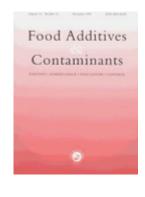


Simultaneous analysis of four sulfonamides in chicken muscle tissue by High Performance Liquid Chromatography

Carmen Lidia Chitescu, Anca Ioana Nicolau, Ana Csuma, Carmen Moisoiu

▶ To cite this version:


Carmen Lidia Chitescu, Anca Ioana Nicolau, Ana Csuma, Carmen Moisoiu. Simultaneous analysis of four sulfonamides in chicken muscle tissue by High Performance Liquid Chromatography. Food Additives and Contaminants, 2011, pp.1. 10.1080/19440049.2011.577098. hal-00701868

HAL Id: hal-00701868 https://hal.science/hal-00701868

Submitted on 27 May 2012 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Food Additives and Contaminants

Simultaneous analysis of four sulfonamides in chicken muscle tissue by High Performance Liquid Chromatography

Journal:	Food Additives and Contaminants
Manuscript ID:	TFAC-2010-425.R1
Manuscript Type:	Original Research Paper
Date Submitted by the Author:	26-Mar-2011
Complete List of Authors:	Chitescu, Carmen; University Dunarea de Jos Galaţi, Faculty of Food Science and Engineering Nicolau, Anca; University Dunarea de Jos Galaţi, Faculty of Food Science and Engineering Csuma, Ana; Pasteur Institute Bucharest, Residues Laboratory Moisoiu, Carmen; Pasteur Institute Bucharest, Romania
Methods/Techniques:	Chromatography - HPLC, Chromatography - LC/MS, Extraction, Method validation
Additives/Contaminants:	Veterinary drug residues - sulphonamides
Food Types:	Animal products – meat
Abstract:	Abstract The aim of this study was to develop a simple high-performance liquid chromatography (HPLC) with UV detection method, for the determination of four sulfonamides in chicken muscle tissue. The sulfonamides were extracted with acetonitrile, acetone and dichloromethane. Separation was carried out on an C18 analytical column, using as mobile phase a mixture of 6‰ di-sodium hydrogen phosphate and methanol. The analytes were detected by UV, in one run. Calibration curves were linear with very good correlation coefficients for concentration ranging from 30µg kg-1 to 150µg kg-1. The limits of detection (LOD) for sulfonamides ranged from 6.5 to 0.14 µg kg-1. The recovery for spiked chicken muscle with 50–150 µg kg-1 ranged more than 70%. The relative standard deviations (RSDs) of the sulfonamides for six measurements at 50 µg kg-1, 100 µg kg-1 and 150 µg kg-1 were less then 15%. These

parameters met the EU criteria for method validation. The results were confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using multiple reacting monitoring, as operating mode. Confirmation require the retention times of the analytes to be within $\pm 2.5\%$ of the retention times of the standards, presence of the parent ion and two characteristic fragment ions (product ions) per analyte, as well as the relative ion abundance ratios of the fragment ions shall correspond to ratios obtained for the standards, within permitted limits. The transition of two common product ions at m/z 155.7 and 107.5 were monitored for all sulfonamides. Each of the analytes, in all tested samples met the confirmation criteria. Thus, it was demonstrated the applicability of the HPLC-UV method for routine analysis of chicken muscle tissue.
SCHOLARONE* Manuscripts

Simultaneous analysis of four sulfonamides in chicken muscle tissue by

2 HPLC

4 Carmen Lidia Chitescu^a*, Anca Ioana Nicolau^a, Ana Csuma^b, Carmen Moisoiu^b

5 ^aUniversity *Dunarea de Jos* Galați-Faculty of Food Science and Engineering,

6 Str. Domnească 47, 800008 Galați, Romania

^b Pasteur Institute, Calea Giulesti 333, sector 6, Bucharest, Romania. ^{*}Corresponding author: e-mail:

8 chitescucarmenlidia@yahoo.com

10 Abstract

The aim of this study was to develop a simple high-performance liquid chromatography (HPLC) with UV detection method, for the determination of four sulfonamides in chicken muscle tissue. The sulfonamides were extracted with acetonitrile, acetone and dichloromethane. Separation was carried out on an C18-column, using as mobile phase a mixture of 6% di-sodium hydrogen phosphate and methanol. The analytes were detected by UV, in one run. Calibration curves were linear with very good correlation coefficients for concentration ranging from 30 μ g kg⁻¹ to 150 μ g kg⁻¹. The limits of detection (LOD) for sulfonamides ranged from 6.5 to 0.14 μ g kg⁻¹. The recovery for spiked chicken muscle with 50–150 μ g kg⁻¹ was more than 70%. The relative standard deviations (RSDs) of the sulfonamides for six measurements at 50 μ g kg⁻¹, 100 μ g kg⁻¹ and 150 μ g kg⁻¹ were less then 15%. These parameters met the EU criteria for method validation. The results were confirmed by LC-MS/MS using multiple reacting monitoring, as operating mode. Confirmation require the retention times of the analytes to be within $\pm 2.5\%$ of the retention times of the standards, presence of the parent ion and two characteristic fragment ions (product ions) per analyte, as well as the relative ion abundance ratios of the fragment ions corresponding to ratios obtained for the standards, within permitted limits. The transition of two common product ions at m/z 155.7 and 107.5 were monitored for all sulfonamides. Each of the analytes, in all tested samples met the confirmation criteria. Thus, it was demonstrated the applicability of the HPLC-UV method for routine analysis of chicken muscle tissue.

