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Abstract

An original approach to cluster multi-component data sets is proposed that includes an esti-

mation of the number of clusters. Using Prim’s algorithm to construct a minimal spanning tree

(MST) we show that, under the assumption that the vertices are approximately distributed

according to a spatial homogeneous Poisson process, the number of clusters can be accurately

estimated by thresholding the sequence of edge lengths added to the MST by Prim’s alorithm.

This sequence, called the Prim trajectory, contains sufficient information to determine both

the number of clusters and the approximate locations of the cluster centroids. The estimated

number of clusters and cluster centroids are used to initialize the generalized Lloyd algorithm,

also known as k-means, which circumvents its well known initialization problems. We evalu-

ate the false positive rate of our cluster detection algorithm, using Poisson approximations in

Euclidean spaces. Applications of this method in the multi/hyper-spectral imagery domain to

a satellite view of Paris and to an image of Mars are also presented.
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1. Introduction

1.1. Motivation and contribution

One of the recurrent problems in pattern recognition, machine learning or data mining,

is data clustering [1, 2, 3]. This is also a major subject of research in the remote sensing

community with the emergence of hyper-spectral sensors, which generate a significant amount

of data. Clustering consists of partitioning a dataset into groups of points that have high

similarity. Similarity in this context means that data belonging to a cluster have similar

features.

In this paper a new method is introduced for estimating of the number of clusters present

and determining good centroid locations to initialize the k-means algorithm [4], which is widely

known to be extremely sensitive to centroid initialization. The presented method relies on

properties of the minimal spanning tree (MST) as grown by Prim’s algorithm [5], and in

particular the Prim trajectory defined as the rate of growth of the MST as Prim’s algorithm

successively adds edges. The Prim trajectory describes the evolution of the cost of adding

edges to the MST as a function of the algorithm iteration index. Data are L dimensional

feature vectors sampled from a unknown multimodal distribution. It is assumed that distinct

groups or clusters manifest themselves as modes in the density. We show that Prim trajectory

is as a one-dimensional unfolded representation of the underlying data probability density

function, exhibiting peaks and valleys. Thus, we propose to estimate the number of clusters by

thresholding Prim trajectory, in which sharply peaked modes are associated with deep valleys

[6]. A similar Prim-trajectory clustering approach was used for a bioinformatics application

in Olman et al. [7].

The proposed method can be viewed as an algorithm for initializing an iterative partitioning

algorithm like k-means, which is the focus of this paper. k-means is one of the simplest

and most popular approaches for solving clustering problems despite its severe sensitivity

to initialization. While k-means appears as a final step in the proposed algorithm, other

partitioning algorithms could be used. Alternative approaches can be used to identify the

number of clusters. Jordan & Ng or Shi & Malik’s spectral clustering methods[8, 9, 10]

estimate the number of clusters by thresholding the eigen-spectrum of the graph Laplacian

[11]. This however remains a difficult task in the presence of outliers, as ordered eigenvalues

usually do not exhibit an obvious threshold. As our method involves only those vertices in the

graph that are close to the most concentrated regions (modal peaks) of the data this problem
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is circumvented.

The problem of setting the threshold is tackled by adopting a hypothesis testing frame-

work. Under the null (no clusters) hypothesis we model the data as a realization of a spatial

homogeneous Poisson spatial point process over feature space. A Neyman-Pearson hypothesis

test procedure is then used to detect the modes.

The construction of the Prim trajectory generally requires the computation of a distance

matrix between the data points, which may be impractical for large amounts of data. We

propose an algorithm for calculating Prim’s trajectory that avoids the difficult computation of

huge similarity matrices. The algorithm is based on a data-driven hierarchical classification.

Our Prim-based algorithm can be applied to a variety of distance metrics or similarity measures

in feature space. Often a non-symmetric information theoretic similarity measure can be used

to obtain improved clustering results. We show that use of such information measures can

significantly improve clustering performance on real-world data imaging sets.

1.2. Context and brief review of previous works

The general data clustering problem has long been studied and many approaches have

been proposed (see [1, 2, 3] for review). One can divide the existing methods into two classes:

hierarchical and partitional clustering algorithms. Hierarchical algorithms evolve the number

of clusters, e.g., as in agglomerative or divisive clustering, while partitional algorithms fix the

number of clusters, e.g., as in modal or k-means clustering.

Most hierarchical clustering algorithms are based on popular single-link or complete-link

algorithms. These methods often suffer from prohibitive computational time due to the need

to construct a dendrogram on a large datasets. Their stability in the presence of outliers and

their sensitivity to the applied dendogram thresholds are problematic. One of the most popular

partitional clustering algorithm is the generalized Lloyd algorithm used to implement k-means

[4], which will be the focus of this paper. The present work is developed in the context of

unsupervised clustering. Neither the underlying distributions, nor the number and locations

of meaningful clusters are known. Hence no prior information is required.

In k-means clustering k points are randomly chosen as the initial cluster centers. The choice

of the number k of clusters is usually based on some heuristic. Each data point is assigned to

the group that has the closest center. The cluster centers of mass are then recomputed. The

assignment and re-computation steps are iterated until the intra-cluster variance converges

to a minimum (see section 2.1). This algorithm, as well as the classical ISODATA algorithm
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[12], belongs to the class of squared error algorithms which aim at minimizing some objective

function in order to cluster the data.

The k-means algorithm clusters the data into non-overlapping convex groups and it always

converges (although not necessarily to the global optimum). As with any partitional clustering

algorithm, it is highly sensitive to the initial parameters: the number k of clusters and their

centroids, respectively. In practice, to obtain the best clustering results, the k-means algorithm

is often applied many times to different random initializations and the minimizer of the intra-

cluster variance is selected as the final clustering result. However, this is at the cost of increased

computation.

The main focus of this paper is automatic initialization of k-means by estimating both the

number of clusters present in the dataset and the positions of initial cluster centroids. Initial-

ization is crucial since improper initialization could lead the algorithm to converge to some

undesirable local minimum of the objective function. Initialization of the k-means algorithm

has been extensively studied during the last decade (see [13] or [14] for a short comparative

study of initialization methods for k-means). This paper proposes an improved method to

initialize the k-means algorithm.

