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Abstract

In the general context of smooth two-player games, this paper

shows that there is a close connection between (constant) consistent

conjectures in a given game and the evolutionary stability of these

conjectures. Evolutionarily stable conjectures are consistent and con-

sistent conjectures are the only interior candidates to be evolutionarily

stable. Examples are provided to illustrate the result.
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1 Introduction

Conjectures (or conjectural variations, CV) were introduced in the industrial

organization literature to provide a unified framework of imperfect compe-

tition, and in this capacity they are still used in empirical investigations

(Cabral, 2000, Ch. 9). However, from a theoretical point of view, conjec-

tural variations are considered to be problematic, as a good justification for

them is difficult to find in a static setting. For example, it was argued that

even consistent conjectures cannot be properly rationalized in such a case

(e.g. Lindh, 1992).

Figuieres et al. (2004) survey attempts to justify conjectural variations in

a dynamic setting. There are two main dynamic approaches. One considers a

repeated game setting with players behaving optimally to various degrees (see

e.g. Dockner, 1992; Friedman and Mezzetti, 2002; Jean-Marie and Tidball,

2006). The other approach considers evolutionary models of myopic play-

ers. With this approach, in the context of a linear-quadratic duopoly model

with differentiated goods, Müller and Normann (2005) showed that consis-

tent conjectures are evolutionarily stable, while Dixon and Somma (2003)

demonstrated in their model that an explicit evolutionary process converges

to consistent conjectures when goods are homogeneous.

In this paper I show that the consistency of (constant) conjectures and

their evolutionary stability are closely connected in the general setting of

smooth two-player games. Consistent conjectures are evolutionarily stable

not only for linear-quadratic duopoly models, but also for other well-behaved

games. Thus this paper provides a rationale for consistent conjectures as

they emerge as a stable point of an evolutionary process in many situations.

The paper also provides a more convenient way to find stable points of the

evolutionary process as consistent conjectures are often easier to find.

The result is illustrated on a set of examples including games with quadra-

tic payoff functions, semi-public good games, and contest games. While the

first example is a straightforward generalization of the previously known

result, the evolutionary stability of consistent conjectures in the other two

examples show how the general connection between the two notions works

in other situations.
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2 The Model

2.1 The Game

Consider a two-player game G = ({1, 2}, {X1, X2}, {u1, u2}), where X1, X2 ⊂

R are convex strategy spaces and u1(x1, x2), u2(x1, x2) are payoff functions of

the two players. In what follows, i refers to either Player 1 or Player 2, and

j to the other player (j 6= i). The payoff functions are assumed to be twice

continuously differentiable.

I consider the following variant of the conjectural variations (CV) model.

The players have (constant) conjectures about the marginal reaction of the

opponent to a marginal change in strategy. Let rij ∈ Yi ⊂ R, where Yi is

a convex set, be this conjecture of Player i about Player j, that is, Player i

believes that
dxj

dxi

(xi, xj) = rij ∀xi, xj .

I work with constant conjectures because they allow some selection; if con-

jectures depend on xi, xj then many strategy profiles can be supported by

(weakly) consistent conjectures (Laitner, 1980; Boyer and Moreaux, 1983).

Since Player i believes that xj depends on xi, Player i attempts to

maximize ui(xi, xj(xi)) on Xi. At an interior solution x∗

i of this problem

∂ui/∂xi(x
∗

i , xj(x
∗

i ))+∂ui/∂xi(x
∗

i , xj(x
∗

i )) ·dxj/dxi = 0. Since the player does

not attempt to conjecture the whole reaction function xj(xi) but only its

slope dxj/dxi = rij , xj is an independent variable, so at x∗

i it holds that

∂ui

∂xi

(x∗

i , xj) + rij ·
∂ui

∂xj

(x∗

i , xj) = 0.

When ∂ui/∂xj(x
∗

i , xj) 6= 0, then rij can be equated to a ratio of partial

derivatives:

Claim 1 At an interior best response x∗

i of Player i

rij = −
∂ui/∂xi(x

∗

i , xj)

∂ui/∂xj(x∗

i , xj)
, (1)

when ∂ui/∂xj(x
∗

i , xj) 6= 0.
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Condition 1 ∂ui/∂xj(x
∗

i , xj) 6= 0 for all xj and corresponding interior best

responses x∗

i .

Condition 1 is a natural condition in a strategic setting, requiring that a

player’s payoff depends on the other player’s action (at the appropriate best

response). If this were not the case, the player would not need to care about

the other’s response, making conjectures unnecessary.

Let

Fi(xi, xj ; rij) :=
∂ui

∂xi

(xi, xj) + rij ·
∂ui

∂xj

(xi, xj).

