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Dual extremum principles for geometrically exact finite strain beams

H.A.F.A. Santos∗,a, J.P. Moitinho de Almeidaa

aDepartment of Civil Engineering and Architecture, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa Codex, Portugal

Abstract

Both necessary and sufficient conditions for the existence of two complementary-dual extremum principles
for geometrically exact finite strain (one-dimensional) beam models are investigated by means of two dif-
ferent approaches. One is based on the results published by Gao and Strang, and the other relies on the
approach proposed by Noble and Sewell. While the former is limited to beam models restricted to moderate
large deformations, the latter is valid for arbitrarily large deformations (and strains). The numerical imple-
mentation of the complementary-dual extremum principles can lead to simple true global upper bounds of
the error of the approximate solutions.

Key words: Geometrically exact finite strain beams, complementary-dual extremum principles, error
estimation, global upper bounds.

1. Introduction

Complementary-dual extremum principles play fundamental roles in theoretical and computational me-
chanics. An extremum principle states that a solution of a given mathematical problem corresponds to a
minimum or maximum value of a functional among a subset of solutions of the governing equations. Dual
principles, also called complementary or reciprocal, form another class of variational principles. When a
dual principle is available, the problem under consideration can be variationally formulated in two different,
but interrelated, ways. In one formulation a solution is characterized by a maximumprinciple and in the other
by a minimum principle. Furthermore, the maximum and minimum values of the respective functionals are
equal.

Among the various stationary energy principles available for the analysis of fully (both geometrically and
physically) linear problems, the two complementary-dual extremum principles well known in the literature
as the minimum total potential energy (TPE) and maximum total complementary energy (TCE) principles
are of great importance in practical applications. The difference between the values of both functionals for
two different trial functions can be used to provide true global upper bounds of the error to the exact solution
of a given boundary-value problem, i.e., it can be used as a measure of the accuracy of an approximate
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solution. The extremum feature of these principles results from the absolute convexity of the strain energy
density with respect to the configuration variables, which is also the necessary and sufficient condition for
the existence of a unique solution. Furthermore, the Hellinger-Reissner energy (HRE) is a saddle-type
functional, i.e., a functional which is convex with respect to one group of variables and concave with respect
to the other.

However, for geometrically nonlinear problems, the strain energy density is, in general, not convex with
respect to the configuration variables and, therefore, neither global complementary-dual extremumprinciples
nor uniqueness of solution exist in general. A dual energy-based a posteriori error estimation method, which
is capable of providing true error bounds of the approximate solutions of a given boundary-value problem,
requires however the existence of such dual extremum principles.

As shown by Noble and Sewell in the late sixties/early seventies [40, 28, 41, 42], complementary-dual
extremum principles - minimum TPE under compatibility subsidiary conditions and maximum TCE under
equilibrium conditions, can be generated from a single energy saddle-type functional.

Based on Noble-Sewell’s theory, the extremum properties of the total potential and total complemen-
tary energies for the geometrically nonlinear analysis of pin joint networks were discussed by Bufler et
al. (1980) [5]. The same author, in 1986, also following Noble and Sewell’s concepts, established two
complementary-dual extremum principles for the geometrically nonlinear (inextensional) Euler-Bernoulli
(linear elastic planar) beam theory [4]. Positiveness of the stress-resultants normal to the cross-sections was
shown to be the sufficient condition for the existence of the two dual extremum principles.

Dual extremum principles generated also from a single saddle-type functional in the framework of the
nonlinear elasticity theory were derived and applied by Stumpf to the geometrically nonlinear analysis of
plates and shells [47, 48, 49].

According to Gao and Strang (1989) [14], in the framework of the finite elasticity theory, characterized
by a quadratic geometrical operator, both global and local extremality conditions depend on a so-called
complementary gap functional, a non-zero quantity due to the nonconvexity of the strain energy with respect
to the displacement variables. Furthermore, the HRE can only be regarded as a saddle-type functional if,
and only if, the gap functional is positive for any statically admissible stress field. Under this condition, the
minimum TPE principle is equivalent to a unique maximum dual variational principle. Otherwise, if the gap
functional is negative, the system has two complementary-dual extremum principles.

