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On the Global Dynamics of Chatter in the Orthogonal Cutting Model
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Abstract

The large-amplitude motions of a one degree-of-freedom model of orthogonal cutting are analysed. The model takes the form
of a delay differential equation which is non-smooth at the instant at which the tool loses contact with the workpiece, and which
is coupled to an algebraic equation that stores the profile of the cut surface whilst the tool is not in contact. This system is
approximated by a smooth delay differential equation without algebraic effects which is analysed with numerical continuation
software. The grazing bifurcation that defines the onset of chattering motion is thus analysed as are secondary (period-doubling
etc.) bifurcations of chattering orbits, and convergence of the bifurcation diagrams is established in the vanishing limit of the
smoothing parameters. The bifurcation diagrams of the smoothed system are then compared with initial value simulations of the
full non-smooth delay differential algebraic equation. These simulations mostly validate the smoothing technique and show in detail
how chaotic chattering dynamics emerge from the non-smooth bifurcations of periodic orbits.
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1. Introduction

In the machining industry it is well known that at high ma-
terial removal rates, turning, milling and drilling processes are
subject to chattering motions in which the tool repeatedly loses
and re-establishes contact with the workpiece. Chattering re-
sults in a very poor quality finish, see figure 1(a), so in prac-
tice the need to avoid it limits the material removal rate and
places bounds on the technological parameters such as the spin-
dle speed and the depth of cut (also known as the chip width).
These bounds are in addition to those due to the power and
torque characteristics of the machine.

The general aim of this paper is to understand in more detail
the dynamical mechanisms involved in the onset of chattering
in turning processes, where a quasi-stationary tool cuts into a
rapidly rotating workpiece. To simplify matters, we restrict our
analysis to the special case of orthogonal cutting, depicted in
figure 2.

In turning processes, the cutting force between the tool and
the workpiece is a function of the chip thickness, that is, the
difference between the tool position and the surface position.
The surface position was determined one (or more) revolutions
earlier by the tool’s past motion. Turning processes are thus re-

generative [1, 2] in the sense that the tool’s motion is forced by
its own history, leading to models based on delay differential
equations (DDEs). These models admit equilibria correspond-
ing to steady cutting, where the chip thickness is independent of
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time, but the stability of this regime is not assured. By analysing
when steady cutting is linearly unstable, we may thus identify
combinations of technological parameters which the machinist
should avoid [3–10].

In practice, the stability of the process is complicated by
nonlinear effects, and the typical situation is indicated by the
one-dimensional bifurcation diagram in figure 1(b), where we
fix the spindle speed and analyse the dynamics of the tool as the
chip width is varied. Here ‖x‖ := maxt x(t) − mint x(t) denotes
the peak-to-peak magnitude of the tool’s motion x(t), so that on
branch A, where ‖x‖ = 0, we have linearly stable steady cut-
ting in which the chip thickness is constant. As the chip width
is increased, steady operation becomes linearly unstable at the
Hopf bifurcation point B. However, normal form computations
[11, 12] and measurements [13, 14] show that the bifurcation is
subcritical, indeed robustly so over a wide range of parameters
and cutting force characteristics [15]. Hence the branch C of
periodic orbits that emanates ‘bends back’ and the periodic or-
bits on it are themselves unstable and hence are not observable
in experiments.

However, we know from experiments [13, 16] that com-
plicated large amplitude chattering motions E (figure 1(b)) are
possible at depths of cut less than that of the Hopf bifurcation
point. Hence in regime 2, there is bistability in that sufficiently
large perturbations to steady cutting can result in sustained chat-
tering oscillations [13]. In contrast, in regime 1, only steady
cutting is possible and in regime 3, only chattering is possible.
Qualitatively this type of behaviour is seen in many different
engineering applications, for example, pipe-flow [17].