At an interior solution x∗

i of Player i’s maximization problem Fi(x
∗

i , xj ; rij) =

0. If the solution is unique and interior for each xj , Fi(xi, xj ; rij) = 0 im-

plicitly defines the reaction function x∗

i (xj ; rij) of Player i. To be able to use

this reaction function I require

Condition 2 For all rij ∈ Yi, all xj ∈ Xj, the maximization problem of

Player i has a unique interior solution x∗

i , for i = 1, 2.

The condition guarantees that the reaction functions of the players are

defined by the equations Fi(xi, xj; rij) = 0, Fj(xi, xj ; rji) = 0.

2.2 Consistent Conjectures

To distinguish the consistency notion I use from that in (some of) the liter-

ature (e.g. Bresnahan, 1981, where consistent conjectures are functions all

whose derivatives are required to coincide with the corresponding derivatives

of the actual reaction function in the neighborhood of equilibrium) I call a

conjecture of Player i weakly consistent if the conjectured reaction of Player

j equals the actual slope of the reaction function of Player j at best response,

i.e. rij = dx∗

j/dxi(xi; rji) at x∗

i .

When the reaction function is determined implicitly by Fj(xi, xj ; rji) = 0,

and ∂Fj/∂xj(xi, xj) 6= 0, the slope of the reaction function can be found from

the implicit function theorem. Therefore,

Claim 2 At the best responses (x∗

i , x
∗

j ), conjecture rij is weakly consistent iff

rij =
dx∗

j

dxi

(x∗

i ; rji) = −
∂Fj/∂xi(x

∗

j , x
∗

i , rji)

∂Fj/∂xj(x∗

j , x
∗

i ; rji)
, (2)
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when ∂Fj/∂xj(x
∗

i , x
∗

j ; rji) 6= 0.

Condition 3 ∂Fj/∂xj(x
∗

i , x
∗

j ; rji) 6= 0 for all rij ∈ Yi, rji ∈ Yj.

Condition 3 implies that the reaction function is continuous and differen-

tiable at the mutual best response point, and its slope is well defined. The

conjecture can then be compared with the slope.

Conjectures rC
ij , r

C
ji are mutually consistent if rC

ij = dx∗

j/dxi(x
∗

i ; r
C
ji) and

rC
ji = dx∗

i /dxj(x
∗

j ; r
C
ij). When the game is symmetric, the reaction functions

are symmetric. Then a symmetric conjecture rC = rC
ij = rC

ji is consistent

when rC = dx∗

i /dxj(x
∗

j ; r
C).

2.3 The Evolutionary Stability of Conjectures

Suppose that conjectures are something players are born with (one can in-

terpret them as e.g. optimism/pessimism attitudes). Consider two large

populations of players who are repeatedly randomly matched. There is a

certain distribution of conjectures in the populations. In a match, players

either observe each other’s conjectures and behave according to an equilib-

rium of the game with these conjectures, or they learn to play an equilibrium,

where learning is (much) faster than the evolution of conjectures. In either

case, the (evolutionary) success of a given conjecture is determined by av-

eraging the equilibrium payoffs of the players endowed with this conjecture

over all matches. The proportions of players with given conjectures change

according to their evolutionary success.

For a conjecture rji of Player j, the evolutionarily stable (ES) conjecture of

Player i is a conjecture rES
ij such that no other conjecture rij performs better

or equally well in a population of Players i almost exclusively composed of

players with conjecture rES
ij (and the rest of the population has conjecture

rij). If in a monomorphic population of players with conjecture rES
ij a small

proportion of mutants with some other conjecture rij appears, evolutionary

forces will eliminate the mutants.

The informal description in the previous paragraphs corresponds to a gen-

eralization of the indirect evolution approach of Güth and Yaari (1992) to

asymmetric games and multiple equilibria. More formally, let ui(rij , rji) =

5
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ui(x
∗

i (rij, rji), x
∗

j(rij, rji)) be the payoff of Player i when for each pair of con-

jectures rij , rji a particular equilibrium x∗

i (rij, rji), x∗

j (rij, rji) is played. For

a conjecture rji of Player j, conjecture rES
ij of Player i is evolutionarily stable

under equilibrium selection x∗

i (rij, rji), x∗

j (rij , rji) if ui(r
ES
ij , rji) > ui(rij, rji)

for any rij 6= rES
ij (asymmetric games ESS; Selten, 1980). A conjecture of

Player i is evolutionarily stable against a given conjecture rji of Player j if

it is the unique best response to this conjecture rji in the game with payoffs

ui(rij , rji).