Analytical applications obtained using Gao-Strang’s theory to the geometrically nonlinear analysis of
shells were given by Gao and Cheung (1990) [11]. Applications to the post-buckling analysis of a finite
deformation (small strain) beam theory taking into account warping phenomena were presented by Gao
(1997, 2000) [8, 10]. Recently, general analytical solutions have also been obtained for one-dimensional
nonlinear elasticity and phase transition problems [12, 13].

Using a so-called sequential canonical dual transformation, Gao-Strang’s theory has been extended by
Gao (2000) (see Chapter 4 in [9]) to general geometrical nonlinear operators and the saddle complementary
HRE principle was shown to hold also for higher-order geometrical nonlinear operators.

The objective of this paper is to present both necessary and sufficient conditions for the existence of
two complementary-dual extremum principles developed for geometrically exact finite strain beams. Two
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distinct approaches will be followed: one relies on Noble-Sewell’s theory and the other has its basis on
Gao-Strang’s theory [14]. While the latter approach is restricted to quadratic geometrical (also called com-
patibility) operators, being valid therefore only for moderate large deflections, the former is valid for any
magnitude of the displacements, rotations and strains.

2. The Geometrically Exact Finite Strain Beam Theory: Boundary-Value Problem

We consider the geometrically exact finite strain beam theory introduced by Reissner (1973, 1981) [34,
35] and Antman (1974) [1] and further extended by Simo and co-workers (1985, 1986, 1991, 1995) [43,
45, 46, 44]. Since these pioneering works, considerable progress has been made on the geometrically exact
analysis of three-dimensional framed structures, from both theoretical and numerical points of view, see
e.g. Cardona and Géradin (1988) [6], Ibrahimbegovic and co-workers (1995, 2000, 2003) [16, 19, 18, 17],
Petrov and Géradin (1998) [31], Saje et al. (1998) [36], Crisfield and Jelenic (1999) [7, 22], Gruttmann et al.
(2000) [15], Atluri and co-workers (1988, 1989, 1996, 1998, 2001) [20, 21, 33, 2], Betsch and Steinmann
(2002) [3], Pimenta and Campello (2003) [32], Zupan and Saje (2003) [50], Kapania and Li (2003) [24, 23],
Mata et al. (2007) [27], Makinen (2007) [26], Santos et al. (2009) [38, 37] and many others.

From a mechanical point of view, the most important feature of this model is that it does not make any
(kinematical) assumptions regarding the magnitude of either the displacements (and rotations) or the strains,
being therefore valid for arbitrarily large displacements, rotations and also strains.

The geometrically exact beam model has been developed using two different approaches. One is the
approach followed by Simo, in which the beam theory is derived from a degenerating three-dimensional
continuum theory restricted to some kinematical hypotheses. The other is the approach adopted by Reissner,
in which the equilibriumdifferential equations of cross-sectional forces andmoments defined for an infinites-
imal element of the deformed beam axis are taken as basic and, finally, after stipulating an appropriate form
of the principle of virtual work, a system of strain-displacement relations, involving the translational and ro-
tational strains are obtained. Although formally both these approaches can be considered as equivalent, the
former allows indeed to take into account finite strain constitutive relations in a more straightforward way
than the latter. The latter benefits however from the advantages which are inherent to a true one-dimensional
beam theory.

Only for the sake of simplicity, we will adopt here the approach followed by Reissner. Note however
that all the results presented next should hold regardless of the approach one employs. The consequence
of following this approach is that the constitutive equations should be assumed to be expressible in terms
of generalized cross-sectional stress-resultants and (energy-conjugate) generalized strain measures, i.e. they
must be regarded as true one-dimensional relations. Note however that, formally, this might not be pos-
sible in general. Notwithstanding, we highlight that such assumption should have no implications on the
succeeding developments, as the constitutive equations can, without loss of generality, and once the (inte-
gral) relations between one-dimensional and corresponding tensorial quantities are known, be established in
terms of consistent three-dimensional constitutive relations. For the derivation of a one-dimensional nonlin-
ear elastic constitutive model consistent with the three-dimensional finite elasticity theory see, e.g., the work
by Lanzo (2004) [25] and the references therein.

We will employ the ‘classical’ geometrically exact finite strain beam theory, in which the configuration
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space of a beam element includes not only the linear space of position vectors of the centroidal axis, but also
the non-linear space of the rotations of the cross-sections, not necessarily normal to the line of centroids at
the deformed state. The geometric shape of the cross-sections is assumed to be arbitrary and constant along
the beam. The cross-sections are assumed to suffer only rigid body motions during deformation.