30 Keywords: sulfonamides; HPLC; chicken muscle; withdrawal periods; maximum residue limits.

32 Introduction

Sulfadimethoxine, sulfamethoxazole, sulfaquinoxaline and sulfadiazine are the most common sulfonamides (SA) used in poultry farms. They can be easily absorbed and distributed through the body of the chicken, accumulated in various tissues and transferred into their

Food Additives and Contaminants

products (Kan and Petz, 2000; Kishda and Furusawa 2002). The recommended withdrawal
periods, if not observed before slaughtering of the medicated animals, may impact on the
safety of chicken meat and by-products.

In order to ensure the reduction to an acceptable level of sulfonamide residues in edible tissues, these substances must be administered only in recommended concentrations and their withdrawal times must be observed. The maximum residue level (MRL) of sulfonamides in poultry tissues and eggs is 100 μ g kg⁻¹ (Council Regulation 2377/90-EEC, 1990; Codex Alimentarius Commission, *CAC/MRL 02-2006*, Maximum residue limits for veterinary drugs in foods; and Code of Federal Regulation, USA, 1996).

Despite the efforts of national and international bodies involved in food residue control, still there are people affected by the presence of drug residues in food. Unfortunately, about 10-15% of the human population is considered to be hypersensitive to antimicrobials especially penicillin and sulfonamides (Slatore, 2004; Cochrane *et al.*, 1995) and suffer from allergic reactions like skin rashes, hives, asthma and anaphylactic shock. It has been estimated that approximately five percent of human patients medicated with sulfonamides received unwanted effects from the drugs (Montanaro, 1998; Korpimäki, 2004).

The interest in having reliable methods able to detect low amounts of sulfonamides in food is very real. Chicken meat is the second most popular meat in Romania, with a weight of about 33% of total meat consumption (average consumption in 2009 was 20.5kg/person/year), contributing to increased population exposure to residues of sulfonamides, if this level is not well controlled (Peligrad, 2010).

Sulphonamide residue analysis involves extraction with an appropriate solvent followed by one or more clean-up processes and then quantitative determination. Traditionally, the extraction of sulphonamides from meat, has been performed with organic solvents. Sulphonamides are not very soluble in non-polar solvents, but have good solubility in more polar solvents. Extraction is generally carried out with chloroform, methylene chloride (Thomas, 1998), acetone, acetonitrile, or ethyl acetate. Sample clean-up procedures include column chromatography, solid phase extraction (SPE) (Bele et al., 2007; Hela et al., 2003; Kao, et al., 2001), matrix solid phase dispersion (MSPD) (Kishda and Furusawa, 2001), supercritical fluid extraction (SPE) (Maxwell, Lightfield, 1998).

Food Additives and Contaminants

A variety of methods have been used to measure sulfonamide residue in biological materials, including thin-layer chromatography (TLC) (Babić, et al. 2005), high-performance liquid chromatography (HPLC) with UV, UV-DAD (Gratacós-Cubarsí, et al., 2006; Furusawa and Kishida, 2001) or fluorescence detection (Gehring, et al., 2006), liquid chromatography -mass spectrometry (LC/MS) (Jung, et al., 2004), micellar liquid chromatography (Szyman, 2008), high-performance capillary electrophoresis (HPCE), gas chromatography (GC), along enzyme-linked immunosorbent assay (ELISA) (Zhang, et al., 2007), biosensor with immunoassay (BIA) (Ploum, et al. 2005) and microbiological methods (Braham, et al., 2001).

 Instrumental methods such as LC/MS and GC are both sensitive and specific, but are laborious and expensive. These methods are suitable for confirmation but not for screening of large numbers of samples. Microbiological methods do not require highly specialized and expensive equipment, but they have not enough sensitivity and assay precision. Currently, TLC has been almost replaced by other instrumental analysis. Although HPCE has powerful separation ability, the precision is poor and the instrument still needs to be improved. Immunochemical methods such as ELISA can be simple, rapid and cost-effective, with enough sensitivity and specificity to detect small molecules (Wang et al., 2005). The official method AOAC uses pre-column derivatization and liquid chromatography with fluorescence detection (Salisbury, 2004).

A rapid, sensitive and specific assay is required to detect sulphonamides positive samples in routine analysis, by liquid chromatography with ultraviolet detection (LC-UV). The goal of this paper is to promote a HPLC-UV method, which does not need to be performed on the latest generation equipment, but is able to be used for the simultaneous detection of sulfonamides residues in meat. This method could be welcomed both by the laboratories of the veterinary medicine manufacturers, where withdrawal times have to be established, and Official Control Laboratories that regularly evaluate the implementation of good veterinary practices, detect and regulate deviations in veterinary drugs usage. The authors are expecting that this method to be of real help especially for the laboratories from the EU new member states, in which expensive analytical techniques are not widely available. This multi-residue analysis was performed to simultaneously determine four sulfonamides in chicken muscle tissue: sulfadimethoxine sulfamethoxazole, sulfaquinoxaline and sulfadiazine, the most common used sulfonamides in poultry farms.

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

60

Materials and methods

Technologies - USA).

Chemicals and reagents:

UK). All reagents were HPLC grade.

Preparation of standard solutions:

solution with mobile phase.

Experimental Testing for chickens and turkeys.

Laboratory and Experimental Testing for chickens and turkeys.