The focus of this paper is the vicinity of the point D marked
in figure 1(b). Specifically, we shall examine how the unsta-
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Figure 1: Panel (a) shows a photograph of a machined workpiece. The smooth surface to the left was produced by steady cutting, whereas to the right we may
observe so-called sunflower spirals which are a typical result of tool chatter (photograph provided by Ideko). Panel (b) depicts a schematic bifurcation diagram
showing typical dependence of the tools motion on the chip width w. Here solid / dashed lines represent respectively stable / unstable steady-state cutting. From the
Hopf point B an unstable period-one branch marked C emerges. Our interest is in point D, which denotes the onset of chattering motions at E.

ble branch C connects to stable chattering motions in region
E, and how the complexity of these motions develops through
secondary bifurcations. The simplest mechanism for a periodic
branch to regain stability is via a cyclic fold / SNLS (Saddle
Node of a Limit Cycle) bifurcation, and we show that indeed
this is the mechanism at D, albeit a non-smooth variant where
the branch C turns back at the instant its orbits attain suffi-
cient amplitude for the tool to leave the workpiece. This non-
smooth fold point has a rather intricate structure of accumulat-
ing branches which may be detected by following through se-
quences of further (non-smooth) fold and (smooth) period dou-
bling bifurcations. See the monograph [18] for a recent account
of non-smooth bifurcation theory.

To analyse these solution structures, our chief weapon is nu-
merical continuation software, which is a well established tech-
nique for investigating dynamical systems. The key idea is that
one may trace out branches of solutions (which may be equilib-
ria or periodic orbits) as a parameter is varied without resorting
to repeated solution of the initial value problem. In particular,
branches of unstable solutions may be followed which subse-
quently bifurcate to produce stable dynamics, so that compet-
ing stable behaviours can be identified efficiently without an ex-
haustive search of the initial value and parameter spaces. The
theoretical foundations of numerical continuation were devel-
oped in the 1980s (see for example [19–21] for an overview),
and well-known packages include AUTO [22] and MatCont
[23] for ordinary differential equations (ODEs). The analysis
of DDEs, such as arise from regenerative processes, is compli-
cated by the infinite dimensional state space, but these problems
may be tackled by more sophisticated packages such as DDE-
BIFTOOL [24] (which we use) and PDDE-CONT [25].

Unfortunately, numerical continuation depends upon con-
tinuous differentiability of the model with respect to its solu-
tions and parameters, and our model for cutting is non-smooth
at the instant when the tool loses contact with the workpiece.
Furthermore, the tool position and its history are not sufficient
to close the initial value problem for chattering motions. This
is because when the tool is flying (i.e., has lost contact with
the workpiece) a separate variable must be maintained to store

the surface height of the workpiece for future computation af-
ter the tool has landed. This switch gives rise to a combined
differential-algebraic system.

The key achievements of this paper are thus two-fold: 1)
a smooth approximation to the cutting model, with no alge-
braic effects, is developed which may then be analysed with
the DDE-BIFTOOL package, and 2) the bifurcation structure
of the smooth approximation is elucidated and related to that
of the non-smooth model, and, in particular, we show that the
onset of chattering is via a type of non-smooth fold point.

The remainder of the paper is structured as follows. In sec-
tion 2 we develop and parametrise a regenerative one degree-
of-freedom model for orthogonal cutting, which is generalised
to incorporate non-smooth and algebraic effects due to the tool
leaving the workpiece. In section 3 we then describe how the
model may be smoothed for computational purposes, and we
show convergence of the bifurcation diagrams in the limit of
vanishing smoothing parameters that demonstrate unequivocally
that point D is a non-smooth cyclic fold. Then in section 4, we
probe the secondary bifurcation sequences and the stable chat-
tering behaviour in more detail and show how these correspond
to numerical simulations of the initial value problem. Then sec-
tion 5 presents conclusions.

2. Model description

In this section, a simple model is developed for the orthog-
onal cutting process that can demonstrate chattering behaviour.
The model is formulated as a delay differential algebraic equa-
tion (DDAE) and includes the regenerative effect of turning pro-
cesses and the non-smoothness when contact between the cut-
ting tool and the workpiece is lost.