The issue of estimating the right number of clusters has been widely addressed. One of

the most widespread approaches is to use statistical model selection criteria such as Akaike in-

formation criterion (AIC), Bayesian information criterion (BIC), minimum description length

(MDL) [15], Tibshirani’s gap [16], Hartigan’s index [17] or Krzanowski & Lai’s index [18].

Milligan and Cooper [19] have studied and compared thirty different model selection criteria

and they concluded that Calinski & Harabasz’s index [20] was the best. Most of the aforemen-

tioned techniques are based on a clustering step with k-means, followed by a merge or split

procedure to optimize these criteria. We briefly review some of these methods below.

In the vector quantization community, Bischof et al.[21] proposed an algorithmic complexity

called MDL, to select the number of clusters (starting with a large value of k). Pelleg and

Moore [22] developed a variant of k-means referred to as X-means, starting from a minimum

number of clusters followed by application of k-means. Their agglomerative cluster splitting

procedure is based on the BIC criterion. Hamerly and Elkan [23] proposed to learn the integer

k required in k-means by assuming a Gaussian mixture model. Starting with a small value

of k, the algorithm splits the clusters that fail a test of spherical Gaussianity. Between each

statistical test, the k-means algorithm is applied to refine the solution. Nevertheless, this
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algorithm referred to as G-means, performs poorly in the presence of non-spherical or non-

elliptical clusters. Tibshirani et al. [16] defined the Gap statistic to determine the optimum

number of clusters. Their method is based on the output of one of two clustering algorithms:

k-means or hierarchical classification. The authors propose to compare the logarithm of the

within-cluster dispersion to its expectation under a reference null-distribution. This method

performs better if clusters are well separated and if the number of clusters is small.

The location of the initial cluster centroids has serious impact on the performance of

partitional clustering algorithms. Forgy’s approach [24] consists in choosing initial centers by

picking them at random. This method often converges to local minima. A refinement was

recently proposed by Arthur and Vassilvitskii [25] called k-means ++. The first initial center

is randomly chosen among the data points. The next seed is selected among the remaining

data points with a certain probability, depending on the distance between data points and

their closest center. This operation is repeated until k centers are chosen.

Katsavounidis et al.’s algorithm [26] starts by initializing the first cluster as the point

with the maximal norm. Then, the distance of all data points from the first cluster center

is calculated. The point with the largest distance is chosen as the second cluster center.

After that, for every data point, the distance with its closest center is computed; and the

point with the largest distance is chosen as the next cluster center. This process is repeated

until k centers are chosen. Unfortunately, this method is sensitive to outliers. Kaufman and

Rousseeuw’s method [27] selects the first center as the most centrally located point. Then, a

heuristic rule described in [27] is used to select other clusters centers until k centers are chosen.

A good way to properly initialize the k-means algorithm is to place every cluster centroid

at the modes of the joint probability density of the data. Motivated by this idea, Bradley

and Fayyad [28] propose a refinement of initial conditions of k-means near the modes of the

estimated distribution, by the use of a recursive procedure executing k-means on small random

sub-samples of the data. Global k-means was introduced by Likas et al. in [29], and is also

motivated by the same idea that modes play an important role. Their method is based on a

recursive partitioning of the data space into disjoint subspaces by using k−d trees. They then

define a cutting hyperplane as a linear space perpendicular to the highest variance axis. This

is similar to the data partitioning that occurs in adaptive vector quantization and regression

trees [30].
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Our method is motivated similarly to the Bradley and Fayyad’s motivation of their recur-

sive algorithm [28]: the modes of the underlying unknown multivariate density are the most

pertinent features for initializing a partitional algorithm. The originality of our approach re-

sides in (1) the use of Prim trajectory to map the multivariate density to a singly indexed

1D space, and (2) the formulation of mode detection as a binary hypothesis testing problem

(section 2). This allows us to specify a fully unsupervised procedure, which exhibits both relia-

bility and robustness in the presence of noise and outliers. An implementation of our approach

to large data sets, relying on the use of a pre-conditioning data driven classification tree, is

described in section 3. Finally, in the last section, experimental results are presented, and

alternative information theoretic similarity measures are introduced. Information theoretic

similarity measures turn out to be better adapted to feature vectors that behave like spectra,

i.e., non-negative valued and normalized. Our new Prim-based clustering approach is tested

in this context.

2. Automatic detection of the relevant number of clusters

In this section, the definition of MST and Prim’s algorithm are briefly reviewed. Then

an original approach is proposed for initializing k-means by jointly estimating the number of

relevant clusters and the locations of their corresponding centroids.

2.1. Formulation

Let V be a set of N data points or feature vectors in R
L. In our unsupervised framework,

it is assumed that the points are sampled from an unknown density P (v) and that distinct

groups manifest themselves as distinct modes of the density P (v).

Each data point (actually a vector in R
L) is interpreted as a vertex in a graph so that V is

the graph vertex set. The goal is to partition V into k classes. Denote C : (C1, . . . , Ck) the set

of clusters, and let M : (µ1, . . . , µk) be the set of corresponding centroids. Let us emphasize

that no prior information is introduced: in the context of unsupervised clustering, neither the

underlying distributions nor the number and locations of meaningful clusters are known.

The k-means algorithm aims at finding a partition of the data set such as the following

error function (within-cluster summary distance to centroids) is minimized:

J(C,M ) =

k
∑

j=1

∑

v∈Cj

||v − µj||
2 (1)
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This minimization is well known in the pattern classification and vector quantization liter-

ature [31, 32]. In this paper the classical Lloyd algorithm is used which is summarized in the

final loop of Algorithm 1 given in the sequel.

2.2. Minimum Spanning Tree and Prim’s algorithm

Let T be an undirected acyclic graph (or tree) connecting all vertices in V . The graph

is specified by its set of vertices and its set of edges E = (e(vi,vj), (i, j) ∈ {1, . . . , N}). The

length or weight |e(vi,vj)| of an edge measures a distance or dissimilarity between two vertices

(vi,vj).