The centroidal axis is assumed to be parameterized by S ∈ [0, L], with L representing the length of the
beam in its reference configuration. The domain of the centroidal axis is decomposed into an internal part,
Ω, and a boundary part, Γ = ΓN ∪ ΓD = {0, L}, with ΓN and ΓD the Neumann and Dirichlet boundaries,
respectively, such that ΓN ∩ ΓD = ∅. The beam may be subject to generalized spatial distributed forces q
applied in Ω, generalized spatial concentrated forces q̄ applied on ΓN , and generalized prescribed displace-
ments d̄ defined on ΓD. The loads are assumed to be conservative and to act at the centroidal axis of the
beam.

The strong form of the boundary-value problem governing the mathematical (quasi-static) response of
the present geometrically exact finite strain one-dimensional beam model with (homogeneous and isotropic)
hyperelastic material behavior is given by the following equations

T re (d)σr + q = 0, in Ω (1a)

σ
r −
∂W(εr)
∂εr

= 0, in Ω (1b)

ε
r − εr(d) = 0, in Ω (1c)

which represent the equilibrium, constitutive and compatibility (also called kinematical) differential equa-
tions, respectively, and also a set of prescribed boundary conditions subdivided into Neumann (also called
static) and Dirichlet (also called compatibility) conditions, respectively, as follows

nH(d)σr − q̄ = 0, on ΓN (2a)
d − d̄ = 0, on ΓD (2b)

with
n =
{

1 if S = L
−1 if S = 0.

For details on the derivation of these equations and also the form of their corresponding operators, the
reader is referred to [39, 38, 37]. It is only worth noting that d represents a generalized displacement
vector, including both the displacement vector of a point lying in the centroidal axis of the beam, u, and
also the rotation vector of the beam cross-section attached to that point, θ. Note also that, while εr denotes
the generalized material strain vector, including both translational and rotational measures characterizing
the strain state at that point, σr represents the generalized material (cross-sectional) stress-resultant vector,
including both force and moment variables characterizing the stress state at that point.

Additionally, note that T re (d) represents the material form of the equilibrium operator as follows

T re (d) = ΨeΔeΛ

with

Ψe =

[
I O O
O Γ

TZ′ Γ
T

]
, Δe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I ∂
∂S O
I O
O I ∂

∂S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Λ =

[
Q O
O Q

]
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where Z′ represents the skew-symmetric tensor associated with vector z′, defined as

z′ = u′ + er3

with er3 the unitary base vector taken normal to the beam cross sections. (·)
′ indicates differentiation of (·)

with respect to S . Q and Γ represent the cross section rotation tensor and a transformation tensor, respec-
tively, both defined as functions of the rotation vector θ. For details on their expressions the reader is referred
to [39, 38]. I denotes the standard second-order identity tensor.

Vector εr(d) represents the material compatibility operator, mapping generalized displacements onto
generalized deformations as follows

ε
r(d) =

[
QT (u′ + er3) − e

r
3

Γ
T
θ
′

]
.

H(d) represents a geometrical nonlinear boundary operator given by

H(d) =
[
Q O
O Γ

]
.

To conclude, it is emphasized that W represents the strain energy density, defined per unit reference
length and regarded as function of the material strains in order to ensure material frame indifference. If W
is convex with respect to εr, the stiffness form of the constitutive relations (1b) can be uniquely established
using the following alternative (also called inverse or flexibility) form

ε
r −
∂Wc(σr)
∂σr

= 0, in Ω (3)

where Wc(σr) represents the complementary strain energy density, regarded as the Legendre transform of
W(εr).

In the present context, convexity means that the second derivative of W with respect to εr is positive
definite. This fundamental physical requirement in hyperelasticity ensures that undesirable material insta-
bilities are precluded (for a general discussion of convexity in hyperelasticity the reader is referred to [30],
Sections 6 and 7). Note however that, in the theory of elasticity the notion of convexity of the strain energy
function is dependent on the choice of deformation measure used and different deformation measures may
lead to nonconvexity ofW.