Tissue samples:

Apparatus: Cutter/mixer, electronic balance (Precision Balance, KERN Abj - Germany),

centrifuge (Centra MP 4R- USA), sonicator (Sororex RK 100H - Germany), vortex

(Ultraturax IKA T25 - Germany), filter unit 0.45 µm and 0.2µm (Whatman – Germany),

The HPLC system consisted of a UV/VIS detector (Waters LC Module I - USA), a HPLC

auto sampler (Waters model 717 Plus - USA), and two pumps (Waters model 510 and 590 -

USA). The HPLC column used was Zorbax SB- C18, 5 μ m 4.6 \times 250 mm, 5 μ (Agilent

Standards used are: sulfadimethoxine (Sigma Chemical Co - USA), sulfamethoxazole

Reagents: Acetonitrile (Lab-Scan - Poland), methanol (Merck, Germany), n-hexane (Fluka-

Switzerland), di-natriumhydrogenphosphat (Merck, Germany), dichloromethane (Chimactiv

- Romania), acetone (Chimactiv - Romania) and N - dymethilformamide (Fisher Scientific-

Stock standard solutions were prepared by dissolving 100 mg of each SA standard with 100

mL of N-dimethylformamide separately (1mg ml⁻¹). Mix standard solution was prepared by

combining 1 mL of each stock standard solution and was made up to 50mL with 50%

methanol in di-natrium hydrogen phosphate solution 6g/1000ml. Working mix standard

solution at a concentration of $0.1 - 2\mu g \text{ ml}^{-1}$ was prepared by diluting the mix standard

Blank matrix comes from previously unmedicated chicken, which were provided by the

Biobase S.N. Pasteur Institute, Bucharest, Romania - Gnotobiology Laboratory and

Incurred samples come from medicated chicken, under normal farm condition, which were

provided by the Biobase S.N. Pasteur Institute, Bucharest, Romania - Gnotobiology

(Sigma Chemical Co – USA), sulfaquinoxaline (EDQM), and sulfadiazine (EDQM).

piston – operated pipette 100 - 1000µl (Transferpette – Brand - USA).

Marker residue for sulfonamides is represented by parent drugs.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	
20	
26	
27	
28	
29	
30	
31	
32	
33	
34 35 36 37	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

Food Additives and Contaminants

137 Six chicken of approximately 1.5kg, were treated with sulfadiazine in their water ration at 138 rate of 50mg kg⁻¹ d⁻¹, for five days. After 12 and 24 h withdrawal from medication, three 139 chickens were removed for slaughter.

140 Another group of six chicken of approximately 1.5kg, was treated with sulfadimethoxine in 141 their water ration at rate of 50mg kg⁻¹ d⁻¹, for five days. After 24 and 48h withdrawal from 142 medication, three chickens were removed for slaughter.

143 Another group six chicken of approximately 1.5kg, were treated with sulfamethoxazole in 144 their water ration at rate of $8 \text{mg kg}^{-1} \text{ d}^{-1}$, for four days. After 48 and 72h withdrawal from 145 medication, three chickens were removed for slaughter.

Another group six chicken of approximately 1.5kg, were treated with sulfaquinoxaline in
their water ration at rate of 50mg kg⁻¹ d⁻¹, for five days. After 48 and 72 h withdrawal from
medication, three chickens were removed for slaughter.

149 Muscle tissue samples were collected and stored frozen (-17°C) until they were analyzed.

150 Sample preparation:

 151 The sulfonamide extraction was carried out using a method based on the one described by
152 Furusawa and Hanabusa (2002), Stoev and Michailova (2000) in which acetonitrile, acetone
153 and dichloromethane were utilized as organic solvents.

A volume of 30 ml acetonitrile was added to 10 g of minced and homogenized muscle tissue weighed in a glass centrifuge tube. The sample was homogenized for 1 min in a Vortex and centrifuged at 3500 rpm for 10 min. The supernatant was transferred into a pear-shaped flask. Twenty milliliter of acetone was added to the sediment before the mixture was sonicated for 10 min. The solution was centrifuged once again and the supernatant was added into the same pear-shaped flask. The mixed solution was evaporated at 40°C until near to dryness.

Afterwards, 5 mL of dichloromethane was added, homogenized by vortexing and transferred into a test tube. The step after the addition of dichloromethane was repeated three times and the combined dichloromethane was dried at 40°C. The residue was reconstituted with 1mL of 50% methanol in di-natrium hydrogen phosphate solution (6g /1000ml) and mixed properly by vortexing. n-Hexane (2 mL) were added into the test tube for defeating, and vortexed before being removed. The remaining solution was filtered through the filter of 0.2 μ m or no more than 0.45 μ m, and was ready for injection into HPLC system.

167 HPLC Analysis:

168 The HPLC analyses were performed by using the following mobile phase:

57 169 75:25 = di-sodium hydrogen phosphate solution 6g/1000 ml: methanol (v/v), according USP

170 29 – Sulfadimethoxine Monographs, without pH adjustment.