The total length of the tree T is the sum of all edge lengths: L(T ) =
∑

e∈T |e|. The

minimal spanning tree T ∗ is the one having minimal length among all spanning trees:

L(T ∗) = min
T

∑

e∈T

|e| (2)

There exist many algorithms for constructing the MST (see [33] for state of art of MST’s

algorithms). This paper focuses on Prim’s algorithm [5] as some of its features will be used

for estimating the presence of relevant clusters in the data set. Prim’s algorithm is briefly

described below.

Let Ti be the partially connected graph at iteration i − 1, hence i vertices are connected

to the MST. At the ith iteration, one non-connected vertex, say vi, and one connected vertex

of Ti are selected, so that the dissimilarity measure between them is minimal. Ti becomes

Ti+1 with this new vertex vi and the associated edge of minimal length. This operation is

repeated until no unconnected vertex remains; N − 1 such iterations are required to construct

the complete MST from a set of N points. A consequence is that any vertex is connected to

its nearest neighbor, and that any tree fragment is connected to its nearest neighbor by the

shortest possible link.

A MST is unique if there are no ties in the pairwise distances. The choice of the initial

vertex has no consequence on the resulting MST: the same set of edges will be obtained,

although they will be constructed at different iteration indexes. The construction of the MST

associated with a vertex set V only requires the knowledge of the dissimilarities between the

pairs of vertices. These will be assumed to be symmetric quantities in the sequel, in agreement

with the fact that only undirected graphs will be considered. The importance of the choice of

the metric provided to the MST computing routine is discussed in Section 4.2.
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2.3. Exploiting the MST and the Prim’s Trajectory

The use of the MST for describing multivariate data in R
L in order to exhibit clusters is

not a new idea [3]. Existing methods share a common feature: they are based on graph cuts.

Single-cut clustering [34] is easily performed using the MST, but it is known be highly unstable

in the presence of noise and/or outliers in the data set. Slagle et al. [35] proposed to build a

one dimensional function of the length of edges connecting vertices within a short subgraph,

to detect the largest ones, subsequently applying graph cuts to form clusters. Stuetzle [6]

proposed to consider multiple cuts involving all edges larger than a threshold in order to

preserve minimal cardinality (the ’runt size’) of the resulting clusters (subgraphs). Tuning the

adequate ’runt size’ turns out to be difficult and critical for accurate clustering performance.

The Prim trajectory makes use of the MST construction scheme to propose candidate

subsets of vertices that are representative of modes of the density P (v). Instead of trying to

detect edges to cut the Prim algorithm decides which vertices to keep, which we use to form

the seeds of clusters. Like the method presented in [35] the Prim trajectory projects the data

into a one dimensional space.

Prim trajectory and the modes of P (v)

We formally define the Prim trajectory here. Prim’s algorithm starts with a root vertex and

then constructs edges by a sequence of nearest neighbor operations. Let g(i) = |ei| be the

length of a new edge built by Prim’s algorithm at iteration i. The ordered set of edge lengths

[g(i), i = 1 . . .N − 1] is defined as Prim trajectory. The edge function g allows us to “unfold”

the MST built in an L dimensional space into a one-dimensional function (see Fig. 1).

A rough estimate of the L-variate density P (v) in the vicinity of vi and vj may be inferred

from the weight of the edge connecting them: if vi and vj are connected by the MST then,

for k = 1, the 1-NN density estimate is given by p(vi) ∝ 1
minj |e(vi,vj)|L . This widely used

density estimator motivates our approach: a series of consecutive connections with low weight

(a valley in g) is the signature of a peak in the density estimate of P (v). Then, if enough

vertices are involved in the valley, a mode of P (v) will be detected by thresholding g.

Discussion

• While the obtained MST does not depend on the vertex onto which it is rooted, g changes

with the choice of the root. However, Prim’s algorithm aggregates new edges of minimal

weight at each iteration and the vertices sampled from the same mode will always be

connected within a subset of consecutive iterations. Figure 1 illustrates this property.
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A MST is built from two different Prim’s trajectories. Both trajectories exhibit deep

valleys, associated to series of consecutive iterations connecting close neighbors from the

same mode.

• The choice of the threshold to apply to g(i) is crucial, since it defines the sensitivity of

the mode detection to overlapping of clusters. As g is built from a finite size sample, a

high threshold will lead to detection of spurious modes, whereas a low threshold may lead

to missing some modes. The example in [36] illustrates this behavior; the threshold here

was arbitrarily set to ǫt = σ(ei), the standard deviation of the edge lengths. In Fig.1(e)

and (f), if a mode is associated to each group of successively connected points below the

threshold, a lot of small spurious modes are introduced due to the high variability of the

1 NN density estimator for small N . This was addressed and an entropy based approach

was discussed in [36] for the case of Euclidean distances, but the resultant algorithm has

high computation cost. We formulate a systematic approach to threshold selection using

a binary hypothesis testing framework in the next subsection.

2.4. Setting the threshold

Consider the following question. What is the probability that a subset of vertices appear

as a close connected neighbors in the absence of mode, thus leading to the erroneous detection

of a mode? The closeness will depend on the given threshold, and the erroneous detection will

be a false alarm. If we specifiy a null model for P (v) a Neyman-Pearson detection framework

can be adopted. We specify the hypothesis testing procedure as follows. First, we propose a

model for the spatial vertex distribution under the null hypothesis H0 (no cluster). Second,

we express the probability of finding a subset of k consecutive connections whose weights are

below a given threshold ǫt. Third, we relate the probability of false alarm to the parameters

N , ǫt and k.

Modeling the vertex distribution under H0.

Under H0 we model the N vertices as a realization of a homogenous Poisson process over the

bounded domain V ⊂ R
L. This implies that under H0 and given N , the vertices are samples

of a multi-dimensional independent and identically distributed (iid) uniformly distributed over

V . Note that modeling the distribution of vertices of a MST as a Poisson process was assumed

by M.Steele in [37].

