, we impose an homogeneous normal load on the assembled plates and heat the loaded sample at 190 • C for 45 minutes to anneal the plates. The thermal annealing produces a weak cohesive interface along which the sample breaks in mode I. The sand-blasting introduces the random roughness of the plate surface that controls the local strength along the weak interface. It also induces microstructures at the plate surface which make the sample opaque, but the newly formed block, after annealing, recovers its transparency since the contrast of the refraction index along the interface disappears.

  by an STC 1205 traction/compression transducer. Displacement and force are measured with a resolution of 1.3 µm and 2.4 • 10 -3 N respectively. The vertical displacement imposed on the narrower plate induces stable propagation of a mode I planar fracture along the prescribed weak interface. We monitor the fracture front propagation using a fast optical camera (CamRecord 600) with up to 1000 fps. Images have a maximum dimension of 1024 × 1280 pixels and sample resolution is ∼ 20µm/pixel. For some experiments, we

  May 22, 2011, 4:24pm DRAFT simple elastic beam model is appropriate to first order. Typical uncertainties in G are on the order of 7.5% given the uncertainties in F , u, b and a (typical values are F =30±0.2N ,

  β and v o are material-dependent empirical constants and the energy release rate G is directly linked to the stress intensity factor K by K =

  May 22, 2011, 4:24pm DRAFT evidenced in rocks during creep tests [e.g.[START_REF] Heap | Timedependent brittle creep in Darley Dale sandstone[END_REF]. The recording of acoustic emissions during a slow macroscopic deformation suggests that at the local scale the deformation is distributed over a wide range of velocities. Figure7shows, for two experiments, the probability density function (pdf) of v obtained by the procedure described by[START_REF] Måløy | Local waiting time fluctuations along a randomly pinned crack front[END_REF]. The broad distribution of local speeds, spanning more than two orders of magnitude, highlights the irregular nature of the fracturing process at the small scale. 4.3. Local Energy Release Rate 4.3.1. Non-straight Front Geometry

  approach is valid in our experiments since front lines are straight at first order. Furthermore, the model adequately reproduces the morphology of experimentally propagating cracks, although a discrepancy in the value of the roughness exponent remains[Schmittbuhl et al., 2003a]. However, this approach ignores crack coalescence, which can play a role in redistributing stresses ahead of the crack front[Hansen and Schmittbuhl ,2 0 0 3 ; Schmittbuhl et al., 2003b]. Here we assume that the elastic front line model represents the dominant process. The first order approximation of the energy release rate of an almost straight crack is[Gao and Rice,1 9 8 9 ] 

γ 2 .

 2 ) where t * k is the time at which γ c was reached. It is important to note that Ḡ(t * k )i so btained from the measurement of the average position of the front ā(t * k ). Any variation of taking place during the time interval between estimating γ c and the local front advance is neglected. These microscopic estimates of the fracture energy are lower bounds, since there is a finite probability that the local site actually breaks with G<G c according to the Arrhenius model described earlier. In order to get an insight on collective processes that take place at the local scale during the crack propagation, we show two examples of a spatio-temporal map γ(x, t) in Figure 10. These maps are subregions of the effectively recorded areas (both in time and space) taken from two different experiments representative of the two propagation regimes, at fixed loading point (relaxation regime) and constant loading rate respectively . Notable features emerging from Figure 10 are summarized below: 1. At a given time (horizontal line), only a few points are at G = G c , and most points have G<G c for both forced ( Ḡ = Ḡc ) and relaxation regimes. Observation of the intermittent failure of local sites during slow crack propagation is a direct measurement of a brittle/creep behavior. As most of the sites along the front line are below G c ,t h e macroscopic estimate of fracture energy Ḡc is an average among local values of G that are mainly below the critical state ( Ḡ = Ḡc ). Therefore, the macroscopic fracture energy is a lower estimate compared to the microscopic values. Large collective failure events (numerous black points on the same horizontal line) corresponding to a burst of activity in a relatively short time interval occur at discrete periods. These fast local movements arise from a connected set of unstable positions along the front. A burst of unstable positions appears when the local G is equal or higher than the fracture energy of all sites of the cluster. This scenario typically occurs after breaking DRAFT May 22, 2011, 4:24pm DRAFT a strong local asperity (high G c value). The front then travels in a region with lower G c up to a new arrest position that corresponds to the next accessible equilibrium position. 3. Despite very different average velocities and loading regimes, strong similarities exist between the patterns of the two maps. The main difference between the two loading regimes arises from the waiting time between each successive move of the front at a particular local site. Time intervals between two successive moves are much larger in the relaxation regime (frame rates in Figure 10 are 125 fps and 1000 fps for the relaxation and the forced regime respectively ). The shorter time intervals observed in the forced regime are related to a higher loading rate at each local site. 4.4. Influence of Fluctuations in Toughness 4.4.1. Large scale fluctuations The front geometry has a long wavelength curvature due to a large scale variation of the fracture energy at the interface. The annealing condition in the sample during its preparation is not perfectly homogeneous. Transient heat diffusion from the sides of the plates to the center of the sample is possibly responsible for such curvature. As a consequence, edges of the plate have higher strength than the center. We used this large scale curvature of the front line to infer the large scale variation of the fracture energy along the x direction. The largest Fourier mode of the front is a single cosine function of the form a(x)=A 0 +2A 1 cos(πx/b) where x is the coordinate along the front direction and b is the width of the plate [Gao and Rice, 1989]. Griffith criterion holds everywhere along the crack front (G very close to G c ), with G c being the local fracture energy at each DRAFT May 22, 2011, 4:24pm DRAFT X -21site. It follows from[START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF] 