2.1. Permanent contact model

We begin by modelling the simple case where the tool is
in permanent contact with the workpiece [15]. As we have de-
scribed, turning processes have a so-called regenerative effect

or memory property: when the tool is in permanent contact with
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Figure 2: Panel (a) shows a schematic of the cutting tool in contact with the workpiece. The workpiece is rotating with angular velocity Ω and the tool enters the
workpiece with feed velocity v f = h0Ω/(2π). Panel (b) is a graphical representation of the model (2) where the forces on the cutting tool are proportional to the
chip thickness h(t) = q(t − τ) − q(t) + h0, where τ = 2π/Ω is the period of revolution.

the workpiece, the thickness of the chip that is cut is the differ-
ence between the current position of the cutting tool and the po-
sition of the cutting tool one revolution earlier. Consequently,
this introduces a delay of time τ = 2π/Ω into the system, where
Ω is the spindle speed. If q(t) denotes the displacement of the
tool orthogonal to the workpiece, then the instantaneous chip
thickness h(t) is given by

h(t) = q(t − τ) − q(t) + h0 = Δh(t) + h0, (1)

where h0 is the desired steady-state chip thickness (proportional
to the feed rate), see figure 2(b).

We consider a one degree-of-freedom model of the motion
of the cutting tool-toolholder-machine system as illustrated in
figure 2(b). In the direction perpendicular to the workpiece the
equation of motion is

q̈(t) + 2κωnq̇(t) + ω2
nq(t) =

1
m

Fq, (2)

where q(t) is the position of the cutting tool relative to the tool
holder that provides the constant feed, which is just h0 for one
revolution of the workpiece. The system parameters are the
natural angular velocity ωn, the damping ratio κ and the modal
mass m. Here Fq is the orthogonal component of the cutting
force which must be determined empirically. In practice, we
find Fq is linearly proportional to the chip width (depth of cut)
w, but depends nonlinearly on the chip thickness h(t). Via (1), it
follows that (2) is a DDE. Throughout the paper we fix κ = 0.04
as a representative damping ratio.

The classical approximation to Fq is given by the three-
quarter rule Fq ∼ wh3/4, see [26], which has infinite gradient
at h = 0 when the tool leaves the workpiece. To avoid this
degeneracy, we use instead the approximation due to Shi and
Tobias [13], which takes the cubic polynomial form

Fq(h(t)) = w(ρ1h(t) + ρ2h2(t) + ρ3h3(t)), (3)

with typical measured parameter values ρ1 = 6109.6Nmm−2,
ρ2 = −54141.6Nmm−3 and ρ3 = 203769Nmm−4 for steel.

We consider tool motion x(t) relative to the equilibrium po-
sition q0 = Fq(h0)/mω2

n, and rescale time and displacement us-

ing the natural angular velocity ωn and the desired chip thick-
ness h0 respectively, so that

t̃ = ωnt, x̃ = x/h0,

w̃ = w
ρ1 + 2ρ2h0 + 3ρ3h2

0

mω2
n

, τ̃ = ωnτ, Ω̃ =
2π
τ̃
= Ω/ωn,

η2 =
h0(ρ2 + 3ρ3h0)
ρ1 + 2ρ2h0 + 3ρ3h2

0

and η3 =
h2
0 ρ3

ρ1 + 2ρ2h0 + 3ρ3h2
0

,

(4)
where the dimensionless cutting force parameters become η2 =
−0.20015 and η3 = 0.01946. (These parameters are typical for
finishing-type operations where surface quality is important.)
Thus (2) may be rewritten in the canonical non-dimensional
form

x′′(t) + 2κx′(t) + x(t) = F(Δh(t))

= w(Δh(t) + η2Δh2(t) + η3Δh3(t)), (5)

where the tildes are dropped for clarity. Here Δh(t) := h(t) −
1 = x(t − τ) − x(t) is the (non-dimensional) instantaneous chip
thickness.

2.2. Non-smooth intermittent contact model

We now consider how to augment model (5) to include mo-
tions where the tool loses contact with the workpiece. At the
instant that contact is first lost, the chip thickness attains zero
and the cutting force is ‘switched off’ until the tool regains con-
tact. In consequence, the definition of the cutting force is aug-
mented with F(h) = 0 for h < 0, and thus it is not differentiable
at h = 0.