Let vi be the vertex connected at iteration i in the Prim construction algorithm. Let pN,ǫ,i

be the probability under H0 that another vertex is found within B(vi,ǫ) of radius ǫ, centered
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on vi:

pN,ǫ,i =

∫

B(vi,ǫ)

f(r)dr

where f(r) = 1/vol(B(vi, ǫ)) and CL is the volume of the L dimensional unit ball. Conditioned

on the vertex vi, define k the number of vertices that fall in the ball B(vi,ǫ), excluding vertex

vi. As the vertices are assumed to be iid samples conditioned on N , k is binomial distributed

with parameters N and pN,ǫ,i. Therefore, the probability FN,ǫ,vi
(k) = Pr(k ≤ k|N) is the

probability that k vertices are in B(vi,ǫ) and is given by a binomial probability law with

parameters N , pN,ǫ,i, whose cumulative distribution function is

FN,ǫ,vi
(k) =

k
∑

j=0





N − 1

j



 pjN,ǫ,i(1 − pN,ǫ,i)
N−1−j

It is well known that the convergence of the binomial converges to the Poisson probability

with rate parameter β as N → ∞ and ǫ → 0, with β = limN→∞(NpN,ǫ,i). Consequently, we

obtain

FN,ǫ,vi
(k)

N→∞
−→ e−β

k
∑

j=0

βj

Γ(j + 1)

Note that 1− FN,ǫ,vi
(k) is simply an Erlang distribution with rate β.

Since f(v) = 1/|V| where |V| stands for the volume of V , the Poisson rate is

β ≃
NCL

|V|
ǫL = λǫL

Parameter λ = NCL

|V| emphasizes the respective importance of the number of observations (N)

and the volume of the support (V).

Probability of detecting a mode under H0

With the results above the probability that there exists at least one edge (or weight) of length

smaller than ǫ is

Fvi
(ǫ) = 1− e−β (3)

Then the probability that under H0, k consecutive connections of length smaller than ǫ and

that the (k + 1)-th has a larger length is given by

Pk,ǫ = (1− Fvi
(ǫ))

∏k
i=1 Fvi

(ǫ) = (1 − Fvi
(ǫ))(1 − e−λǫL)k (4)

=
(

1− e−λǫL
)k

e−λǫL (5)
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Note that the obtained expressions above satisfy the expected asymptotic equalities:

lim
β→∞

Pk,ǫ = 0 for any k < N value,

lim
β→0

Pkǫ = 0 for k 6= 0.

Furthermore, it is easily verified that

∞
∑

k=0

Pk,ǫ = e−β
∞
∑

k=0

(1 − e−β)k = 1.

The expression relating β to ǫ needs to be reconsidered here, in the context of a MST

construction with Prim’s algorithm. Actually, one connects a new vertex to an existing growing

subtree. In the limit of large N and large subtrees, this amounts to testing the presence of

a vertex in a neighborhood which is no longer a sphere but a half sphere. This is illustrated

on Fig. 2. Consequently the normalization constant CL (volume of the unit sphere in the

L-dimensional Euclidean space) will be replaced by CL

2 .

The above approximations were derived under the assumptions ofN and large Prim subtree

size. We validate that this asymptotic approximation is accurate for finite sample size by

comparing the simulated average number of vertices that are consecutively connected by edges

of length smaller than a threshold ǫ. In the previous derivations, k denotes the number of

vertices in a neighborhood centered on a vertex v, but excluding v; the number of edges

connecting successive neighbors and the number of vertices involved in a cluster therefore

differ by one vertex. As a consequence, the mean number of these vertices, denoted by < k >

is obtained as the average of (k+1) where k is the number of edges whose length are less than

ε. As a cluster will be considered only if there is at least one such edge, we obtain

< k > =

∞
∑

k=1

(k + 1)Pk,ǫ

= e−λǫL
∞
∑

k=1

k(1− e−λǫL)k + 1− e−λǫL

= (1− e−λǫL) +
(1− e−λǫL)

e−λǫL

= 2 sinh(λǫL) = 2 sinh

(

CL

2

N

|V|
ǫL
)

. (6)

Fig. 4 shows the average size of candidate modes detected as a function of the threshold

value. All the detections are false alarms, as the vertices are drawn from a uniform distribution
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over [0, 1]2. This simulation suggests that there is good match between the asymptotic theory

and the finite N simulations.

Threshold as a function of the probability of false alarm (PFA)

A false alarm mode occurs whenever some edges of length smaller than ǫ are created under

the null hypothesis that the vertices are realizations from a homogeneous Poisson process.

Note that the null hypothesis then refers to the no-cluster hypothesis. To avoid these false

alarms, a simple strategy is to apply additional criteria. In the sequel we will only declare a

mode present if there are least k ‘small’ edges that are contiguous in the Prim trajectory. This

requires relating k to the probability of false alarm, denoted PFA.

From (3) the expression of the false alarm probability, the probability of occurence of at

least k consecutive connections of length less than ǫ, is given by:

PFA(k, ǫ) =
(

1− e−λǫL
)k

. (7)

If L-dimensional Euclidean space is considered, the volume of the half sphere of radius ǫ is

BL(ǫ) =
1
2CLǫ

L.

Finally, since λ = NCL

2|V| :

PFA(k, ǫ) =
(

1− e−
CL
2 ǫL N

|V|

)k

(8)

This formula determines the relationship between km (minimum number of vertices required to

detect a mode) and the threshold value ǫ in the framework of a Neyman-Pearson test (Fig. 3),

for a fixed PFA.

k =
log(PFA)

log
(

1− exp
(

−CL

2 ǫL N
|V|

)) (9)

The ratio N
|V| in equation (9) reveals the role of the density of vertices. By maintaining k

and the PFA constant over the sample space, equation (9) specifies value of the threshold that

assures a given false alarm rate PFA. In practice, for a given PFA one has to either fix the

threshold ǫ and deduce the minimal k, or fix the minimal k and compute the threshold.

The proposed clustering algorithm is summarized in Algorithm 1. As illustrated in section

4, this algorithm performs well for identifying distinct groups in datasets.
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Algorithm 1 Initilization of k-means with Prim’s algorithm

Input: V : data set of N points ∈ R
L

d: dissimilarity matrix (N ×N)

Output: Index: matrix of labels

1: Construct the Prim trajectory on the dataset V using d.

2: Threshold g with ǫ = σ(ei).