Food Additives and Contaminants

- 171 The flow rate: 1 mL/min.
- 2 172 Injection volume: 20µl
 - 173 Detection was performed at 245 nm, in order to achieve a greater sensitivity than in the 174 method described by Ismail and co-workers (2008), which used 266 nm.
- 7 175 Run time: 10min
- 9 176 *Calculation formula:* 10
- 11 177 $\mu g k g^{-1}$ sulfonamide = C x 100 x 100 x R⁻¹
 - 178 C = measured concentration ($\mu g k g^{-1}$)
- 15 179 R = recovery(%)
- 16 180 *LC–MS/MS* 17

Identification and quantification of analytes were carried out on Waters 2695 (USA) liquid chromatography, equipped with a MS–MS Quatro Micro (Micromass, USA) tandem mass spectrophotometer. The X Bridge Shield RP18 column, 150mm x 2.1, 3.5µm, (Waters, USA) was used for separation. The flow rate was 20µl/min, and the temperature of the column was 40 °C. Mobile phase was methanol (B) and a 0.1% formic acid solution (A) folowing gradient

187	Time	А	B
188	0	95	5
189	1.5	95	5
190	10	60	40
191	15	10	90
192	15.5	95	5
193	20	95	5

194 MS/MS conditions: the mass spectrophotometer was operated in electrospray positive ion 195 mode. The capillary voltage was held at 4.5KV, cone voltage, at 30V and extractor voltage, 196 at 2V. The source temperature was 100° C, desolvation gas (nitrogen) temperature, 350 °C 197 and flow: 350l/h. Collision gas (argon) pressure: $3x10^{-3}$ mbar. Data acquisition was made in 198 multiple reaction monitoring mode. The transition of two common product ions were 199 monitored.

Sulfonamide types	Parent ion m/z	Product ions m/z	Collision energy(eV)	Retention time (min)	Relative ion intensities %
Sulfadiazine	251,2	155.7*	16	7.64	18.6
		107.5			
Sulfamethoxazole	245.2	155.7*	18	9.94	19.5
		107.5			
Sulfadimethoxine	311.2	155.7*	18	13.05	7.9
		107.5			
Sulfaquinoxaline	301.2	155.7*	16	14.5	7.1
		107.5			

200 Ions used for LC/MS-MS confirmation:

201 * Quantifying ions

Results and discussion

Under the condition of HPLC-UV analyses, sulfonamides eluted in the following order with approximate retention times in minutes: sulfadiazine 2,7; sulfamethoxazole 3,2; sulfadimethoxine 4.0; sulfaquinoxqaline 6,8. The validation data of HPLC-UV method are presented in the Table 1 and are discussed below:

209 Validation of analytical procedure

The proposed analytical method was validated according to the following criteria: specificity,
accuracy, precision, limit of detection, limit of quantification, and linearity, according to
EMEA - "Notice to applicant and Guideline – Veterinary Medicinal Products (vol. 8) ",and
Commission Decision (EEC) No. 657/2002.

Sample preparation

As for many antibiotics, selective extraction of sulfonamides from biological tissues is complicated due to the polar character of the analytes and matrix components (Stolker, et., al, 2005). Sulfonamides have a good solubility in more polar solvents. Acetonitrile was chosen to extract these compounds because of its polar character and its good proprieties to denaturing the sample proteins, which results in a cleaner extraction and a better release of any sulfonamides residues bound to proteins. Acetone is also a polar solvent that leads to depletion of sample. Dichloromethane is less polar than acetonitrile and acetone, separating the compound of interest from the initial extract. n-Hexane was used to obtain defatted extract. During the extraction it was important to respect the proportion between solvents.

Page 9 of 25

Food Additives and Contaminants

225 Specificity and recovery results were in acceptable limits, which show the extraction 226 efficiency and a good removal of matrix interference. The detection limit was also 227 comparable with the other reported method.

Calibration curves of each component were established by plotting the peak area of each 230 active component against its associated concentrations. The concentration used for each drug 231 ranged from 30 μ g kg⁻¹ to150 μ g kg⁻¹(0.5MRL – 1.5MRL), at five levels, according to the 232 recommendation made by the Commission Decision No. 657/2002.

A statistic linear regression was performed for each component. For the tested domain, calibration curves were linear with very good correlation coefficients ($R^2 > 0.99$).

Specificity was study by analyzing blank samples and spiked samples at relevant concentration (0.5, 1, 1.5 x MRL) and checking any interferences in the region of interest. The peak of each analite width at half-maximum height was within the 90-110% range of the standard width, and the retention times were identical within a margin of 5 %. No interfering peaks from endogenous compounds were found in the retention time of the target sulfonamides.

Repeatability: 3 test samples were spiked at analyte levels, which encompass 0.5x and 2x the 244 MRL. Then, 6 test portions of each level were taken, analyzed and the residue concentration 245 of each test portion was determined. At each spiked concentration, the CV ($S_{rel} = S \times 100 /$ 246 Mean) was calculated. The relative standard deviations (RSDs) of the sulfonamides for six 247 measurements at 50 µg kg⁻¹, 100 µg kg⁻¹ and 150 µg kg⁻¹ were from 7.8 to 13.5%. These 248 values are within the criteria stipulated for residue analysis by the Commission Decision No. 249 657/2002: RSD <20%.

The accuracy (recovery) was determined by recovery experiments using blank matrices.

- 18 aliquots of a blank material was spiked (six aliquots) at each of 0.5, 1 and 1.5 x MRL

- the samples were analyzed and the sulfonamides concentration present in each sample wascalculated;

- using the equation below, the recovery for each sample was calculated.

256 % Recovery (R) = $100 \times$ measured content / spiked level

- it was calculated the mean recovery and CV from the six results at each level.