Furthermore, since the original equation of motion (5) tracks
only the position of the cutting tool and not the surface of the
workpiece, equation (1) defining the chip thickness becomes in-
valid once contact is lost. Thus we introduce the surface height
function χ(t) defined by the recurrence relation

χ(t) =
{

x(t), if cutting,
χ(t − τ) + 1, if flying, (6)

where x(t) is the position of the cutting tool from (5). Clearly,
when the cutting tool is in contact with the surface, the posi-
tions of the two are identical. However, when the cutting tool
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is not in contact, the surface height is simply the same as it was
one revolution earlier, corrected by the (non-dimensionalised)
feed-rate. Consequently, the new expression for chip thickness
becomes

h(t) = χ(t − τ) − x(t) + 1 = Δh(t) + 1. (7)

In summary, the final non-smooth model is a DDAE defined
by (5), (6) and (7). For convenience we define the cutting and
flying vector-fields Sc and Sf respectively in the form

Sc(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x′(t)

F(Δh(t)) − 2κx′(t) − x(t)
x(t) − χ(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

and

Sf(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x′(t)

−2κx′(t) − x(t)
χ(t − τ) + 1 − χ(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (9)

so that the full model may be summarised by
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′(t)
x′′(t)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = H(h(t))Sc(t) + [1 − H(h(t))]Sf(t), (10)

where H is the Heaviside step function. The (infinite dimen-
sional) phase-space of (10) is given by (xt(s), x′t (s), χt(s)) for
s ∈ [−τ, 0], where (·)t(s) = (·)(t + s), and consequently solu-
tions of the model must be projected onto a two-dimensional
surface in order to be visualised. In the analysis that follows we
shall speak of the switching surface, defined to be the set of all
states where the switching condition h(t) = 0 is satisfied, and
thus where (10) switches between the cutting and flying vector
fields.

3. Smoothed equations

We now approximate the non-smooth system (10) of DDAE
with a smoothed delay differential equation DDE approxima-
tion, so that even chattering motions may be analysed by the
standard numerical continuation package DDE-BIFTOOL. We
then demonstrate continuation computations and study their con-
vergence in the smoothing parameters. In particular, we study
the nature of the onset of chattering motions (point D in fig-
ure 1(b)) and verify that this a type of non-smooth fold.

3.1. Smoothed intermittent contact model

Firstly, in (10), we may approximate the Heaviside step
function with the smooth function

H(h(t)) ≈ Hε1 (h(t)) :=
1
2

(
1 + tanh

h(t)
ε1

)
, (11)

where ε1 > 0 is a smoothing parameter, so that we expect to
recover the full non-smooth dynamics in the limit ε1 → 0.

Secondly, wemust address the more serious difficulty in (10),
namely the algebraic recursion, which cannot be tackled by
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Figure 3: Two-parameter bifurcation diagram of the steady-state cutting. The
black curve represents a Hopf bifurcation curve; along this curve the bifurca-
tions are subcritical. Consequently, there are unstable periodic orbits coexisting
with the stable steady-state cutting solutions in the grey region of the diagram.

standard numerical continuation packages. Our approach is to
approximate (6) by a differential equation by introducing a fur-
ther smoothing in the form of the singular perturbation ε2χ′(t)
(ε2 > 0) in the third component of (10). The fully smoothed
DDE approximation thus takes the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x′(t)
x′′(t)
ε2χ

′(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = Hε1 (h(t))Sc(t) + [1 − Hε1 (h(t))]Sf(t), (12)

where χ is now a fast variable that tracks either x(t) or χ(t−τ)+1
with the characteristic time scale ε2.

The choice of the smoothing parameters ε1 and ε2 is critical
and we experiment with them later in section 3.3. In particular,
they must be chosen sufficiently small so as to avoid introducing
dynamical artefacts which are solutions of (12) but not of (10).
However, pathologically small choices will result in unneces-
sarily long computations.

3.2. Method of numerical investigation

To investigate the dynamics of the system, we perform one-
parameter continuations in the chip width w, with all other pa-
rameters held constant, in order to compute the structure sketched
in figure 1(b). In each computation, we begin with the trivial so-
lution x(t) ≡ 0 and follow the branch of unstable periodic orbits
that emanates from the subcritical Hopf bifurcation. These cal-
culations are at first entirely smooth, since the oscillations rep-
resent small amplitude motions in which the tool does not leave
the workpiece, and which can be followed [15] using the basic
model (5). However, as the amplitude of the unstable periodic
orbit grows, then it begins to incorporate motion in which the
tool flies, for which the full model (10) and its smoothing (12)
are required.