3: Evaluate k for a chosen PFA (e.g. 0.05), (k is the minimum number of vertices that should

be connected for a detected mode); (Eventually re-adjust ǫ to obtain k in the desired

range).

4: Compute of the number k of modes , after discarding all candidate with less than k

connected vertices

5: Compute of the centers of mass µ of every detected mode C.

6: repeat

7: Assign v to nearest cluster Cj where Index(vi) = argmin
j∈1,...,k

||vi − µj||.

8: Recompute mean µj as µj =

∑
vi∈Cj

vi

card(Cj)
.

9: until convergence

10: return Index
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3. Implementation of MST’s for large datasets

The construction of the Prim-s trajectory or the MST in the previous section requires

evaluation of a ranking of the set of all pairwise distances. If the sample set of N vertices

is in an L-dimensional space, this will induce a computational load of O(LN2/2) flops for

evaluating the similarity matrix, and an additional O(N log(N)) logical operations for the

ranking step (for example by using the “quick-sort” algorithm [38]). This clearly becomes

prohibitive for large data sets.

However, the Prim’s trajectory construction can be reformulated as a series of nearest

neighbor searches. Finding nearest neighbors of a given point in space within an efficient

computation time has been widely addressed. One of the most famous search algorithm is

the space partitioning technique based on a k dimensional binary search tree, referred to as

the k − d tree [39]. The optimized k − d tree method chooses the hyperplane passing through

the median point perpendicular to the coordinate axis where the distribution exhibits the

largest spread. Based on a search for nearest neighbors using the k − d tree and priority

queues to reduce these searches, Bentley and Friedman [40] proposed several algorithms of

MST construction. Guttman [41] proposed the R-tree : Although k − d tree methods use

partitioning element that is a hyperplane, the R-tree uses hyper-rectangular regions. However

these methods cannot easily handle high-dimensional data, since their complexity exponentially

grows with the dimension. Other methods such as v− p trees [42], quad-trees [43] or hB-trees

[44] have the same computational difficulty for large data sets.

Here, we reduce the computational load by using a preconditioning data-driven hierarchical

classification tree, a procedure we denote as CT. The tree can be learned from a small randomly

chosen subset of R data points involving only O(LR logR) logical operations. It is designed

to easily identify the neighborhoods of each vertex by comparing the vertex coordinates along

each of the L dimensions to a set of L thresholds. The size of the neighborhood can be set

up in such a way that in the average, each neighborhood contains approximately M ≪ N

vertices. Consequently, the number of pairwise distances that need to be evaluated is of the

order of M2/2. Thus the computational load is lowered to the order of O(NLM2/2) flops

and O(NM logM) logical operations, giving substantial computational savings when M ≪ N .

The constructions of MST using the pre-conditioning classification tree (CT) described below

will be referred to as “Nearest-Neighbor MSTs” (NN MST) in the sequel.

Assume that after l iterations of the CT growing procedure a partition Π was created. At
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the next iteration Π is refined by splitting each of its constitutive cells, called parent cells, into

2L children cells. This step is conducted by employing a median split over each axis. In order

to control the number of cells, only the cells with a minimum number (nmin) of vertices are

split further, the others being declared terminal cells, or leaves in the CT. The advantage of

such a procedure is that the cells tend to fall in areas of the sample space where the sample

density is high. Furthermore, the CT procedure allows to maintain an approximately constant

number of vertices in every leaf of the tree. The median splitting rule allows to define subcells

with approximately equal marginal probabilities for arbitrary underlying distribution.

A criterion for setting nmin using the variance of the median estimate was derived in [45]

and refined in [30]. The same idea is used here, and developed for each of the L axes. The L

dimensional CT is obtained by merging all 1-dimensional CTs by a logical ’and’.

Consider a cell Π in the L-dimensional space. Then Π = ×L
j=1πj where πj = [αj , βj ]. πj

is a 1-D cell defined on axis j; let Nπj
be the number of vertices in πj . The coordinates are

assumed to be iid with marginal continuous density function fvj|πj
on the interval [αj , βj ].

The sample median T̂πj
is asymptotically Gaussian distributed [45]:

T̂πj
∼ N

(

Tπj
,

1

4Nπj
(fv|πj

(Tπj
))2

)

(10)

where Tπj
is the theoretical median: Tπj

= (βj +αj)/2. A criterion to select nmin is specified

by requiring that Nπj
is large enough to ensure that the density of T̂πj

has maximum mass

inside the interval [α, β]. It will be assumed that the sample medians T̂πj
, j ∈ {1, . . . , L} are

statistically independent. Furthermore, it is assumed that fv|πj
is a uniform distribution over

πj (which will be practically true for cells whose size is small compared to the variations of

the underlying distribution) we obtain

1−
L
∏

j=1

Pr(|T̂πj
− Tπj

| ≤ (βj − αj)/2) ≤ ǫ. (11)

Under the Gaussian approximation (10), and integrating over all coordinate axes, we obtain

1− Pr(|Z| <
√

NΠ)
L ≤ ǫ

where Z is a standard normal random variable (zero mean and unit variance).

Pr(|Z| <
√

NΠ) = erf(
√

NΠ/2)
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where erf is the error function: erf(x) = 2√
π

∫ x

0
e−t2dt.

This motivates the following stopping rule for the CT cell subdivision:

if Nπ ≥ 2
[

erf−1((1− ǫ)1/L)
]2

= nmin then subdivide π

else stop

The structure for the CT associated to the L-dimensional distribution is obtained by storing

every 1-dimensional CT. Each CT is associated to an array describing the hierarchy and the

thresholds. Thus, nearest neighbors of a vertex are found by performing a small number of

logical tests to identify the terminal cell to which it belongs, thus sparing the costly flops

needed to evaluate all N2 dissimilarities.

4. Results and Discussions

In this section,we illustrate the proposed clustering algorithm for three applications. The

first application is real-world data extracted from the UCI Machine Learning Repository [46].

The second application is the segmentation of multi-spectral satellite image. The third appli-

cation is to classification of chemical species in hyper-spectral imaging of planet Mars.