A recovery between 70 - 110 % in the spike range of 0.5MRL- 1.5MRL, is acceptable by EU regulations. The recovery for spiked chicken muscle with $50-150 \ \mu g \ kg^{-1}$ ranged from 70 to 84 %. *Response linearity:* - 6 test sample were spiked at level of: $0.5, 0.75, 1, 1.25, 1.5, 1.75 \,\mu g \,ml^{-1}$ - the samples were analyzed and the sulfonamides concentration present in each sample was calculated;

- linearity curves of each component were established by plotting the measured concentration of each active component against its fortification level of concentrations.

Correlation coefficients for the analytes show an acceptable linearity of the analytical response, across the range of tested concentrations.

The limits of detection and quantification

In the Commission Decision 2002/657/EC, the decision limit (CC α) and detection capability $(CC\beta)$ are intended to replace the LOD and LOO, as method characteristics. On the other hand, in EMEA- Notice to applicants and Guideline - Veterinary medicinal products, Volume 8: Establishment residue limits (MRLs) for residues of veterinary medicinal products in foodstuffs of animal origin, LOD and LOQ are still required, and furthermore, the limit of quantification must be validated at least at 0.5 MRL. This Guidance recommended as one possible way to estimate the detection limit, the following: arithmetic mean of the analites concentration, in at list 20 blank samples, plus three time standard deviation. In *Guidance for* the validation of analytical method in depletion studies - VICH 49 (2009), LOD is estimated in the same mode like in EMEA Guidance, and LOQ is estimated as three time LOD. Another possibility to calculate LOD and LOQ is using the linearity curves.

In respect with all these regulation, the detection limit of HPLC-UV method was calculated as arithmetic mean of the analytes concentration in 20 blank samples plus three time standard deviation and LOO was estimated as three times LOD.

An LOD for sulfonamides in LC-UV detection method is acceptable in general on values $\leq 10 \mu g kg^{-1}$ (Stolker, et., al, 2005), and the values obtained in this validation were lower.

Page 11 of 25

Food Additives and Contaminants

Page 1	1 of 25	Food Additives and Contaminants
1	290	The limits of quantification (LOQ) for the three sulfonamides were in the range of 0.4-1.7 μ g
2 3	291	kg ⁻¹ . Sulfaquinoxaline LOQ is 19.6 μ g kg ⁻¹ , still below 0.5 MRLs, and for all analytes LOQ
4	292	was significant lower then CC β , reducing the false negative result rate.
5 6	293	
7 8	294	Decision limit (CC α) and detection capability (CC β)
9 10	295	In this validation CC_{α} and CC_{β} was established considering the permitted limit, in that case
11 12	296	MRL, in respect with Commission decision 2002/657/EC, by analyzing 20 blank samples
13	297	fortified with the analytes at the permitted limit, and calculating the decision limit (CC α) as
14 15	298	arithmetic mean of analyte concentration at MRL level plus 1.64 times the standard deviation
16 17	299	of repeatability ($\alpha = 5\%$), and detection capability (CC β), as arithmetic mean of analyte
18 19	300	concentration at CC α level plus 1.64 times the standard deviation of repeatability (β = 5 %)
20	301	Decision limits (CC α) and detection capabilities (CC β) were in the range of 104.64 – 112.95
21 22	302	$\mu g kg^{-1}$ and 108.5 - 125 $\mu g kg^{-1}$, respectively.
23 24	303	
25 26	304	LC–MS/MS confirmation
27	305	A method for measuring residue level by liquid chromatography-tandem mass spectrometry
28 29	306	(LC–MS/MS) was applied, using the same extraction procedure, as confirmatory method.
30 31	307	The confirmatory analysis is based on MS-MS monitoring of two product ion and a
32 33	308	precursor ion, which provide four identification points (IPs). For sulfonamides, listed in
34 35	309	Group B (Council Directive 96/23/EC), a minimum three IPs are required. Relative retention
36	310	time of analytes was within the tolerance of $\pm 2.5\%$. Relative ion intensities for fortified
37 38	311	samples correspond to those of the calibration standards, in the permitted tolerance.
39 40	312	
41 42	313	The residue was reconstituted with 1mL of 50% methanol in 0.1% formic acid solution. For
43 44	314	determination, analytes were separated by a different gradient LC procedure, ionized by
45	315	electrospray ionization (ESI), and detected by MS-MS with a triple quadrupole mass
46 47	316	spectrometer.
48 49	317	
50 51	318	MS parameters were optimized by direct flow infusion of each standard. The calibration
52	319	curves show a good linearity in the concentration range of 0.5 $-10 \ \mu$ g/kg, for each analyte,
53 54	320	with correlation coefficients between 0.9988 - 0.9996. The chromatograms of a spiked
55 56	321	sample contain 10 μ g/kg of each compound is shown in Figure 1.
57 58	322	
59 60	323	The LC-MS/MS method was used for verify the identity of marker residue and to ensure the

324 absence of false positives, in fortified tissues, incurred samples and real sample.

 326 Analysis of real samples

327 The result obtains from the HPLC analyses of incurred samples are given in Table nr. 2.

328 The HPLC assay result showed all these animals tissues to contain sulfonamides at level

329 above MRL. Thirty samples of chicken muscles collected from a local market in Romania,

330 were investigated for sulfonamides residues used HPLC method. Twelve muscle samples

331 was found to contain sulfadiazine with concentration level ranging from 300 µg/kg to 180

 $\mu g/kg$, the level of which exceeded the regulated tolerance.