Conditions for the convexity of the strain energy density with respect to frame-indifferent deformation
measures (material strain measures) and a full discussion of the existence of a uniquely defined inverse
of the constitutive relations in the general framework of hyperelasticity were given by Ogden (1977) [29].
Ogden has concluded that, for all deformations of practical interest in rubberlike materials, it is reasonable
to suppose the existence of a strictly convex function of the right stretch tensor.
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3. Dual Variational Principles and the Gap Functional

3.1. Primal Variational Principle

The stationary principle of TPE is taken here as the primal variational principle.

LetUk andVk be the kinematically and the homogeneous kinematically admissible spaces, respectively,
defined as

Uk = {d ∈ H1(Ω)| d = d̄ on ΓD}

and
Vk = {δd ∈ H1(Ω)| δd = 0 on ΓD}.

The TPE associated with vector d is the one-field functional Πp : Uk(Ω)→ R given by

Πp(d) = U(εr(d)) + F(d)

where U represents the strain energy, or internal potential energy, given by

U(εr(d)) =
∫ L

0
W(εr(d)) dΩ

and F represents the external potential energy defined as follows

F(d) = −
∫ L

0
q · d dΩ − [q̄ · d]ΓN .

Vector d is called a stationary point of Πp if the first-order Gâteaux derivative of Πp(d) at d ∈ Uk in any
direction δd ∈ Vk vanishes, that is, if the following condition holds

δΠp(d; δd) = 0, ∀ δd ∈ Vk

wherein δΠp(d; δd) assumes the following form

δΠp(d; δd) =
∫
Ω

[
∂W
∂εr

· δεr(d; δd) − q · δd] dΩ − [q̄ · δd]ΓN .

This, upon substitution of the constitutive relation (1b), gives rise to

δΠp(d; δd) =
∫
Ω

[σr · T rc (d)δd − q · δd] dΩ − [q̄ · δd]ΓN

where δεr(d; δd) has been replaced by T rc (d)δd, with T rc (d) the material form of the tangent compatibility
operator given by

T rc (d) = Λ
T
ΨcΔc

with

Ψc =

[
I O Z′Γ
O Γ Γ

′

]
, Δc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I ∂
∂S O
O I ∂

∂S
O I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
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Finally, after integrating by parts, we obtain

δΠp(d; δd) = −
∫
Ω

[T re (d)σr + q] · δd dΩ + [(nH(d)σr − q̄) · δd]ΓN

which shows that the Euler-Lagrange equations of δΠp are the equilibrium equations (1a) and (2a). It is
worth noting that the operator T rc can be regarded as the adjoint operator of the equilibrium operator T re , i.e.

T re (d)σr · d = T rc (d)d · σr .

Hence, it can be concluded that the system is in equilibrium if, and only if, its TPE takes a stationary value
for all displacement fields lying in the homogeneous kinematically admissible space Vk. In other words,
while the compatibility and constitutive equations are regarded as constraints assigned to the stationarity of
the variational problem defined by the TPE, the equilibrium equations are derived as their Euler-Lagrange
conditions.

3.2. Dual Variational Principle

The stationary principle of TCE is taken here as the dual variational principle.

LetUs andVs be the statically and the homogeneous statically admissible spaces, respectively, defined
as

Us = {(σr, d) ∈ H1(Ω) ×H1(Ω)| T re (d)σr + q = 0 in Ω and nH(d)σr = q̄ on ΓN }
and

Vs = {(δσr, d) ∈ H1(Ω) ×H1(Ω)| T re (d)δσr = 0 in Ω and nH(d)δσr = 0 on ΓN }.

As shown recently by Santos et al. [39], the TCE for a geometrically exact finite strain beam is the
two-field functionalΠc : Us(Ω)→ R given by

Πc(σr, d) =
∫
Ω

[Wc(σr) − σr · εr(d) + σr · T rc (d)d] dΩ − [d̄ · nH(d)σr]ΓD . (4)

It can be easily shown that the pair (σr, d) ∈ Us is a solution of the boundary-value problem if, and only
if, the following condition holds

δΠc(σr, d; δσr) = 0, ∀δσr ∈ Vs.

In fact, taking the first-order Gâteaux derivative ofΠc defined at (σr, d) ∈ Us in the direction of δσr ∈ Vs
yields

δΠc(σr, d; δσr) =
∫
Ω

[εr − εr(d)] · δσr dΩ +

∫
Ω

T rc (d)d · δσr dΩ − [d̄ · nH(d)δσr]ΓD .