4.1. Experiments on the estimation of the number of clusters

Estimation of the number k of clusters is performed on a set of simulated data, for which the

actual k is known. All previous methods rely upon the analysis of the results of a clustering

algorithm to select k. We used the k-means algorithm and values ranging from k = 1 to

k = 10 were tested. The tests were conducted on 4 different data models described below, and

50 independent data samples were generated for each model.

Model 1: three spherical clusters in R
2. The clusters were generated by simulating a mixture

of three spherical normal variables with means (0, 0), (0, 5), (5,−3).

Model 2: four spherical clusters in R
3. Each cluster is randomly chosen to contain 25 or 50

observations, with means randomly chosen from a N ([0, 0, 0], 5I3) distribution, where I3 is the

identity matrix in R
3.

Model 3: four spherical clusters in R
10. Each cluster is randomly chosen to contain 25 or 50

observations, with means randomly chosen from a N (0, 3.6I10) distribution.

Model 4: two elongated clusters in R
3. Cluster 1 = {x + b/x1 = x2 = x3 = t, t ∈ [−.5, .5]}
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where b is a centered Gaussian noise in R
3, with covariance matrix .1I3; Cluster 2 is similarly

obtained except that the noise is centered in m = [10, 10, 10]. The two clusters are thus

stretched along the main diagonal.

For comparison we also simulated the methods of Calinski and Harabaz, Hartigan, Tibshi-

rani, and Kaufman and Rousseeuw. Calinski and Harabasz [20] proposed a test based on the

optimization of a ratio between the inter and intra-cluster variances. Hartigan [17] derived a

method that evaluates the relatives variation of the intra cluster sum of squares when k in-

creases. Tibshirani et al. [16] constructed the Tibshirani’s Gap: a criterion that relies on the

intra cluster measure, but introduced a corrective term accounting for the statistical variation

of the intra cluster measure under a null hypothesis. Kaufman and Rousseeuw [27] pursued

analogous ideas, measuring the average intra cluster distance and the minimal inter cluster

separation as contrasted to variances.

A description of the simulation is given on Fig.5. For each of the 50 data samples and

for every model, the estimation of the number of clusters present in the data set according to

the various criteria described above is recorded. The obtained results are reported in Tab.1.

Our method was applied with fixed parameters ε = σe, and km = 3, where σe stands for the

standard variation of the edge-length distribution over the MST. (Note the corresponding PFA

is obtained by applying equation (8)). The method proposed in this paper exhibits improved

performance as compared to other methods for all the dimensions of the sample data studied

here.

4.2. Similarity measures

The choice of a particular distance measure between points has a great impact on the

resulting cluster identification. Using different metrics leads to different MSTs, and it makes

sense to adapt the dissimilarity measure to the physical structure of the sample data. It is for

instance well known (see e.g. [47]) that for feature vectors that are spectral(-like), information

divergences dissimilarity measures can lead to better results. Furthermore, these divergences

handle the case of missing data, e.g., missing spectral measurements at a given wavelength.

Let x = {x1, . . . , xL} and y = {y1, . . . , yL} be two non negative feature vectors in R
∗L. Let

x̃i = xi∑
L
j=1 xj

and x̃ = {x̃1, . . . , x̃L} as the normalized quantities, respectively. We define ỹ

similarly.

There are many information divergence measures, e.g. Csiszàr [48] or Bregman [49]).

Here we focus on two particular measures: the symmetrized Kullback-Leibler and the Rényi
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divergences [50]. The symmetrized Kullback-Leibler divergence is defined as:

dKL(x,y) =

L
∑

i=1

(x̃i − ỹi) log
x̃i

ỹi
. (12)

Alternatively, the symmetrized α Rényi divergence (α satisfies 0 < α < 1) can similarly be

used as a dissimilarity measure:

dα(x,y) =
1

α− 1

(

log

L
∑

i=1

x̃i
αỹi

1−α + log

L
∑

i=1

ỹi
αx̃i

1−α

)

. (13)

Properties and advantages of the Rényi divergence have been detailed by Hero et al. [51].

Note that when α → 1, the α-divergence (13) converges to the Kullback-Leibler divergence

(12). Divergences do not satisfy the triangular inequality in general ; they are semi-metrics.

In the remote sensing community, alternative similarity measures have been proposed for

hyper-spectral data. One such measure is based on the Spectral Angle Mapper (SAM) [52]:

θ(x,y) = arccos

(

〈x,y〉

‖x‖‖y‖

)

, (14)

where 〈., .〉 is the dot product, and ‖.‖ is the Euclidean norm. The angle θ belongs to the

interval (0, π/2) This measure is used to define the angle existing between spectra. It measures

a similarity rather than a dissimilarity.

These measures may be used for evaluating dissimilarities, in the case where ’probability-

like’ or ’spectral-like’ data set is analyzed. Such a choice is discussed in Sections 4.1 and 4.3.

In this paper, the focus is on the k-means algorithm. k-means can be adapted to match the

metric used in the construction of the tree, similar to the Bregman clustering approach [53, 54].

The assignment step in Algorithm 1 then uses the Bregman divergence instead of L2 norm1.

4.3. Clustering experiments with Prim initialization of k-means

First, we present results of comparisons for real data from the UCI Machine Learning

Repository data sets [46] . We compare our method with other k-means initialization methods:

Forgy’s approach (randomly) [24], k-means ++ [25], Global k-means [29]; Katsavounidis et

al. (KKZ) [26]; Kaufman and Rousseuw’s method [27] and Bradley and Fayyad’s algorithm

[28]. Since for these UCI data sets the actual number of clusters is known, it is used for all

1Information theoretic divergences and Euclidean distance belong to the family of Bregman divergences.
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methods requiring it as an input parameter. Note that for our methods, this value is estimated

(with km = 3, ε = σe). The comparisons presented on Tables 2, 3, 4, are based on the error

of k-means defined by equation (1) (referenced as distortion in the Table) and the accuracy

measure (percentage of correctly labeled points). For these UCI data labels of data sets are

only used to assess the error of the different methods. The results obtained are given in Tables

2, 3, 4.