Note that linear stability analysis of the steady cutting so-
lution x ≡ 0 leads to the well-known lobe structure in the Ω–w

stability chart [1–3, 11, 15, 27], see figure 3. In this paper, we
focus on computations which cut the ‘first’ lobe at its minimum
with respect to w, for which the non-dimensional spindle speed
Ω is highest, indicated by the vertical section in figure 3. (For
the choice of physical parameters we have adopted in section 2,
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Figure 4: The panels show a series of one-parameter continuations (bold curves) of the smoothed model (12) in the vicinity of the fold-type point at which the
branches turn over. The grey curve indicates a continuation of the unstable periodic orbit of the basic model (5) which captures motions with no loss of contact, and
the large circle on this branch denotes the switching point at which zero chip thickness is attained. In panel (a) we fix ε2 = 10−7 and reduce ε1, and in (b) we fix
ε1 = 5 · 10−7 and reduce ε2. In these limits, the unstable portion of the branches accumulate on the branch for (5), and the fold points accumulate on the switching
point for (5) if ε1 is reduced sufficiently.

we thus have Ω 
 1.37.) In all plots we then present the chip
width normalised by its minimum value wmin at the Hopf bifur-
cation.

Preliminary computations (not presented here) indicate sim-
ilar bifurcation structure for other constant Ω sections. Some of
this similarity can be explained by the standard DDE invariance
property, which relates the lobes to each other. Specifically, if
we have a periodic orbit φ(t) with period T for a particular time
delay τ = τ0, then φ(t) is also a periodic orbit for time delay
τ = τ0+nT where n = 1, 2, . . .. However, stability properties are
not preserved by this transformation. In consequence, whereas
the secondary bifurcations of the continuation through the first
lobe include many period doubling bifurcations, the continua-
tions through other lobes typically involve Neimark-Sacker bi-
furcations giving rise to quasi-periodic oscillations which can-
not be continued further by DDE-BIFTOOL.

3.3. Effect of the smoothing parameters

We now follow the continuation procedure described in sec-
tion 3.2, in order to investigate the dynamics of the smoothed
system (12). Of particular interest is the choice of the smooth-
ing parameters, ε1 and ε2, and how small they must be chosen
for the dynamics of the non-smooth model (10) to be repro-
duced robustly. Furthermore, we wish to establish the nature of
the transition to chattering dynamics, at point D in figure 1(b).
These questions are the focus of figure 4, which summarises
our results.

Figure 4 establishes two things. Firstly, as ε1 and ε2 are
reduced towards zero, there is an accumulation in the branches
computed from the smoothed model (12). In fact, this accu-
mulation establishes only the self-consistency of the smoothed
model, and not that it reproduces the dynamics of the full model
(10) — a point that we will return to in section 4.

Secondly, figure 4 shows that the branch of unstable peri-
odic orbits emanating at the Hopf bifurcation ‘turns over’ in a
cyclic fold (Saddle Node of a Limit Cycle) at which it regains

stability. The location of this fold may then be examined as ε1
and ε2 are successively reduced. When this limiting process
is followed, we find that the fold for the smoothed model (12)
tends to the point at which the orbits of the permanent contact
model (5) attain loss of contact between the tool and the work-
piece.

In consequence, it seems that we have established the na-
ture of the point D in figure 1(b). The limiting behaviour of the
smoothed model indicates that the branch of unstable periodic
orbits of the full non-smooth model (10) regains stability via a
non-smooth cyclic fold, at which point its orbits simultaneously
lose contact between the tool and the workpiece. This is a well-
known type of grazing bifurcation [18, Chapter 7]. However,
as we shall now see, a detailed investigation of the secondary
bifurcation structure beyond the fold point reveals a more com-
plicated situation.

4. Details of chattering dynamics

We now extend our analysis to a more detailed study of
chattering motions— that is the region denoted E in figure 1(b).
There are two components in this work.

• Firstly, in section 4.1, we extend our numerical continu-
ation of the smoothed model (12) to consider secondary
bifurcations that occur beyond the fold point that we have
already examined. In summary, we discover a compli-
cated bifurcation structure in which many branches of
period doubled orbits also accumulate at the fold point,
but ‘from the right’ in the sense of figure 4. This result
indicates that the onset of chattering motion is not via a
simple grazing cyclic fold, and that initial chattering mo-
tions are probably not simple periodic orbits.