Thus, after integrating by parts and making use of the equilibrium equations given by

T re (d)δσr = 0, in Ω
nH(d)δσr = 0, on ΓN
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it is finally obtained that

δΠc(σr , d; δσr) =
∫
Ω

[εr − εr(d)] · δσr dΩ + [(d − d̄) · nH(d)δσr]ΓD .

Hence, requiring δΠc to vanish for independent variations δσr ∈ Vs leads to the compatibility equations
of the boundary-value problem (1c) and (2b).

Therefore, a generalized displacement vector of a beam, d, is said to be a kinematically admissible
field if, and only if, the TCE of the beam takes a stationary value for all stress-resultant fields lying in the
homogeneous statically admissible spaceVs.

3.3. Conjugate Energy and the Gap Functional

For linear elastic material behavior, the strain energy density W is a quadratic and, therefore, convex
functional of the material strain vector εr. However, if one considers a general hyperelastic material, W
might not be convex with respect to the material strain measures. Nevertheless, as noted above, for the
deformations of practical interest in rubberlike materials, it is reasonable to suppose the existence of a
strictly convex strain energy density function.

Note however that, either for linear or nonlinear elastic responses, as long as the strain vector εr is
regarded as a nonlinear function of d, then, W may be nonconvex with respect to d and, therefore, the TPE
may be a nonconvex functional of the displacement vector as well.

Accordingly, on the basis of the physical behavior of rubberlike materials, we postulate the existence of
a convex strain energy density W taken with respect to εr . Note that this is true in general only for fully
(both physically and geometrically) linear responses. This ensures that the constitutive relation has a unique
inversion, i.e., a unique deformation εr can be found for a given stress σr and, furthermore, the Legendre
transformation of W(εr) is unique and leads to a strictly convex complementary strain energy density. For
simplicity, let us also assume homogeneous Dirichlet boundary conditions. Under these assumptions, the
Legendre transforms ofW(εr) and F(d) read

Wc(σr) = εr · σr −W(εr)

Fc(r) = −F(d) −
∫ L

0
q · d dΩ − [q̄ · d]ΓN

where r represents the energy-conjugate variable associated to the vector of prescribed displacements d̄.
Wc and Fc are referred to as the complementary strain energy and the external complementary energy,
respectively.

The conjugate energy of the TPE comes out therefore as the following convex functional

Π∗(σr) = Uc(σr) + Fc(r(σr)) =
∫ L

0
Wc(σr) dΩ. (7)

This, in turn, under subsidiary equilibrium equations gives rise to the following augmented Lagrangian

Lc(σr, d) =
∫ L

0
Wc(σr) dΩ +

∫ L

0
(T re (d)σr + q) · d dΩ − [(nH(d)σr − q̄) · d]ΓN .
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Its first-order Gâteaux derivative in the direction of δσr yields

δLc(σr, d; δσr) =
∫ L

0

∂Wc(σr)
∂σr

· δσr dΩ +

∫ L

0
T re (d)δσr · d dΩ − [nH(d)δσr · d]ΓN

which, by means of (3) and after integrating by parts, leads to

δLc(σr, d; δσr) =
∫ L

0
ε
r · δσr dΩ −

∫ L

0
T rc (d)d · δσr dΩ + [nH(d)δσr · d]ΓD .

This shows that the conjugate energy Π∗ is stationary at an equilibrium state if the following equations hold

ε
r = T rc (d)d in Ω (8a)
d = 0 on ΓD. (8b)

As it can be seen, while the right-hand side term of (8a) represents the generalized vector of elastic material
strain measures (arising from the constitutive relations), its left-hand side term corresponds only to the
tangent part of the generalized material strain vector, rather than the actual strain vector. Therefore, the
one-field functional Π∗(σr) obtained from the Legendre transformation of Πp(d) cannot be regarded as the
true complementary energy.

By comparison, the true complementary energy (4) differs from the conjugate energy (7) on the following
integral term

Πc(σr, d) − Π∗(σr) = Gap(σr, d) = −
∫ L

0
(εr(d) − T rc (d)d) · σr dΩ (9)

called the gap functional. This nomenclature was introduced first by Gao and Strang in the general context
of geometric nonlinearity [14].