The UCI data sets used are described below. The Iris data contains three classes (ver-

sicolor, virginica, setosa) of 50 instances each in four dimensions, where one class is linearly

separable from the others and the two other classes interleave.The Wine data: contains 178

instances in thirteen dimensions, with three clusters (different cultivars) of different sizes (59,

71, 48). The features are the quantity of constituent found in every type of wine. The Image

Segmentation contains 2310 instances in 19 dimensions which describe aspects from 7 classes

of images (brick, sky, foliage, cement, window, path, grass). Each class is represented by 330

instances.

The reader will notice that our Prim initialization methods performs very well on the Iris

data, both in terms of distortion and accuracy measure and competes with other k-means ini-

tialization methods. Information divergences appear to be more interesting for the other data.

On the Wine data set, results obtained with the Prim initialization both with Euclidean and

informational divergences compete very well with other standard initialization methods. On

the image segmentation data set, which contains more instances and more clusters than the

previous data sets, our Prim initialization method produces significantly better cluster perfor-

mance than obtained with classical initialization methods. For all these tests, the threshold

of the Prim trajectory has been set to the standard deviation of the edge length, as explained

above. The minimal number of vertices required to accept a detection of a mode was set to

maintain the PFA to a value below 10%, where this minimal number was determined using

our asymptotic Poisson approximation presented in Section 2.
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4.4. Multi-spectral image of Paris

We next consider a Landsat Thematic Mapper multispectral (7 bands) image of size 512×

512 with 30 meter resolution (Fig.6) 2. Each image was recorded from a device operating at a

different wavelength. The images cover an area corresponding to the city of Paris, France. The

7 images are perfectly registered. The cluster analysis is performed on the four largest principal

components of the 7 bands, so in the following only four dimensional features are considered

instead of the initial seven bands. The affinity measures used were information divergences

between the 4-point spectra associated with each pixel, considered as feature vectors. The

Nearest Neighbor MST algorithm described in Section 3 was applied sub-sampling the images

by a factor of 4. The pixels were assumed to be independent, and no information related to the

image structure (e.g. adjacency of pixels) was used in this test. Such prior information could

be used as additional feature information to improve clustering but this was not investigated

here.

Fig. 7 shows the 8 identified clusters, for which 3 are easy to understand. Cluster 2 is

characteristic of trees and grassy regions (one can recognize recreation areas and natural parks

in Paris surroundings (Boulogne and Vincennes) and trees along the shores of the Seine).

Cluster 3 exhibits the “water areas” in Paris, and the Seine river together with some known

ponds are easily extracted. Cluster 4 is clearly associated with roads, asphalt and concrete.

Other clusters cannot be fairly interpreted without cross validation with, for example, pollution

imaging or gas detection systems.

As the “groundtruth” cluster representation of the data is unknown, the quality of the

different classifications was assessed by evaluating the Davies-Bouldin (DB) index [55] to com-

plement the average intra cluster variance, which is minimized by K-Means. DB index accounts

for the separation of the clusters:

DB(C) =
1

k

k
∑

l=1

Rl, where Rl = max
j 6=l

Rjl (15)

where Rij =
si+sj
δij

, and with δij = d(µi, µj), and si = 1
|Ci|

∑

v∈Ci
d(v, µi). Thus, a lower

DB index indicatesa better clustering result. Table 5 summarizes the results. Our Prim

initialization approach combined with informational divergences gives the best results overall.

2The image can be downloaded at http://physics.ship.edu/ mrc/astro/NASA Space Science/observe.arc.nasa.gov/nasa/education-

/tools/stepby/arcpage/arc20.html.
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4.5. Mars hyper-spectral image

Finally we present the results of applying our method to a hyper-spectral image of Mars.

This data is very high dimensional and thus serves as a validation that our proposed method

is scalable. The other initialization methods could not be compared due to their excessive

computational complexity.

This Mars image was provided by the Mars Express (European Space Angency) on board

imaging spectrometer instrument OMEGA (Observatoire pour la Minéralogie, l’Eau, les Glaces

et l’Activité). It covers the south polar cap of Mars in the Martial summer. Two infrared

channels are scanned: 128 spectral planes are recorded at wavelength ranging from 0.93 µm to

2.73 µm with a resolution of 0.013 µm and 128 spectral planes from 2.55 µm to 5.11 µm with

a resolution of 0.02 µm. Hence, the image is of size 300× 120 pixels in 256 wavelengths. Some

preprocessing of the raw data was applied by “Laboratoire de Planetologie de Grenoble” in

order to remove erroneous or unreliable values , e.g., due to faulty pixels of the CCD camera,

bad calibration values etc. More information about this dataset can be found in [56].

In recent years, two methods have been introduced to classify chemical species on this

hyper-spectral image of planet Mars. The first method developed by Schmidt et al. [57] is a

supervised approach based on a wavelet representation called wavanglet. This method requires

a priori information, specifically the number of classes and the reference spectra (generated

from a physical model of chemicals compounds signature). The classification is made by

computing the spectral angle in the best subspace of a wavelet filtered space. The results

obtained with this method reveals three binary masks (a pixel belongs to one class) of CO2

ice, H2O ice and dust. Note that some pixels have not been classified. As the method requires

reference spectra, it requires an a priori report of experts to identify all physical compounds

present in the scene, and subsequently generate (or extract from the image) reference spectra.

The second method was developed by Moussaoui et al. [58] and is based on blind source

separation method referred to as Bayesian positive source separation (BPSS). BPSS requires

costly importance sampling, e.g., Monte Carlo Markov Chain (MCMC), for its implementation.

In Fig. 8 clusters obtained with our Prim initialization of k-means are displayed. The

dissimilarity measure used was the symetrized KL divergence. The image contains only a

few homogeneous groups, so the computation of centroids does not require the whole image.

We resized the image by column and line sub-sampling (one line over 5 and one column over

3 are kept). The three obtained clusters correspond to H2O ice, CO2 ice and dust. The
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representation of the results consists of binary masks (the pixel is white if it belongs to this

cluster). H2O ice compounds are on the peripheral of CO2 ice compounds, which have some

sense since at these places the CO2 sublimates to reveal H2O ice. The corresponding mean

spectrum can also be seen in Fig. 8. Our results are fully consistent with the clustering results

obtained by Moussaoui et al. [58].