• Thus secondly, in section 4.2, we perform time-domain
simulations of the full non-smooth model (10) in order

5
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Figure 5: Panels (a)–(d) show the convergence of the bifurcation structure of the smoothed model (12) as ε1 → 0. Throughout we fix ε2 = 10−7. In (a) there are
two period-doubling bifurcations connected by a branch of period-two orbits. As ε1 is decreased a ‘bubble’ of period-four orbits emerges as shown in (b). Panels
(c) and (d) appear to show the converged bifurcation structure. All of the left-hand period-doubling bifurcations have moved towards the fold point, which suggests
that all the branches shown actually emerge from the grazing bifurcation in the non-smooth model (cf. the labelled point D). Isolated branches of period-three and
period-six orbits, connected by a period-doubling bifurcation at point C, are shown in (c) and (d) respectively.
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to eliminate artefacts due to the smoothing process. In
summary, we establish that there is an immediate ‘jump’
to chaotic dynamics, and we trace out how the dynamics
evolve as the chip width is increased, demonstrating the
correspondence between periodic windows in the time
simulation and stable sections of periodic orbit in the nu-
merical continuation.

4.1. Numerical continuation and secondary bifurcations

We now follow on from figure 4 to continue branches of
periodic orbits to the smoothed model (12), as the chip width
w is increased beyond the non-smooth fold point. In particular,
we focus on computing secondary bifurcations and the branches
that emanate from them. Our experience with computations
of the smoothed model indicates that qualitative dynamics are
relatively robust to the choice of the smoothing parameter ε2,
but the choice of ε1 is critical. Hence throughout we fix ε2 =
10−7 and consider a sequence of computations as ε1 is reduced.
Figure 5 summarises the results.

Further continuation of the branches shown in figure 4 for
ε1 = 10−7 demonstrates the opening up of a stable period-
doubled bubble, as seen in figure 5(a). However, as ε1 is de-
creased further, see figure 5(b), a second stable period-doubled
bubble emerges so as to introduce a window of unstable period-
four orbits. Moreover, the original left-hand period-doubling
bifurcation has moved towards the fold. This process contin-
ues in figure 5(c) and (d) as ε1 is reduced further and we begin
to recover the converged bifurcation structure of the model. In
short we discover an apparent cascade of period-doubling bi-
furcations, where the left-hand bifurcation of each new bubble
approaches the fold point as ε1 is successively reduced.

Furthermore, as ε1 is decreased, the criticality of the period-
doubling bifurcations changes from supercritical to subcritical.
The change in criticality introduces additional cyclic fold bifur-
cations into the branch structure, labelled A and B in figure 5.
It appears that, in the limit of ε1 → 0, these cyclic folds also
become non-smooth fold points. However, no further bifurcat-
ing branches are found to emerge from these extra non-smooth
fold points. The change in criticality is further highlighted in
figure 6 which shows the change in the period-3 and period-6
branches as ε1 is changed from 5 · 10−9 to 10−9.

In consequence, it seems the onset of stable periodic chat-
tering motion at the primary fold point, discovered in section 3.3,
is an artefact of the smoothing process. Instead, it seems that
the fold point is a more complicated type of grazing bifurcation
from which infinitely many branches of unstable periodic orbits
emanate. This is reminiscent of the ‘Big Bang bifurcation’ of
Avrutin and Schanz [28] and as such we label this point B3. The
emerging periodic orbits are then absorbed at period-doubling
bifurcations at larger values of the chip width parameter. In
fact, a more detailed investigation also reveals the emanation of
branches of unstable period-three and period-six orbits which
do not connect with the period-one/two/four structure (other
than at the fold point) but which can be readily be found by
numerical simulation and then continued.

This bifurcation structure, consisting of an infinite accumu-
lation of unstable periodic orbits, has been discovered in sim-

pler non-smooth dynamical systems [18, see examples in Chap-
ter 7] and is associated with the instantaneous onset of localised
chaotic dynamics. However, a recent parallel study [29] which
works directly on the non-smooth model (10), demonstrates
that the period doubling cascade is an artefact of the smoothing,
and that only the first two right-most period-doubling bifurca-
tions, see figure 5(b), persist in the perfectly non-smooth model.
The ε1, ε2 → 0 limiting process thus has features which we
could not explore fully from mathematical perspective, but the
results obtained so far are also supported by the time-domain
simulations of the limiting case.