3.4. Complementary Hellinger-Reissner Variational Principle

According to Santos et al. (2010) [39], the complementary HRE for a geometrically exact finite strain
beam is the two-field functional ΠHR : H0(Ω) ×H1(Ω)→ R given by

ΠHR(σr, d) =
∫
Ω

[Wc(σr) − σr · εr(d) + q · d] dΩ + [q̄ · d]ΓN + [nH(d)σ
r · (d − d̄)]ΓD . (10)

Its first-order Gâteaux derivative at (σr, d) in the direction of (δσr, δd) ∈ H0(Ω)×H1(Ω) can be written
as

δΠHR =

∫
Ω

[
∂Wc(σr)
∂σr

· δσr − εr(d) · δσr − σr · T rc (d)δd + q · δd] dΩ

+ [q̄ · δd]ΓN + [(d − d̄) · nδ(H(d)σ
r)]ΓD + [nH(d)σ

r · δd]ΓD .

This, in turn, after integrating by parts, leads to

δΠHR =

∫
Ω

[(
∂Wc(σr)
∂σr

−εr(d))·δσr+(T re (d)σr+q)·δd] dΩ+[(q̄−nH(d)σr)·δd]ΓN+[(d− d̄)·nδ(H(d)σr)]ΓD .
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Accordingly, requiring δΠHR to vanish for independent variations of δσr and δd gives rise to the following
Euler-Lagrange equations

∂Wc(σr)
∂σr

− εr(d) = 0, in Ω

T re (d)σr + q = 0, in Ω
q̄ − nH(d)σr = 0, on ΓN

d − d̄ = 0, on ΓD

which represent all the equations governing the boundary-value problem.

4. Application of Noble and Sewell’s Approach to the Derivation of Dual Extremum Principles

The variational statements previously presented are stationary principles without extremum properties.
Hence, it is the purpose of the present and also the succeeding sections to establish the necessary and suf-
ficient conditions for the existence of complementary-dual extremum principles in the framework of the
geometrically exact finite strain beam theory.

Following Noble and Sewell’s approach [28, 41, 42], one can derive a pair of complementary-dual
extremum principles from the complementary HRE given by (10), regarded as a generating saddle-shaped
functional.

The saddle-point property of the complementary HRE requires that

ΠHR(σr2, d2) − ΠHR(σr1, d1) ≤
∫ L

0
(T re (d1)σr1 + q) · δd dΩ +

∫ L

0
(
∂Wc
∂σr

∣∣∣∣
σ
r
2

− εr(d2)) · δσr dΩ

+ [(q̄ − nH(d1)σr1) · δd]ΓN + [(d2 − d̄) · nδ(H(d1)σ
r)]ΓD .

Since (σr1, d1) has been assumed as a solution of the problem, this inequality can be reduced to

ΠHR(σr2, d2) − ΠHR(σr1, d1) ≤
∫ L

0
(
∂Wc
∂σr

∣∣∣∣
σ
r
2

− εr(d2)) · δσr dΩ + [(d2 − d̄) · nδ(H(d1)σr)]ΓD . (12)

Using Taylor’s formula in the HRE defined at (σr2, d2) gives

ΠHR(σr2, d2) = ΠHR(σr1, d1) +
1
2

∫ L

0
δσr
∂2Wc(σr)
∂σr∂σr

∣∣∣∣
σr1

· δσr dΩ−
∫ L

0
δσr · δεr(d)

∣∣∣∣
d1
dΩ −

1
2

∫ L

0
σ
r · δ2(εr(d))

∣∣∣∣
(σr1,d1)

dΩ.

Applying also Taylor’s formula in the first term of the right-hand side term of inequality (12) yields

∂Wc
∂σr

∣∣∣∣
σr2

− εr(d2) =
∂Wc
∂σr

∣∣∣∣
σr1

+
∂2Wc
∂σr∂σr

∣∣∣∣
σr1

δσr − εr(d1) −
∂εr

∂d

∣∣∣∣
d1
δd.
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Finally, on insertion of these results into (12), the following local saddle-point condition is obtained
∫ L

0
δσr
∂2Wc(σr)
∂σr∂σr

∣∣∣∣
σ
r
1

· δσr dΩ +

∫ L

0
σ
r · δ2(εr(d))

∣∣∣∣
(σr1,d1)

dΩ ≥ 0, ∀(δσr, δd) ∈ H0(Ω) ×H1(Ω). (13)

Under this saddle-point property, a pair of complementary-dual extremum principles can be obtained: one
is the principle of minimum TPE whereas the other is the principle of maximum TCE.