5. Conclusions and Future works

In this paper, we have proposed a new approach for clustering multi-dimensional data. The

method is based on the estimation of the number of clusters and the centers of the clusters

from the Prim construction of a minimum spanning tree, followed by an initialization of the

classical k-means clustering algorithm.

New criteria were derived for setting the false alarm rate of a test over the Prim’s trajectory

associated with a MST built over the set of data. The false alarm rates were derived under the

null hypothesis that the data points are distributed as a homogeneous Poisson process. We

demonstrated the utility of the information divergence as a dissimilarity measure for astro-

physical multi-spectral image analysis. In this paper, the threshold value is constant along the

Prim’s trajectory. This rate could be easily made a function of the position of the connected

vertices. This has not been developed here but opens new perspectives.

Dimension reduction and its relationship to spectral clustering methods applied to graphs

using information divergence or MST-based distances (for example, dual rooted tree distances)

could also be investigated [59, 8].
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Figure 1: (a) Toy data set, (b) construction of a MST, (c) extraction of the relevant groups of ver-

tices present below the threshold in the Prim’s trajectory, (d) clustering with k-means , (e,f) Prim’s

trajectories with different initial vertex used in the MST construction.



Figure 2: Left: Ck denotes the contour of the support where connected vertices are found. The

neighborhood which is considered for finding a vertex that could be connected to vi is shown. In the

limit of large N , this latter neighborhood is approximated as the half sphere laying on the tangent

(hyper)plane to Ck (right).
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Figure 3: Minimum number of points in a detected cluster as a function of the threshold value ǫ from

sets of uniformly distributed vertices over [0, 1]2, for a PFA = 0.05 and N = 128, 256, 512, 1024 vertices

respectively.
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Figure 4: Average size of false alarm detected cluster from sets of uniformly distributed vertices over

[0, 1]2, and N = 128, 256, 512, 1024 vertices respectively (curves from the right to the left). Theoretical

curve (red) and numerical simulation (blue).
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Figure 5: (a) Model 1: N = 150; (b) Model 2: N = 175; (c) Model 3: N = 175; (d) Model 4: N = 202



Table 1: Estimation of the number of clusters (k∗ being the true number of clusters)

Method 1 2 3 4 5 > 5

Model 1 (k∗ = 3)

CH 0 7 19 10 8 6

KLai 0 4 8 8 7 23

Sil 0 29 16 5 0 0

Hart 0 14 11 9 5 11

Gap-uniform 0 33 17 0 0 0

Gap-PC 9 21 18 2 0 0

Prim 1 8 40 1 0 0

Model 2 (k∗ = 4)

CH 0 2 6 8 9 25

KLai 0 2 4 4 5 37

Sil 0 10 21 12 5 2

Hart 0 11 17 9 6 7

Gap-uniform 10 18 19 2 1 0

Gap-PC 21 13 13 3 0 0

Prim 0 2 20 28 0 0

Model 3 (k∗ = 4)

CH 0 0 6 12 7 25

KLai 0 5 7 3 5 30

Sil 0 4 23 13 4 6

Hart 0 2 21 17 4 6

Gap-uniform 1 16 22 8 3 0

Gap-PC 11 11 16 8 3 1

Prim 0 3 4 43 0 0

Model 4 (k∗ = 2)

CH 0 46 0 3 1 0

KLai 0 47 0 0 0 3

Sil 0 50 0 0 0 0

Hart 0 5 12 11 12 10

Gap-uniform 0 22 17 10 1 0

Gap-PC 0 50 0 0 0 0

Prim 0 50 0 0 0 0



Table 2: Results obtained on the Iris data set

Method Distorsion Accuracy

Prim Initialization (Euclidean) 1.97 0.8933

Prim Initialization (Kullback-Leibler) 3.83 0.6667

Prim Initialization (Rényi) 3.11 0.6667

Forgy (random) 2.99 0.8933

Bradley Fayyad 1.41 0.8267

KKZ 1.42 0.8467

Kaufman Rousseuw 1.40 0.8933

k-means ++ 2.01 0.8867

Global k-means 1.41 0.8933

Table 3: Results obtained on the Wine data set

Method Distorsion Accuracy

Prim Initialization (Euclidean) 2.05 ×104 0.6742

Prim Initialization (Kullback-Leibler) 1.92× 104 0.6910

Prim Initialization (Rényi) 1.92× 104 0.6910

Forgy (random) 4.00 ×104 0.6966

Bradley Fayyad 8.15 ×104 0.6966

KKZ 2.92 ×104 0.5843

Kaufman Rousseuw 8.56 ×104 0.6573

k-means ++ 4.15 ×104 0.7022

Global k-means 6.86 ×104 0.7022



Table 4: Results obtained on the Image Segmentation data set

Method Distorsion Accuracy

Prim Initialization (Euclidean) 6.39 ×104 0.5173

Prim Initialization (Kullback-Leibler) 5.20 ×104 0.5446

Prim Initialization (Rényi) 6.39 ×104 0.5173

Forgy (random) 5.52 ×104 0.4251

Bradley Fayyad 4.91 ×104 0.5385

KKZ 1.44 ×105 0.3567

Kaufman Rousseuw 3.79 ×104 0.3355

k-means ++ 3.38 ×105 0.4771

Global k-means 2.38× 104 0.4606

Figure 6: Multi-spectral image of Paris



Table 5: Results obtained on the multi-spectral image

Clustering Methods Davies-Bouldin index

NN MST (Euclidean) + k-means 111.77

NN MST (SAM) + k-means 157.27

NN MST (Kullback-Leibler) + k-means 74.87

NN MST (Rényi) + k-means 88.02

Expectation Maximization (Mixture of Gaussians) 160.19

k-means (randomly initialized) 155.13
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Figure 7: Clusters obtained on the multi-spectral image of Paris: (a) cluster 1, (b) cluster 2: trees,

parks , (c) cluster 3: water elements, (d) cluster 4: roads, (e) cluster 5, (f) cluster 6, (g) cluster 7 and

(h) cluster 8.
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Figure 8: Mean and ¬± standard deviation spectra obtained: (a)H2O ice, (b) CO2 ice, (c) dust.

Clusters obtained with our method: (d) H2O ice, (e) CO2 ice and (f) dust.