4.2. Time-domain simulations

To establish the validity of the smoothed model (12) we
resort to numerical simulation of the full non-smooth model
(10). If the smoothed model is an accurate representation of
the non-smooth model, then there should be good agreement
between the results away from any non-smooth grazing bifur-
cations. Furthermore, we present the results for numerical sim-
ulations of the smoothed model (12) to enable a complete com-
parison of the results.

Moreover, while numerical simulation cannot provide the
full bifurcation structure of the model, it will reveal any chaotic
attractors in the system which cannot be studied directly using
numerical continuation methods. Thus numerical continuation
and numerical simulation are complementary to each other in
elucidating the dynamics of a model.

To integrate (10) the Matlab routines dde23 and ode45 are
used alternately to integrate the DDE and ODE parts of the
system respectively; the built-in event detection features of the
Matlab routines enable the switching points to be found to ma-
chine precision (since the switch is defined by an algebraic
equation), thus the accuracy of the integration is unaffected by
the switching. The algebraic constraint is implicitly incorpo-
rated into the system through modifications to the initial func-
tion segment provided to dde23. At each parameter value, (10)
is integrated for 1000 non-dimensional time units and the first
200 time-units of data are then discarded to account for the tran-
sient behaviour. The output of each simulation run is used as the
initial condition for the next simulation run.

Figure 8 shows results from numerical simulations of (10)
overlaid with the cloud from numerical continuation of (12).
As suggested by the numerical continuation results, the primary
fold point / grazing bifurcation acts as an organising centre for
the dynamics.

The values on the vertical axis of figure 8 are defined by

ξ := sgn(x(t))
√

x(t)2 + x(t − τ)2, (13)

at the point the orbit intersects the Poincaré section

Π := {x(t) + x(t − τ) = 0}. (14)

This section is chosen for convenience as all periodic orbits pass
through it (see figure 7). For the parameters chosen here, we
have x(t − τ) = χ(t − τ) at the switching surface. Therefore,
the switching surface Σ := {h(t) = 0} is orthogonal to Π in the
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Figure 7: Shows a two dimensional projection of phase-space and a represen-
tative period-one orbit. Π marks the Poincaré section defined by (14) and Σ
marks the switching surface that separates the cutting and flying vector-fields
(Sc and Sf).

(x(t), x(t−τ))-plane and it takes the constant value of ξΣ = 1/
√
2.

Thus, grazing bifurcations (or approximations thereof) can be
immediately seen as locations where the solution branches in-
tersect (or in the smoothed case, come close to) ξ = ξΣ.

At the primary grazing bifurcation (labelled B3 in figure 8),
from which many branches of periodic orbits emerge, a highly
localised chaotic attractor also emerges. This chaotic attractor
(cwa) appears to be the global attractor of the system until the
grazing bifurcation of the period-6 orbits (figure 8(b) where p6
and p3 were continued using ε = 10−9). The numerical simu-
lation also indicates that the period-3 branch continues further
than the numerical continuation results show before terminat-
ing at a fold / grazing bifurcation (G3 in figure 8(d)), thus ex-
tending the chaos-free window in parameter space. However,
for the period-2 and period-1 branches the agreement between
numerical continuation of the smoothed system and numerical
simulation of the non-smooth system is excellent.

Figure 9 shows two dimensional projections of the Poincaré
section defined by (14). Figures 9(a) and (c) show the phase-
space when there are stable periodic orbits (solid symbols) and
unstable periodic orbits (open symbols), and figures 9(b) and
(d) show the phase-space when there is a stable chaotic at-
tractor. In both cases, the agreement between simulation and

continuation is good. In particular, all of the unstable periodic
orbits can be seen to reside within the chaotic attractor as is
expected.

5. Conclusion

This paper has been motivated by chattering behaviour in
machining processes. We have focussed on a simplified one
degree-of-freedom model of orthogonal cutting, as a represen-
tative example displaying the regenerative effect common to
turning processes. Even this simplified modelling approach,
when incorporating full chattering motions in which the tool
loses contact with the workpiece, yields a non-smooth delay
differential algebraic equation (DDAE) which cannot be anal-
ysed by standard numerical continuation tools.