334Conclusion

A multi-residue method has been developed for the simultaneous determination of sulfadiazine, sulfamethoxazole, sulfadimethoxine and sulfaquinoxaline in chicken muscle tissue by HPLC-UV, after extraction with organic solvents (acetonitrile, acetone, dichloromethane). The method is simple, rapid, sensitive, and capable of detecting sulfonamides residues below the maximum residue limits (MRL).

341 Criteria of validation: specificity, accuracy, precision, decision limit, detection capability,
342 and linearity, according to the European Commission Decision 2002/657/EC, show that the
343 method can detect different kinds of sulfonamides within one run, without fluorimetric
344 derivatization of the analytes.

Compared to other methods, this one is easy to use for on routine samples, in laboratories
that are equipped with HPLC-UV. The method takes just 10 min to be performed, without
extraction time, which is 60 min. The HPLC results were confirmed by LC-MS/MS,
demonstrating the usefulness of HPLC technique as rapid and specific method.

The proposed HPLC method is very suitable for determination of withdrawal periods in chicken muscle tissue for any medicinal product which contains any of the sulfonamides studied in this group, or for monitoring a large number of samples in order to observe that the recommended withdrawal period is followed. It can be really useful for checking whether Good Veterinary Practices are in place in poultry farms. The results of this investigation could be a reference for authorities to further monitor the residue of veterinary drugs in chicken products and reinforce the administration of veterinary drug users.

359

360

361

362

363

364

365

366

367 368

369

370

371

372

373

374

375

376

377378

379

380

381

382

383

384

385

386

387

388

389

60

1576.

Acknowledgements

HRD – EFICIENT 61445.

References

TLC. (18): 423-426.

USAMV-CN, 64/2007 (1-2).

muscle. FoodRes. Int. 35: 37-42.

The authors are grateful to the Pasteur Institute Bucharest, Romania – Gnotobiology

Laboratory and Experimental Testing for chickens and turkeys, and Department of Research,

Development, Diagnostic and Quality Control, for providing all facilities to carry out the

present research. The work of Carmen Lidia Chitescu was supported by the Project SOP

Babić, S., Ašperger, D., Mutavdžić, D., Horvat, A., J., M., Kaštelan-Macan, M., 2005.

Determination of sulfonamides and trimethoprim in spiked water samples by solid-phase

extraction and thin-layer chromatography. JPC-Journal of Planar Chromatography Modern

Bele, C., Matea, C., T., Dulf, F., Miclean, M. 2007. Determination of six sulfonamides in

pork and beef meat by a new solid phase extraction and HPLC - UV for detection. Bulletin

Braham, R., Black, W., D., Claxton, J., Yee, A., J., 2001 A Rapid Assay for Detecting

Sulfonamides in Tissues of Slaughtered Animals. Journal of Food Protection (64): 1565-

Furusawa, N., Hanabusa, R. 2002. Cooking effects on sulfonamide residues in chicken thigh

Furusawa, N., Kishida, K. 2001. High- performance chromatographic procedure for routine

Gehring, T.A., Griffin, B., Williams, R., Geiseker, C., Rushing, L. G., Siitonen, P. H. 2006.

Multiresidue determination of sulfonamides in edible catfish, shrimp and salmon tissues by

residue monitoring of seven sulfonamides in milk. J. Anal. Chem. 371: 1031-1033.

Cochrane, B., Doyle, E.M., Steinhart, C.E., 1995, Food Safety, New York USA, p. 247.

1	
2	
3 4	
5 6	
7 8	
9 10	
11	
12 13	
14 15	
16 17	
18	
19 20	
12 13 14 15 16 17 18 19 20 21 22	
23 24	
25	
26 27	
28 29	
30 31	
32	
33 34	
35 36	
37 38	
39 40	
41 42	
43	
44 45	
46 47	
48 49	
50	
51 52	
53 54	
55 56	
57	
58 59	

4	390	high-performance liquid chromatography with postcolumn derivatization and fluorescence
1 2	391	detection, Journal of Chromatography B, 840:132–138.
3 4	392	
5 6	393	Gratacós-Cubarsí, M., Castellari, M., Valero, A., García-Regueiro, J.A. 2006. A simplified
7 8	394	LC-DAD method with an RP-C12 column for routine monitoring of three sulfonamides in
9 10	395	edible calf and pig tissue. Analytical and Bioanalytical Chemistry, Volume 385, Number 7 /
11	396	August, 2006, pages 1218-1224.
12 13	397	
14 15	398	Hela, W., Brandtner, M., Widek, R., Schuh, R. 2003. Determination of sulfonamides in
16 17	399	animal tissues using cation exchange reversed phase sorbent for sample cleanup and HPLC-
18	400	DAD for detection. Food Chem. 83: 601-608.
19 20	401	
21 22	402	Ismail-Fitry, M. R., Jinap, S., Jamilah, B., Saleha A.A. 2008. Effect of Deep-Frying at
23 24	403	Different Temperature and Time on Sulfonamide Residues in Chicken Meat-Balls, Journal of
25 26	404	Food and Drug Analysis, 16(6): page 81-87.
27	405	
28 29	406	Jung, B.S., Bark, J.,J., Gum, M., R., Kim, I., K., Park, B., O., Han, J., H. 2004. Simultaneous
30 31	407	analysis of sulfonamides in beef and pork by height performance liquid chromatography and
32 33	408	electro spray ionization mass spectrofotometry. Korean J Vet Serv, 27(1): 17 - 29.
34	409	
35 36	410	Kao, Y. A., Chang, M. H., Cheng, C. C. and Chou, S. S. 2001. Multiresidue determination of
37 38	411	veterinary drugs in chicken and swine muscles by high performance liquid chromatography.
39 40	412	J. Food Drug Anal. 9: 84-95.
41 42	413	
43	414	Kan. C., A. and Petz. M. 2000. Residues of veterinary drugs in eggs and their distribution
44 45	415	between yolk and white. J. Agric. Food Chem. 48: 6397-6403.
46 47	416	
48 49	417	Kishda, K., Furusawa, N., 2001. matrix solid-phase dispersion extraction and high
50	418	performance liquid chromatographie determination of residual sulfonamides in chicken. J.
51 52	419	Cromatogr. A. 937: 49-55.
53 54	420	
55 56	421	Kishda, K., Furusawa, N., 2002 Transfer and distribution profiles of dietary sulphonamides
57 58	422	in the tissues of the laying hen. Food Additives & Contaminants: Part A, (19): 368 – 372.
59	423	
60		13 http://mc.manuscriptcentral.com/tfac Email: fac@tandf.co.uk