The former of these principles states that, among all kinematically admissible solutions satisfying con-
dition (13), the solution of the boundary-value problem minimizes the primal functional P : Uk(Ω) → R

given by

P = −ΠHR +

∫
Ω

(
∂Wc(σr)
∂σr

− εr(d)) · σr dΩ − [(d − d̄) · nH(d)σr]ΓD

= Πp(d).

representing indeed the one-field TPE. Conversely, the latter states that, among all statically admissible
solutions satisfying condition (13), the solution point of the boundary-value problem maximizes the dual
functional D : Us(Ω)→ R defined by

D = −ΠHR +

∫
Ω

(T re (d)σr + q) · d] dΩ + [(q̄ − nH(d)σr) · d]ΓN

= −Πc(σr, d).

identified as the two-field TCE with a minus sign. Also under condition (13), the following relations hold at
the solution point of the boundary-value problem

Πp(d1) = −Πc(σr1, d1) = −ΠHR(σ
r
1, d1).

In other words, it can be stated that, under the local saddle-point condition given by (13), the following
inequalities hold

Πc(σrs, ds) ≥ Πc(σr1, d1) = −Πp(d1) ≥ −Πp(dk), ∀ (σ
r
s, ds) ∈ Us and ∀ dk ∈ Uk

which are indeed the necessary and sufficient conditions for the existence of global upper bounds of the exact
errors in energy.

5. Application of Gao and Strang’s Approach to the Derivation of Dual Extremum Principles

The purpose of this section is to establish the saddle-point condition of the complementary HRE given
by (10), assumed to be specialized to a beam theory in which the compatibility operator is taken as follows

ε
r(d) = Lrc(d)d

with Lrc a quadratic operator of vector d. It will be shown that, under this assumption, two dual extremum
principles can be formulated following Gao and Strang’s approach [14].
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In the following, (σr1, d1) denotes a solution of the boundary-value problem, whereas (σ
r
2, d2) represents

an infinitesimally adjacent solution.

Since a quadratic compatibility operator has been assumed, then, according to the general theory of
convex analysis, the HRE can be regarded as a convex functional with respect to d, i.e., we have

ΠHR(σr2, d1) ≥ ΠHR(σr1, d1), ∀σ
r
2 ∈ H

0(Ω). (14)

However, as it will be shown next, the convexity of Π1HR(σ
r, d) with respect to σr is not so obvious. It

depends on the sign of the gap functional introduced in (9). To see this, let us introduce the first-order
Gâteaux variation of εr(d) defined at d1 in the direction of d2 as follows

δε
r(d1; d2) = T rc (d1)d2

whereT rc (d1) is the Gâteaux derivative of εr at d1. Let us also consider the following operator decomposition

Lrc(d) = T rc (d) +Nr
c (d)

where Nr
c (d) represents a complementary geometrical operator. Applying Taylor’s formula and the lemma

for quadratic operators [14] to the compatibility operator εr(d) gives

ε
r(d2) = εr(d1)+

∂εr

∂d

∣∣∣∣
d1
δd+

1
2
δd
∂2εr

∂d∂d

∣∣∣∣
d1
δd = εr(d1)+T rc (d1)δd−Nr

c (δd)δd, ∀d2 = d1+δd ∈ H1(Ω). (15)

Since the external part of the HRE, defined by

F(d) =
∫
Ω

q · d dΩ + [q̄ · d]ΓN

is linear with respect to its argument, then, using Taylor’s formula, it can be stated that

F(d2) = F(d1) +
∫
Ω

q · δd dΩ + [q̄ · δd]ΓN . (16)

Accordingly, we obtain

ΠHR(σr1, d2) − ΠHR(σr1, d1) =
∫
Ω

[Wc(σr1) − σ
r
1 · ε

r(d2)] dΩ + F(d2)

−

∫
Ω

[Wc(σr1) − σ
r
1 · ε

r(d1)] dΩ − F(d1).