If the solutions of their optimization problems are interior, x∗

i , x
∗

j satisfy

Fi(x
∗

i , x
∗

j ; rij) = 0 and Fj(x
∗

i , x
∗

j ; rji) = 0. Consider the problem

max
xi,xj ,rij

ui(xi, xj) (3)

s.t. Fi(xi, xj ; rij) = 0

Fj(xi, xj ; rji) = 0

By the implicit function theorem, the system of equations Fi(xi, xj ; rij) = 0,

Fj(xi, xj; rji) = 0 determines locally functions x∗

i (rij, rji), x∗

j (rij, rji) when

∂Fi/∂xi · ∂Fj/∂xj − ∂Fi/∂xj · ∂Fj/∂xi 6= 0 at rij , rji, x
∗

i (rij , rji), x
∗

j (rij, rji).

Substituting the functions, problem (3) is equivalent to

max
rij

ui(x
∗

i (rij, rji), x
∗

j (rij, rji)) (4)

Problem (4) is exactly the problem of finding a best response conjecture for

Player i against the conjecture rji of Player j.

Since problems (3) and (4) are equivalent, they have the same solution.

At an interior solution of problem (3) the following first order conditions

hold:

∂ui

∂xi

+ λ
∂Fi

∂xi

+ µ
∂Fj

∂xi

= 0 (5a)

∂ui

∂xj

+ λ
∂Fi

∂xj

+ µ
∂Fj

∂xj

= 0 (5b)

∂ui

∂rij

+ λ
∂Fi

∂rij

+ µ
∂Fj

∂rij

= 0 (5c)

where λ, µ are Lagrangean multipliers. Since ui does not depend directly on

rij , ∂ui/∂rij = 0. Since Fj does not depend directly on rij , ∂Fj/∂rij = 0.

6
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Furthermore, since Fi = ∂ui/∂xi + rij · ∂ui/∂xj , ∂Fi/∂rij = ∂ui/∂xj . By

Condition 1 ∂ui/∂xj 6= 0, thus ∂Fi/∂rij 6= 0. From (5c) λ = 0 and from (5b)

µ 6= 0 and ∂Fj/∂xj 6= 0. Then (5a) and (5b) become ∂ui/∂xi+µ·∂Fj/∂xi = 0

and ∂ui/∂xj + µ · ∂Fj/∂xj = 0. Therefore,

Claim 3 At an interior solution of Problem (4)

∂ui/∂xi

∂ui/∂xj

=
∂Fj/∂xi

∂Fj/∂xj

. (6)

Condition 4 For all rij ∈ Yi, rji ∈ Yj, at rij, rji, x
∗

i (rij, rji), x
∗

j (rij, rji)

∂Fi

∂xi

∂Fj

∂xj

−
∂Fi

∂xj

∂Fj

∂xi

6= 0.

Condition 4 rules out degenerate cases such as when the reaction functions

are tangent to each other thus small changes in rij , rji may lead to a jump

to another equilibrium or to multiple neighboring equilibria, in which cases

functions x∗

i (rij , rji), x
∗

j(rij , rji) would be discontinuous or ill-defined. The

condition makes sure that there is a smooth selection x∗

i (rij , rji), x
∗

j (rij, rji)

from the set of equilibria as rij, rji vary in their respective Yi, Yj.
1

Using Claims 1 and 3, if an interior conjecture rij is evolutionarily stable,

then

rij = −
∂ui/∂xi

∂ui/∂xj

= −
∂Fj/∂xj

∂Fj/∂xi

.

By Claim 2 this means that rij is weakly consistent. Thus

Proposition 1 Suppose Conditions 1 to 4 are satisfied. If an interior con-

jecture rij is evolutionarily stable against rji under some smooth equilibrium

selection x∗

i (rij , rji), x
∗

j(rij , rji) then it is weakly consistent for this rji.

The proposition may also be stated as follows:

Corollary 1 Suppose Conditions 1 to 4 are satisfied. If an interior conjec-

ture rij is not weakly consistent for rji, then it is not evolutionarily stable

against rji under any smooth equilibrium selection x∗

i (rij, rji), x
∗

j(rij , rji).

1The problem of equilibrium selection disappears if there is a unique equilibrium for

all rij , rji. This will be the case in the examples in Section 3.

7
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For clarity, the statements are formulated using all four conditions dis-

cussed above. Not all of them are independent, and they are sufficient for the

statements but not all are necessary. Local versions of conditions may be suf-

ficient for the result; e.g. Condition 1 needs to hold only at the best response

corresponding to evolutionarily stable rij. From the proof of Claim 3, Condi-

tion 3 is implied by Conditions 1 and 2 at an interior evolutionarily stable rij,

thus a local version of Condition 3 is automatically satisfied. An equilibrium

selection may exist even when ∂Fi/∂xi · ∂Fj/∂xj − ∂Fi/∂xj · ∂Fj/∂xi = 0,

and not all best responses need to be interior. The present formulation is

chosen to avoid excessive technicalities, and in the examples in Section 3 the

conditions will be satisfied globally.