5 .

 5 Scaling of the Fracture EnergyThe observation that most points along the crack front have energy release rate G<G c indicates that the macroscopic estimate of the fracture energy, Ḡc , is different from the fracture energy at the local scale. We test this proposition by comparing G c at the local and the global scales. In particular, we address whether the macroscopic toughness is a simple arithmetic average of the distribution of local toughness. In such a case, an homogenization procedure is quite straightforward and Ḡc = G c , i.e. the local variations of material resistance are simply scattered around the global value and the average of the distribution is equal to the global value. We calculate normalized distributions of G c as well as global estimations of Ḡc , obtained with Eq. (

  value of the Ḡ reached during the crack propagation. Such higher values of G c compared to Ḡc are observed for all experiments and the distribution of G c is systematically shifted DRAFT May 22, 2011, 4:24pm DRAFT to higher values compared to the global Ḡc . This indicates that G c samples the subset with the highest values of G. For a pinned position of the front, γ increases with time leading to higher values at the end of the time interval, just before the local advance of the front.

6. 1 .

 1 Link Between Crack ModesSeveral analogies can be drawn between our mode I fracture experiment and deformation processes in the crust. Tensile failure of natural materials occurs during dyke propagation and during secondary micro-cracking surrounding shear fractures. The mechanical process in our experiments is not limited to tensile fracture. The role of heterogeneities along a fault plane has similar consequences on the local values of the stress intensity factor (or energy release rate). An expression similar to Eq. (14) exists for mode II and mode III cracks when ignoring second order coupling among shear modes[Gao et al.,1 9 9 1 ] .

  tic emissions and smooth deformation during creep experiments in rock samples [e.g. Heap et al., 2009]. Such brittle-creep behavior is possible due to the heterogeneous nature of the interface which produces, at the local scale, a complex pattern of ruptures (see Figure 10) because of elastic interactions. It is a competition between sites with sub-critical or critical propagation (pseudo stick-slip crack advances) resulting in an average (macroscopic) steady deformation. This mode of rupture implies a variation of the fracture energy with observation scale. The fracture energy computed at the sample scale actually integrates all points along the front line and thus is an average among sites that are at G = G c (only a few points) and a majority of points that are pinned along the interface under unloading conditions with G<G c . A higher proportion of sites along the front line are at G = G c when the loading speed is increased, and subsequently the crack speed. The difference between Ḡc and G c vanishes when the speed of the crack approaches the Rayleigh wave DRAFT May 22, 2011, 4:24pm DRAFT X -27 speed. The deformation rate is an important factor that affects the large scale estimate Ḡc while faintly modifying estimates at local scales. In the case of a dynamic crack, in our model, at a given time step, all points along the front line are moving. Our definition of the local fracture energy implies that at all time steps and for every position along front, the energy release rate is equal to the fracture energy. Averaging over all local estimates produces the exact same value as the macroscopic one, Ḡc = G c . Our results are more closely related to slow deformation processes occurring in the Earth crust rather than dynamic events, like creeping of fault segments, nucleation phase of earthquakes, postseismic slip or slow slip processes. The fracture energy for slow ruptures in the earth are lower
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 1013 Figure10.Zooms on a sub-space of γ matrix obtained using Eq. (16) for two

  

  

  

  ) for a given front at time t k . Ḡ(t k ) is the energy release rate computed from the average front position at time t k and γ(x i ,t k ) is the contribution from elastic interactions due to
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Figure 11. Top : Zoom on a map of local fracture energy, G c , computed using Eq. ( 17).

During this experiment the crack propagates from bottom to top. We clearly observe an heterogeneous distribution of G c which appears as a random field although a correlation among sites can be identified. The few holes (3 % of total number of pixels) that exist at some places in the map, because of a too low frame rate, have been filled by linear interpolation. The inset graph represents the distribution of fracture energy for all sites of the main picture. Bottom : map of a sample interface morphology, δz of a similar size to the one represented for the fracture energy. An heterogeneous distribution of δz is clearly visible with an amplitude of variation of several tens of micrometers. The inset graph represents the distribution of the interface height δz.