Page 15 of 25

Food Additives and Contaminants

1	424	Korpimäki, T., Brockmann, E.C., Kuronen, O., Saraste, M., Lamminmäki, U., Tuomola, M.,
2 3	425	2004. Engineering of a Broad Specificity Antibody for Simultaneous Detection of 13
4	426	Sulfonamides at the Maximum Residue Level, Journal of Agricultural and Food Chemistry,
5 6	427	52 (1): 40-47.
7 8	428	
9 10	429	Maxwell, R., J., Lightfield, A., R., 1998. Multiresidue supercritical fluid extraction method
11	430	for the recovery at low ppb levels of three sulfonamides from fortified chicken liver. J.
12 13	431	Cromatogr. B Biomed SCI Appl. 715 (2): 431 - 435.
14 15	432	Montanaro, A., Sulfonamide allergy. 1998. Immunology and Allergy Clinics of North
16 17	433	America, Volume 18, Issue 4, Pages 843-850.
18	434	
19 20	435	Peligrad A., 2010. Price, a criterion for acquisition of more and more important in times of
21 22	436	crises. Meat Factory, February 2010, nr 7.
23 24	437	
25 26	438	Ploum, M.E.; Korpimaeki, T.; Haasnoot, W.; Kohen, F., 2005. Comparison of multi-
27	439	sulfonamide biosensor immunoassays. Analytica Chimica Acta, (529), No. 1-2, p.115-122.
28 29	440	
30 31	441	Salisbury, C.D.C., Sweet, J.C., Munro, R. 2004. Determination of Sulfonamide Residues in
32 33	442	the Tissues of Food Animals Using Automated Precolumn Derivatization and Liquid
34	443	Chromatography with Fluorescence Detection. Journal of AOAC international, 87(5):1264-
35 36	444	1268.
37 38	445	
39 40	446	Slatore, C. G., Tilles S. A 2004. Sulfonamide hypersensitivity. Immunology and Allergy
41 42	447	Clinics of North America - Volume 24, Issue 3 (August 2004).
43	448	
44 45	449	Stoev, G., Michailova, A. 2000. Quantitative determination of sulfonamide residues in foods
46 47	450	of animal origin by high-performance liquid chromatography with fluorescence detection,
48 49	451	Journal of Chromatography A, 871: 37-42.
50	452	Stolker A.A.M., Brinkman U.A.Th, 2005, Analytical strategies for residue analysis of
51 52	453	veterinary drugs and growth-promoting agents in food-producing animals - a review,
53 54	454	Journal of Chromatography A, 1067:15–53.
55 56	455	
57	456	Szyman, A., Mickiewicz, A.2008. Determination of Sulfonamide Residues in Food by
58 59	457	Micellar Liquid Chromatography. Toxicology Mechanisms and Methods, 18:473–481.
60		14

Thomas, G., Millor, .R., Antis, P. 1998. Stability of sulfonamide antibiotics in spiked pig

1	100
2	459
3 4	460
5 6	461
7 8	462
9	463
10 11	464
12 13	465
14 15	466
16	467
17 18	468
19 20	469
21 22	470
23 24	471
25	472
26 27	473
28 29	474
30 31	475
32 33	476
34	477
35 36	478
37 38	479
39 40	480
41	481
42 43	482
44 45	483
46 47	484
48 49	485
50	486
51 52	487
53 54	488
55 56	489
57	490
58 59	
60	

458

liver tissue during frozen storage. Quality Assurance Study Report Series, Number 98-3. Wang, S., Zhang1, H. Y., Wang1, L., Duan1, Z. J., Kennedy, I. 2006. Analysis of sulphonamide residues in edible animal products: A review. Food Additives and Contaminants, April 2006; 23(4): 362-384. Zhang, H., Wang, L., Zhang, Y., Fang, G., Zheng, W., Wang, S. 2007. Development of an Enzyme-Linked Immunosorbent Assay for Seven Sulfonamide Residues and Investigation of Matrix Effects from Different Food Samples. J. Agric. Food Chem., 55 (6), pp 2079–2084 *** CAC/MRL 02-2006, Codex Alimentarius Commission - Maximum residue limits for veterinary drugs in foods. *** Commission Decision 2002/657/EC concerning the performance of analytical methods and the interpretation of results. *** Code of Federal Regulations. 1996. 21: 365. *** European Union Regulation 1990. Establishment of Maximum Residue Levels of Veterinary Medical Products in foodstuffs of animal origin. Council Regulation (EEC) No. 2377/90. Official Journal of the European Communities. No. L 224, Brussels, 1990, 1. *** The rules governing medicinal products in the European Union October 2005, Volume 8 - Notice to applicants and Guideline - Veterinary medicinal products: Establishment residue limits (MRLs) for residues of veterinary medicinal products in foodstuffs of animal origin. *** USP 29 – Sulfadimethoxine Monographs, CNF24, Page 2024 *** 1996. COUNCIL DIRECTIVE 96/23/EC on measures to monitor certain substances and residues thereof in live animals and animal products