Additional assumptions are needed for the inference from consistency to

evolutionary stability. Condition 4 guarantees the existence of equilibrium

selection x∗

i (rij, rji), x
∗

j(rij, rji). If sufficient conditions for a unique global

optimum of Problem (4) are satisfied, then the weak consistency of an inte-

rior conjecture r∗ij implies that r∗ij is an ES conjecture. One such sufficient

condition is the global concavity of the payoff function.

Proposition 2 Suppose Conditions 1 to 4 are satisfied. If an interior con-

jecture r∗ij is weakly consistent for rji and [ui(x
∗

i (r, rji), x
∗

j(r, rji))]
′′

r < 0 for all

r, then r∗ij is evolutionarily stable against rji under the equilibrium selection

x∗

i (rij , rji), x
∗

j(rij , rji).

Another condition, often easier to check, is local concavity together with

the uniqueness of the critical point. Thus

Proposition 3 Suppose Conditions 1 to 4 are satisfied. If an interior con-

jecture r∗ij is weakly consistent, [ui(x
∗

i (r, rji), x
∗

j(r, rji))]
′

r = 0 has a unique

solution r∗ij, and [ui(x
∗

i (r, rji), x
∗

j(r, rji))]
′′

r |r=r∗
ij

< 0, then r∗ij is evolutionarily

stable under the equilibrium selection x∗

i (rij, rji), x
∗

j (rij, rji).

The analysis above is for Player i and for a conjecture rji of Player j. A

similar analysis can be performed for Player j, keeping constant a conjecture

rij of Player i. Then if interior conjectures r∗ij, r
∗

ji are mutually evolutionarily

8
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stable, they are mutually consistent. If interior conjectures are not mutu-

ally consistent, then they are not mutually evolutionarily stable. Analogous

extensions hold for the other propositions.

When the game is symmetric, it is natural to expect players to hold

symmetric conjectures. In the symmetric case, the matching can be done

within one population since players’ roles are indistinguishable. Although

in this case evolutionary stability is not equivalent to strict best response

(strict best response implies evolutionary stability but not the reverse), the

propositions hold for the one-population symmetric case as well. An interior

evolutionarily stable conjecture is a best response to itself, so the first order

conditions have to hold, thus implying Proposition 1 and Corollary 1. Since

a strict symmetric equilibrium is evolutionarily stable in the one-population

symmetric case, sufficient conditions of Propositions 2 and 3 imply evolu-

tionary stability in this case too.

A graphical illustration of the close connection between consistency and

evolutionary stability is given in an example in the next section. Intuitively,

rji determines the reaction function of Player j. By varying rij, Player i can

change his own reaction function and so can change its point of intersection

with the reaction function of Player j. Player i will choose a point on the

reaction function of Player j where it is tangent to a level curve of Player

i’s payoff function. But since rij by Claim 1 equals the slope of this level

curve, best response rij has to be equal to the slope of the reaction function

of Player j, i.e. be consistent.

If conjecture rij is consistent, Player i ”knows” the reaction of Player j

to small changes in xi. Thus a player with consistent conjecture maximizes

the ”correct” function ui(xi, xj(xi)), and so has higher payoff than when the

conjecture is not consistent. Therefore the obtained result may look obvious.

Nevertheless, Müller and Normann (2005, p. 500) state that ”[...] the result

that the evolutionarily stable conjectures coincide with the consistent conjec-

tures is surprising as there is no obvious analogy between the two concepts.”

The result was also surprising for me. There was no reason to expect apriori

that ’more rationality’ (consistency) should lead to the same result as ’less

rationality’ (evolution); only after interpreting the result did the connection

appear obvious.

9
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3 Examples

3.1 Games with Quadratic Payoff Function

Consider the class of symmetric games with the payoff function given by

ui(xi, xj) = Axi + Bxixj − Cx2

i ,

where A, B, C are parameters, A > 0, B 6= 0, C > 0, and C > |B|. Several

well-known games fall in this class, among which are the games for which the

evolutionary stability of consistent conjectures was analyzed in the literature.