On insertion of (15) and (16) into the previous equation gives

ΠHR(σr1, d2) − ΠHR(σr1, d1) =
∫
Ω

σ
r
1 · [N

r
c (δd)δd − T rc (d1)δd] dΩ +

∫
Ω

q · δd dΩ + [q̄ · δd]ΓN

which, after integrating by parts, leads to

ΠHR(σr1, d2) − ΠHR(σr1, d1) =
∫
Ω

[T re (d1)σr1 + q] · δd dΩ +

∫
Ω

σ
r
1 · N

r
c (δd)δd dΩ

+ [(q̄ − nH(d)σr) · δd]ΓN − [nH(d)σr · δd]ΓD .
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Additionally, since (σr1, d1) is a solution of the boundary-value problem, it follows that

ΠHR(σr1, d2) − ΠHR(σr1, d1) = −Gap(σ
r
1, δd) (17)

with
Gap(σr1, δd) = −

∫
Ω

σ
r
1 · N

r
c (δd)δd dΩ (18)

representing the complementary gap functional. Since the compatibility operator εr(d) has been assumed as
a quadratic function of d, the gap functional comes out also as a pure quadratic function of d. Therefore, if
Gap(σr1, d1) ≥ 0, we have also Gap(σ

r
1, d2) ≥ 0. Hence, from (17) and (18) we can conclude that

ΠHR(σr1, d2) ≤ ΠHR(σr1, d1), if Gap(σ
r
1, d2) ≥ 0, ∀d2 ∈ H

1(Ω). (19)

From this condition we can also state that

−Πp(d2) ≤ −Πp(d1)⇔ Πp(d1) = inf
d2
Πp(d2), if Gap(σr1, d2) ≥ 0, ∀d2 ∈ Uk

which shows that, if the gap functional is positive then the system is stable. Note however that the equilib-
rium may be stable even when the gap functional is negative.

Combining results (14) and (19), it follows that (σr1, d1) is a saddle-point of ΠHR, i.e.

ΠHR(σr2, d1) ≥ ΠHR(σr1, d1) ≥ ΠHR(σr1, d2), ∀(σ
r
2, d2) ∈ H

0(Ω) ×H1(Ω)

if Gap(σr1, d2) ≥ 0 holds for all d2 ∈ H
1(Ω).

Thus, we can finally state that, if the gap functional is positive for any statically admissible stress-
resultant σrs, the following inequalities hold

Πc(σrs, ds) ≥ Πc(σr1, d1) = −Πp(d1) ≥ −Πp(dk), ∀ (σ
r
s, ds) ∈ Us and ∀ dk ∈ Uk

which are indeed the necessary and sufficient conditions for the existence of global upper bounds of the exact
errors in energy.

6. Conclusions

Two complementary-dual extremum principles, namely the principle of minimum TPE and the principle
of maximum TCE, have been derived for the geometrically exact finite strain beam theory using two distinct
approaches: one relying on the general results published by Noble and Sewell within the context of applied
mathematics, and the other having its conceptual basis on the duality theory proposed by Gao and Strang
for geometrically nonlinear solid mechanics problems. While the former is valid for the geometrically exact
finite strain beam theory, which may involve arbitrarily large displacements, rotations and strains, the latter
is restricted to geometrically nonlinear beam theories involving moderate large deflections. In both cases,
the necessary and sufficient condition for the existence of the complementary-dual extremum principles have
been shown to be the saddle-point property of the stationary HRE principle.
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Under the saddle-point condition, upper bounds of the energy error can be directly obtained from the
absolute value of the sum of the functionals at dual solution points, obtained for instance from numerical
techniques relying on these variational principles. These upper bounds can be used to assess the quality of the
approximate solutions provided by such numerical techniques. In the context of finite element formulations,
as these bounds are expressed as a sum of elemental contributions, they can be used as error indicators
for adaptive refinement procedures. Further research is necessary to characterize, from the viewpoint of
error estimation and bounding, the case in which the saddle-point condition is not verified, as well as the
use of these approaches to obtain bounds of the outputs for local quantities of interest, such as generalized
displacements and stress-resultants. Extension of Gao-Strang’s theory should also be carried out in the
framework of the geometrically exact finite strain beam theory using the so-called sequential canonical dual
transformation proposed by Gao.
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