Our chief result has been to derive a smoothed version of
the orthogonal cutting system which is a pure delay differential
equation (DDE) without algebraic effects. This is achieved by
relaxing time to eliminate the algebraic effect, and by relaxing
space to eliminate the non-smoothness that occurs at the loss
of contact. These relaxations introduce two (small) smoothing
parameters that govern the accuracy of the new approximate
DDE system.

We have then analysed the smooth DDE system using the
numerical continuation software DDE-BIFTOOL and we have
compared the dynamics with initial value simulations of the full
non-smooth DDAE. In broad qualitative terms, there is excel-
lent agreement thus vindicating our approach. But the numer-
ical continuation reveals dynamical structure and mechanisms
which could not otherwise be investigated.

In particular, we have used numerical continuation to inves-
tigate the onset of chattering dynamics, at the point labelled D
in figure 1(b). For the cubic cutting force characteristics used
here, we have shown that the unstable branch of periodic or-
bits folds over at the same point in parameter space where its
solutions first lose contact with the workpiece. This result has
been suspected for some time (e.g., [15, 30]) but the matter is
now resolved. However, in computations not shown here, we
have discovered alternative mechanisms for the onset of chat-
tering when other cutting force relationships are used, such as
the three-quarter rule.
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Figure 8: Panel (a) and (c) show bifurcation diagrams calculated by numerical integration of the smoothed (12) and the non-smooth model (10), respectively. Panel
(b) contains the branches of periodic orbits obtained by numerical continuation overlaid with the results of panel (c) for comparison. The smoothing parameter ε1
was 5 · 10−9 in panel (a) and (b) except for branches p3 and p6 in panel (b) where ε1 was 10−9. In all panels, the vertical axis is defined by (13) in combination with
the Poincaré section (14). It can be seen that a localised chaotic attractor emerges from the primary fold point / grazing (Big Bang) bifurcation B3. Panel (d) shows
the relative locations of the different bifurcations, where PD denotes a period-doubling bifurcation and G denotes a grazing bifurcation.
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show the development of the bifurcation structure as the bifurcation parameter w is decreased. Panel (a) shows a stable period-two orbit (solid diamonds) and
an unstable period-one orbit (open circle). Panel (b) shows a chaotic attractor with unstable period-one (open circle), period-two (open diamond) and period-four
(open square) orbits. Panel (c) shows an example in the periodic window of figure 8 a stable period-three orbit (solid triangles), an unstable period-three orbit (open
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When the fine detail of solution branches is considered,
some discrepancies can be found between the smoothed DDE
and the full non-smooth DDAE system. Although we have es-
tablished the convergence of the solution branches of the smoothed
system in the limit of vanishing smoothing parameters, this con-
verged structure is not always consistent with the DDAE in the
neighbourhood of all non-smooth bifurcation points. Specif-
ically, the route to chaos in the smoothed DDE is through a
classical period-doubling cascade whereas recent parallel work
has shown that the onset of chaos in the non-smooth DDAE is
due to a grazing bifurcation [29]. Moreover, this grazing bifur-
cation (point D in figure 1(b)) acts as an organising centre from
which all the chattering orbits emerge.

A further point to highlight is the apparent discrepancy be-
tween the results shown here and the results of Wahi and Chat-
terjee [31] which arises due to the use of a different cutting force
model. Here the cutting rule of Shi and Tobias [13] is used
whereas [31] uses the three-quarter rule [26]. When using the
three-quarter rule, no chaotic chattering motion is found, only
periodic motion persists. As such, further experimental work
is required to determine which of the force laws is more appli-
cable. Indeed, the results presented here may provide a distin-
guishing feature which can be used to differentiate between the
force laws, as direct force-displacement measurements cannot
be performed with sufficient accuracy. We emphasize again,
however, that experimental evidence in the literature [13, 16]
supports the existence of chaotic oscillations.

Finally, we should point out that our broad philosophy is fo-

cussed on detailed parameter studies of simple low degree-of-
freedom models. The fine details that we discover may not sur-
vive real-world perturbations such as process damping at low
spindle speeds [32] or the incorporation of higher order struc-
tural modes. However, given that very simple models display
complex dynamics (including chaos) in region E, it seems plau-
sible that the dynamics of more faithful models are at least as
complicated — but their investigation remains for future work.
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