For example, in the differentiated goods Cournot duopoly with linear

inverse demands Pi(qi, qj) = a − biqi − bjqj and quadratic costs Ci(qi) = cq2
i ,

analyzed in Müller and Norman (2005) (and in Dixon and Somma, 2003, for

the homogenous goods case), a firm’s profit πi(qi, qj) = Pi(qi, qj)qi − Ci(qi)

can be represented as πi(qi, qj) = aqi − bjqiqj − (bi + c)q2
i . A variant of

the search model in Milgrom and Roberts (1990) leads to payoff function

ui(xi, xj) = Axi + αxixj − cx2
i , where the gains from trade Axi + αxixj

depend on the efforts xi, xj of the players and the cost of effort is cx2
i .

Let the strategy space be X = [0, x), where x is a suitable upper bound

to make economic sense. There may be no upper bound (x = ∞). Let the

conjecture space be Y = (−1, 1).

Since ∂ui/∂xj = Bxi 6= 0 in the interior of X, Condition 1 is satisfied.

Player i’s problem is to maximize Axi + Bxixj − Cx2
i , when dxj/dxi = rij.

The first order condition is

Fi = A + Bxj + Brijxi − 2Cxi = 0.

This implies x∗

i = (A+Bxj)/(2C−Brij). If B > 0, then consider x = ∞ for

x∗

i to be interior. If B < 0, then x = −A/B guarantees that x∗

i is interior.

Since ∂Fi/∂xi = Brij − 2C and ∂Fi/∂xj = B, the second order condition for

Player i’s maximization problem is ∂Fi/∂xi +rij ·∂Fi/∂xj = 2Brij −2C < 0.

Thus Condition 2 is satisfied and the reaction functions are given by Fi = 0,

Fj = 0.

Since ∂Fi/∂xi = Brij −2C 6= 0, Condition 3 is satisfied. Finally, consider

∂Fi/∂xi ·∂Fj/∂xj −∂Fi/∂xj ·∂Fj/∂xi = (Brij − 2C) (Brji − 2C)−B2. Since

10
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C > |B| and rij , rji ∈ (−1, 1), then Brij − 2C < −C and Brji − 2C <

−C. Since the terms in the parentheses are negative, the right-hand side

expression is larger than (−C)(−C) − B2 > 0. Condition 4 is also satisfied.

The consistent symmetric conjecture can be found from

r = −
∂Fi/∂xj

∂Fi/∂xi

= −
B

Br − 2C
.

Then Br2−2Cr+B = 0. When B < 0, then there is one root on (−1, 1) and

it is between −1 and 0. When B > 0, then the root is between 0 and 1. In

any case, there is a unique consistent conjecture rC ∈ (−1, 1). By Corollary

1 it is the unique interior candidate for an evolutionarily stable conjecture.

The payoff function can be written as ui(xi, xj) = x2
i ((A + Bxj)/xi − C).

From the reaction functions, A + Bx∗

j = (2C − Brij)x
∗

i . Therefore, at equi-

librium ∂ui/∂rij = −B (x∗

i )
2 + 2x∗

i (C − Brij) · ∂x∗

i /∂rij .

The equilibrium strategy of Player i is

x∗

i =
A(B − (Brji − 2C))

(Brij − 2C) (Brji − 2C) − B2
.

Then ∂x∗

i /∂rij = (−B (Brji − 2C)x∗

i )/((Brij − 2C) (Brji − 2C) − B2), and

∂ui

∂rij

=
B2 (x∗

i )
2

(Brij − 2C) (Brji − 2C) − B2
(B − rij(2C − Brji)).

The unique solution of ∂ui/∂rij = 0 is rij = −B/(Brji−2C). When rji = rC ,

the unique solution is rij = rC .

Furthermore,

∂2ui

∂r2
ij

= B2 (x∗

i )
2 Brji − 2C

(Brij − 2C) (Brji − 2C) − B2

at rij = rji = rC . The denominator of this expression is positive, and the

numerator is negative, for all rij , rji ∈ (−1, 1). Thus ∂2ui/∂r2
ij < 0 and by

Proposition 3

Proposition 4 In the games with a quadratic payoff function analyzed in

this section, there exists a unique consistent conjecture and it is the unique

evolutionarily stable one.

11
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To get the intuition behind the result, also for the general case of the

previous section, consider Figure 1.

[Figure 1 around here]

Conjecture r21 determines a reaction function of Player 2, which is linear and

decreasing when B < 0. Varying r12 varies the reaction function of Player 1.

Three of these reaction functions are drawn in the figure. The equilibrium is

on the intersection of the reaction functions, thus varying r12 allows Player

1 to move along the given reaction function of Player 2. Some payoff level

curves of Player 1 are also drawn in the figure. Payoff is increasing in the

south-east direction.

Since Player 1 can vary the equilibrium point by moving along the reaction

function of Player 2, the best payoff Player 1 can achieve in equilibrium is at

the point where a level curve is tangent to the reaction function of Player 2.