Food Additives and Contaminants

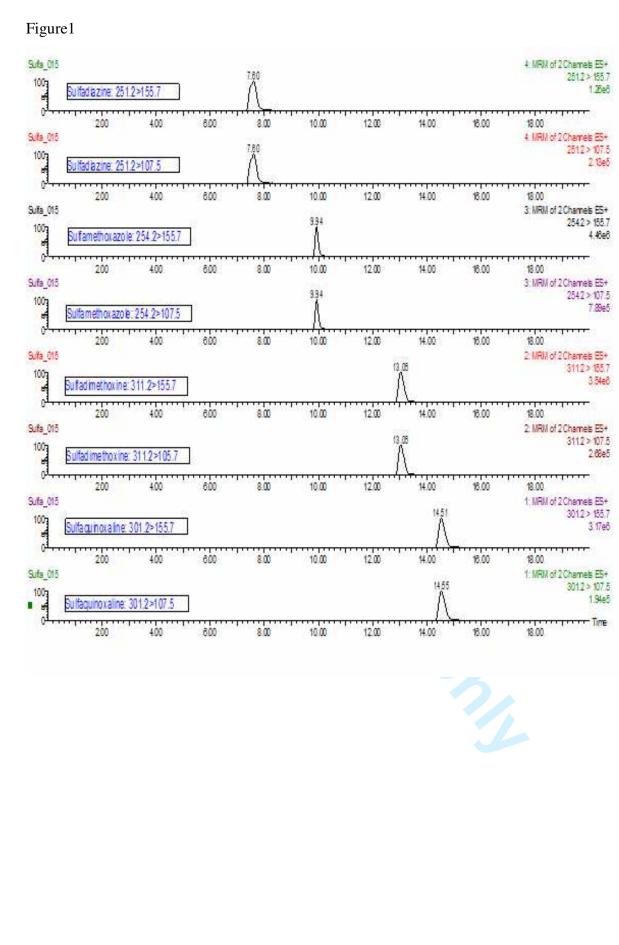
*** 2009, VICH GL49 (MRK), Guidance for validation of analytical methods used in

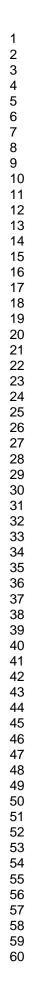
residue depletion studies

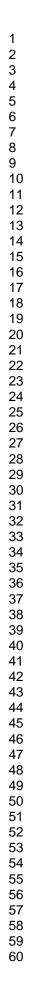
 Table 1: Validation parameter of HPLC-UV method for target sulfonamides residue

Targhet residues	RT	LOD	LOQ	Mean	Mean	CCα	CCβ µg kg ⁻¹	Linearity
	min	µg kg⁻¹	$\mu g k g^{-1}$	RSD%	Recovery %	μg kg ¹	$\mu g k g^{-1}$	\mathbf{R}^2
Sulfadiazine	2.7	0.14	-0.42	11	84	104	108	0.9958
Sulfadimethoxine	3.2	0.36	1.08	13	77	109	121	0.9834
Sulfamethoxazole	4.0	0.58	1.68	9	70	111	119	0.9913
Sulfaquinoxaline	6.8	6.53	19.6	8	71	113	125	0.9800

Table 2: Result for incurred samples


Sulfonamide types	Withdrawal time (h)	HPLC assay (µg kg ⁻¹)
		305
	12	257
Sulfadiazine		312
		124
	24	97
		184
		547
	48	438
Sulfaquinoxaline		470
		210
	72	185
		162
		328
	24	456
Sulfadimethoxine		412
		115
	48	205
		156
		465
	48	305
Sulfamethoxazole		375
		157
	72	186
		255


Figure caption


Phin A f piked san, ins are from top to . : sulfamethoxazole ndz 2: .dz 31.2 → 155.7; 31.2 → 107. .dt 2 → 107.5; Rt = 14.50: Figure 1. The chromatograms of spiked samples contain 0.1 µg/ml (10 µg/kg) of each compound. The extracted ions are from top to bottom: sulfadiazine m/z 251.2 \rightarrow 155.7, $251.2 \rightarrow 107.5$, Rt =7.64; sulfamethoxazole m/z $254.2 \rightarrow 155.7$, $254.2 \rightarrow 107.5$, Rt =9.94; sulfadimethoxine m/z $311.2 \rightarrow 155.7$; $311.2 \rightarrow 107.5$ Rt =13.05 and sulfaquinoxaline m/z $301.2 \rightarrow 155.7, 301.2 \rightarrow 107.5, \text{ Rt} = 14.50.$

Page 20 of 25