At this point the slope of the reaction function equals the slope of the payoff

level curve. For Player 1, having a conjecture r12 means that the reaction

function of Player 1 cuts the level curves at points where their slope equals

r12 (by Claim 1). Therefore, conjecture r12 equals the slope of the payoff

level curves at the points of intersection with the corresponding reaction

function of Player 1. At the best equilibrium for Player 1, a level curve

and the reaction function of Player 2 are tangent and so evolutionary stable

conjecture r12 is equal to the slope of the reaction function of Player 2, which

means that r12 is consistent.

3.2 Semi-Public Good Games

Consider the following symmetric two player public good provision game.

Players have endowments w of private good. They can contribute xi to the

public good, and leave yi = w − xi of private good for consumption. Let the

strategy set be X = [−w, w], which is needed to guarantee an interior best

response and can be interpreted as opportunities to contribute as well as to

take out of a common pool of public good. The contribution of Player j enters

Player i’s utility with weight β ∈ (0, 1), thus for Player i the total supply

of public good is Xi = xi + βxj . Players’ utility functions are ui(yi, Xi).

12
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This is the model of semi-public goods considered in Costrell (1991). Let

Y = (−1, 1).

Suppose that the utility functions are ui(yi, Xi) = yα
i X1−α

i , where 0 <

α < 1.2 The payoff function of Player i is then

ui(xi, xj) = (w − xi)
α(xi + βxj)

1−α.

For a conjecture rij, the first order condition of the maximization problem

of Player i is

Fi = −α

(

Xi

yi

)1−α

+ (1 − α)

(

yi

Xi

)α

(1 + βrij) = 0.

Let vi = Xi/yi. Then the first order condition implies that vi = (1+βrij)(1−

α)/α. This means that xi + βxj = (1 + βrij)(w − xi)(1 − α)/α, or that

x∗

i =
(1 − α)(1 + βrij)

1 + (1 − α)βrij

w −
αβ

1 + (1 − α)βrij

xj .

This x∗

i is unique and interior for all xj ∈ [−w, w]. Note also that X∗

i =

x∗

i + βxj = (1 + βrij)(w − x∗

i )(1 − α)/α > 0 and y∗

i = w − x∗

i > 0 at the

interior best response.

Because

∂Fi

∂xi

= −α(1 − α)(yi + Xi)

(

(

Xi

yi

)

−α
1

y2
i

+

(

yi

Xi

)α−1
1

X2
i

(1 + βrij)

)

∂Fi

∂xj

= −α(1 − α)βyi

(

(

Xi

yi

)

−α
1

y2
i

+

(

yi

Xi

)α−1
1

X2
i

(1 + βrij)

)

,

it holds that ∂Fi/∂xi + rij · ∂Fi/∂xj = −α(1 − α)(Xi + yi(1 + βrij))(v
−α
i ·

1/y2
i + v1−α

i (1 + βrij)/X
2
i ) < 0 at x∗

i , since Xi > 0, yi > 0, and 1 + βrij > 0

when rij ∈ (−1, 1). This means that Condition 2 is fulfilled, and reaction

functions are given by Fi = 0, Fj = 0.

From the reaction function, with a consistent symmetric conjecture

r =
dx∗

i

dxj

= −
βα

1 + (1 − α)βr
,

2To cover the possibility of a negative Xi, which does not arise in equilibrium, assume

ui(yi, Xi) = 0 if Xi < 0.
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implying (1−α)βr2+r+αβ = 0. For r ∈ (−1, 1), there is one root rC of this

equation, and it is between −1 and 0. The consistent conjecture is negative,

as obtained in Costrell (1991) for a more general semi-public good setup.

It holds that ∂ui/∂xj = (1 − α)β (yi/Xi)
α 6= 0 in the interior of X, as

required by Condition 1. Also ∂Fi/∂xi 6= 0 in equilibrium, thus Condition 3

is fulfilled. Finally, for Condition 4 ∂Fi/∂xi · ∂Fj/∂xj − ∂Fi/∂xj · ∂Fj/∂xi =

α2(1 − α)2(Xi + (1 + βrij)yi)(Xj + (1 + βrji)yj)(XiXj + Xiyj + yiXj + (1 −

β2)yiyj)/((XiXj)
α+1(yiyj)

2−α) 6= 0. By Corollary 1 the consistent conjecture

is the unique interior candidate for an evolutionarily stable conjecture.

Since in equilibrium X∗

i = (1 + βrij)y
∗

i (1− α)/α, the utility function can

be written as ui(rij , rji) = (1 + βrij)
1−αy∗

i ((1 − α)/α)1−α. Then ∂ui/∂rij =

((1 − α)/α)1−α (1 + βrij)
−α ((1 − α)βy∗

i + (1 + βrij)∂y∗

i /∂rij). The equilib-

rium strategy of Player i is

x∗

i =
(1 − α) ((1 + βrij)(1 + (1 − α)βrji) − (1 + βrji)αβ)

(1 + (1 − α)βrij)(1 + (1 − α)βrji) − α2β2
w.

It holds that ∂y∗

i /∂rij = −∂x∗

i /∂rij = −(β(1 − α)(1 + (1 − α)βrji))y
∗

i /((1 +

(1 − α)βrij)(1 + (1 − α)βrji) − α2β2). Then

∂ui

∂rij

= −

(

1 − α

α

)1−α
(1 + βrij)

−α(1 − α)αβ2y∗

i (rij(1 + (1 − α)βrji) + αβ)

(1 + (1 − α)βrij)(1 + (1 − α)βrji) − α2β2
.

The first order maximization condition ∂ui/∂rij = 0 has the unique solution

rij = −αβ/(1 + (1− α)βrji). When rji = rC , then the solution is rij = rC ∈

(−1, 0).

Let K = − ((1 − α)/α)1−α (1 − α)β2α < 0. For the second order condi-

tion,
∂2ui

∂r2
ij

= K(1 + βrij)
−αy∗

i

1 + (1 − α)βrC

(1 + (1 − α)βrC)2 − α2β2

at rij = rji = rC . The sign of ∂2ui/∂r2
ij is determined by the signs of 1+(1−

α)βrC and (1+(1−α)βrC)2−α2β2. Since 1+(1−α)βrC = −βα/rC , 1+(1−

α)βrC > 0 and (1+(1−α)βrC)2−α2β2 = α2β2
(

1/(rC)2 − 1
)

> 0. Therefore

∂2ui/∂r2
ij < 0, and the consistent conjecture rC is also evolutionarily stable.

Proposition 5 In the semi-public good games of this section the unique con-

sistent conjecture rC is the unique evolutionarily stable conjecture.
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3.3 Rent-seeking games

Consider the following symmetric game, presented as a rent-seeking contest

first in Tullock (1980). Two players compete for a prize of value V by making

investments xi. The probability that a player wins the prize is xi/(xi + xj).

The cost of an investment is simply xi. The (expected) payoff of Player i is

ui(xi, xj) =
xi

xi + xj

V − xi.

To avoid technical difficulties that do not influence the result, consider in-

vestments strictly between 0 and V , i.e. X = (0, V ). Let also Y = (−1, 1).

Since ∂ui/∂xj = −xiV/(xi + xj)
2, Condition 1 is satisfied in the interior

of X. Note also that ∂ui/∂xi = xjV/(xi + xj)
2 − 1.

The first order condition of Player i’s optimization problem is

Fi =
xj − rijxi

(xi + xj)2
V − 1 = 0.

The solution of this equation satisfies (xj − rijxi)V = (xi + xj)
2. When

xi = 0, then the left-hand side xjV is larger than the right-hand side x2
j .

When xi = V , then the left-hand side (xj − rijV )V is smaller than the

right-hand side (V + xj)
2. Since the equation is quadratic, there is a unique

solution of the first order condition equation on (0, V ) for any rij ∈ (−1, 1)

and xj ∈ (0, V ).

It holds that ∂Fi/∂xi = V (−rij(xi + xj) − 2(xj − rijxi))/(xi + xj)
3 and

∂Fi/∂xj = V ((xi +xj)− 2(xj − rijxi))/(xi +xj)
3. At the solution of the first

order condition equation

∂Fi

∂xi

=
1

(xi + xj)2
(−rijV − 2(xi + xj))

∂Fi

∂xj

=
1

(xi + xj)2
(V − 2(xi + xj)).

Then ∂Fi/∂xi + rij · ∂Fi/∂xj = −2(1 + rij)/(xi + xj) < 0. Thus locally the

second order condition of Player i’s optimization problem is satisfied, and

the best response is found from Fi = 0, that is, Condition 2 is satisfied.

When ∂Fi/∂xi = 0 at the solution of the first order condition equation,

then xi + xj = −V rij/2, or rijxi = −V rij/2 − rijxj . From the first order
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condition rijxi = xj − V r2
ij/4. This implies (rij + 1)xj = −V r2

ij/4. However,

this can hold only when xj < 0, thus ∂Fi/∂xi = 0 and Fi = 0 are incompatible

on (0, V ). Therefore Condition 3 holds.

At the solution of the first order condition equations for the two players

∂Fi/∂xi ·∂Fj/∂xj −∂Fi/∂xj ·∂Fj/∂xi = V ((rijrji−1)V +2(rji +rij +2)(xi +

xj))/(xi + xj)
4. Adding up the first order condition (xj − rijxi)V/(xi +

xj)
2 − 1 = 0 for Player i multiplied by rji and the first order condition

(xi − rjixj)V/(xi + xj)
2 − 1 = 0 for Player j gives xi(1 − rjirij)V/(xi +

xj)
2− rij −1 = 0. Doing the analogous operation interchanging players gives

xj(1−rijrji)V/(xi+xj)
2−1−rij = 0. Adding up, (1−rijrji)V/(xi+xj)−2−

rij − rij = 0. Thus xi + xj = (1− rijrji)V/(2 + rij + rij) in equilibrium. But

then (rijrji − 1)V + 2(xi + xj)(rji + rij + 2) = (1 − rijrji)V > 0. Therefore

Condition 4 is satisfied.

In equilibrium, the slope of the reaction function is

dx∗

i

dxj

= −
∂Fi/∂xj

∂Fi/∂xi

= −
V − 2(xi + xj)

−V rij − 2(xi + xj)
.

With symmetric conjectures rij = rji = r, the equilibrium x∗

i = x∗

j = x is

symmetric, thus for a consistent symmetric conjecture r = −(V −4x)/(−V r−

4x). In symmetric equilibrium x = (1 − r)V/4. Then for a conjecture r to

be consistent, r = −(V − (1 − r)V )/(−V r − (1 − r)V ) = r. That is, every

r ∈ (−1, 1) is a symmetric consistent conjecture. This conforms to the result

of Michaels (1989) who obtains that every r is a consistent conjecture for

more general symmetric contests.

The equilibrium strategies of the players are

x∗

i =
(1 − rijrji) (1 + rji)

(2 + rij + rij)
2

V and x∗

j =
(1 − rijrji) (1 + rij)

(2 + rij + rij)
2

V .

To maximize the fitness function ui(rij, rji) at x∗

i , x∗

j find ∂ui/∂rij = V ((xjV −

(xi +xj)
2)(−3r2

ji−r3
ji−2+rijrji−4rji +r2

jirij)+(−xi) V (−rji−3rijrji−r2
ji−

2rijr
2
ji − rij))/((xi + xj)

2(2 + rij + rji)
3). Since in equilibrium (xi + xj)

2 =

(xj − rijxi) V ,

∂ui

∂rij

=
xi

(xi + xj)2

V 2(1 + rji)

(2 + rij + rji)
3
(r2

ijrji − rij(r
2

ji + 1) + rji).
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Solving r2
ijrji− rij(r

2
ji +1)+ rji = 0 gives rij = rji and rij = 1/rji. The latter

solution is not admissible since rij, rji ∈ (−1, 1).

For each rji ∈ (−1, 1) there is a unique solution rij = rji of the first order

condition within the (−1, 1) interval. The second order condition is

∂2ui

∂r2
ij

= V 2(1 + r)
xi

(xi + xj)2

(r2 − 1) (2 + 2r)

(2 + 2r)4
< 0,

at rji = rij = r. By Proposition 3 this means that all r are evolutionarily

stable.

Proposition 6 In the rent-seeking game of this section, all conjectures r ∈

(−1, 1) are consistent and evolutionarily stable.

4 Conclusion

It is shown that the observations of Müller and Normann (2005) and Dixon

and Somma (2003) about the evolutionary stability of consistent conjectures

for a particular duopoly case extend to other games because they are based

on the coincidence of the first order conditions. Apart from the examples

considered in this paper, other games to which the results can be applied

include common pool resource exploitation games and differentiated product

Bertrand duopoly. It should be possible to generalize the results to n-player

aggregative games, i.e. games in which payoffs depend on own strategy and

on an aggregate of strategies of the other players. In such games a conjecture

can be treated as the conjecture about the aggregate reaction of the other

players.

The intuition for the evolutionary stability of consistent conjectures is

that a player with such a conjecture correctly estimates the response of the

other player and thus maximizes the ”right” function, outperforming in evolu-

tionary terms players with other conjectures. Though this result may appear

obvious ex-post, it was not so before the analysis. It is interesting that ’more

rational’ (consistency) and ’less rational’ (evolution) approaches lead to the

same outcome in many games.

The contribution of the paper can be seen as twofold. The evolutionary

approach can provide a justification for consistent conjectures as emerging
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from a dynamic process, and the paper shows that this justification holds for

many situations. On the other hand, consistent conjectures are often easier

to find, simplifying the evolutionary analysis. Depending on the questions

asked about a game, one or the other approach can be used, since the two

approaches complement each other.
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