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Stretched random walks and the behaviour of their

summands.

1 Introduction

Context and scope

This paper considers the following question: Let X, X 1 , .., X n denote real valued independent random variables (r.v's) distributed as X and let S n 1 := X 1 + .. + X n . We assume that X is unbounded upwards. Let a n be some positive sequence satisfying lim n→∞ a n = +∞.

(

) 1 
Assuming that

C := (S n 1 /n > a n ) (2) 
holds, what can be inferred on the r.v's X i 's as n goes to infinity?

Let ε n denote a positive sequence and let

I := ∩ n i=1 (X i ∈ (a n -ǫ n , a n + ǫ n )) . (3) 
We consider cases when

lim n→∞ P ( I| C) = 1. ( 4 
)
The relation between the various parameters in this problem is of interest and opens a variety of questions. For which distributions P X pertaining to X is such a result valid? Which is the acceptable growth of the sequence a n and the possible behaviours of the sequence ε n such that

ǫ n = o (a n ) (5) 
and is it possible to achieve lim n→∞ ǫ n = 0 [START_REF] Broniatowski | Virgile Long runs under a conditional limit distribution[END_REF] under a large class of choices for P X ?

In the case when the r.v. X has light tails conditional limit theorems exploring the behavior of the summands of a random walk given its sum have been developped extensively in the range of a large deviation conditioning event, namely similar as defined by C with fixed a n , hence lower-bounding S n /n independently on n; the papers [START_REF] Csiszár | Imre Sanov property, generalized $I$I-projection and a conditional limit theorem[END_REF], or [START_REF] Diaconis | Conditional limit theorems for exponential families and finite versions of de Finetti's theorem[END_REF] together with their extension in [START_REF] Dembo | Refinements of the Gibbs conditioning principle[END_REF] explore the asymptotic properties of a relatively small number of summands; the main result in these papers, named as Gibbs conditional principle, lies in the fact that under such C, the X i 's are asymptotically i.i.d. with distribution Π a defined through dΠ a (x) := (E (exp tX)) -1 exp(tx)dP X (x) where t satisfies E (X exp tX) (E (exp tX)) -1 = a ; in this range [START_REF] Broniatowski | Virgile Long runs under a conditional limit distribution[END_REF] does not hold. The joint distribution of X 1 , .., X kn given C (with fixed a n ) for large k n (close to n) is considered in [START_REF] Broniatowski | Virgile Long runs under a conditional limit distribution[END_REF] .

Extended large deviations results for a n → ∞ have been considered in [START_REF] Broniatowski | très grandes et petites déviations pour des suites de variables aléatoires réelles indépendantes. (French) [Large, very large and small deviations for sequences of independent identically distributed real random variables[END_REF], [START_REF] Broniatowski | Extended large deviations[END_REF], in relation with versions of the Erdös-Rényi law of large numbers for the small increments of a random walk, and [START_REF] Juszczak | Local large deviation theorem for sums of I.I.D. random vectors when the Cramér condition holds in the whole space[END_REF].

The case when X is heavy tailed is considered in [START_REF] Armendáriz | Michail Conditional distribution of heavy tailed random variables on large deviations of their sum[END_REF] where the authors consider the support of the distribution of the whole sample X 1 , .., X n when C holds for fixed a n .

A closely related problem has been handled by statisticians in various contexts, exploring the number of sample observations which push a given statistics far away from its expectation, for fixed n. Although similar in phrasing as the so-called "breakdown point" paradigm of robust analysis , the frame of this question is quite different from the robustness point of view, since all the observations are supposed to be sampled under the distribution P X , hence without any reference to outliers or misspecification. The question may therefore be stated as: how many sample points should be large making a given statistics large? This combines both the asymptotic behavior of the statistics (as a function defined on R n ) and the tail properties of P X . In the case when the statistics is S n 1 /n and X has subexponential upper tail, it is well known that, denoting C a := (S n 1 /n > a) only one large value of the X i 's generates C a for a → ∞; clearly S n /n is not a loyal statistics under this sampling. This result turns back to [START_REF] Darling | The influence of the maximum term in the addition of independent random variables[END_REF]. For light tails, under C a , all sampled values should exceed a (indeed they should be closer and closer to a as a → ∞), so that S n /n is faithfull in allegeance with respect to the sample. In this case, denoting

I a := ∩ n i=1 (X i > a) it holds lim a→∞ P ( I a | C a ) = 1 (7) 
Intermediate cases exist, leading to partial loyalty for a given statistics under a given sampling scheme. See [START_REF] Broniatowski | Aimé Tauberian theorems, Chernoff inequality, and the tail behavior of finite convolutions of distribution functions[END_REF], [START_REF] Beirlant | Petra The mean residual life function at great age: applications to tail estimation. Extreme value theory and applications (Villeneuve d'Ascq[END_REF], and [START_REF] Barbe | Blowing number of a distribution for a statistics and loyal estimators[END_REF] where more general statistics than S n /n are considered. and a → ∞. According to the tail behavior of the distribution of X the situation may take quite different features. Related questions have also been considered in the realm of statistical physics. In [START_REF] Frisch | Extreme deviations and Applications[END_REF] the property [START_REF] Broniatowski | Aimé Tauberian theorems, Chernoff inequality, and the tail behavior of finite convolutions of distribution functions[END_REF] is stated in an improved form, namely stating that when the X i 's are i.i.d. with Weibull density with shape index larger than 2 then the conditional density of (X 1 , .., X n ) given (S n 1 /n = a) concentrates at (a, ..a) as a → ∞, which in the authors' words means that the X i 's are democratically localized. Applications of this concept in fragmentation processes, in some form of anomalous relaxation of glasses and in the study of turbulence flows are discussed.

We now come to a consequence of the present results considering the local behaviour of a random walk conditioned on its end value. Let S j i := X i + .. + X j with 1 ≤ i ≤ j ≤ n and k = k n denote an integer valued sequence such that k n ≤ n and lim

n→∞ k n = ∞.
Let further ∆ j,n := S j+k j+1 /k denote the local slope of the random walk on the interval [j + 1, j + k] where 1 ≤ j ≤ n -k. The limit behaviour of max 1≤j≤n-k ∆ j,n has been considered extensively in various cases, according to the order of magnitude of k. The case k = C log n for positive constant C defines the so-called Erdös-Rényi law of large numbers; see [START_REF] Erdős | Alfréd On a new law of large numbers[END_REF]. In the present case we consider random walks conditioned upon their end value, namely assuming that S n 1 > na for fixed a > EX. We will prove that as n → ∞ the path defined by this random walk exhibits anomalous local behavior that can be captured through the extended democratic localization principle stated in our results. Indeed there exist segments of length k n on which the slope ∆ j,n tends to infinity with a rate which can be made precise. Simulations are proposed in order to enlight this phenomenon. Obviously, when a is not fixed but goes to infinity with n then the extended democratic localization principle applies to the whole sample path of the random walk, and its trajectory is nearly a stright line from the origin up to its extremity. When conditioning in the range of the large deviation only, this property holds locally.

This paper is organized as follows. Section 2 states the notation and hypotheses. Section 3 states the results in two cases; the first one pertains to the case when X has a log-concave density and the second case is a generalizetion of the former. Examples are, provided. Section 4 presents a short account on the local behaviour of random paths from conditioned random walk, with some simulation. The proofs of the results are rather long and technical; they have been postponed to the Appendix.

Notation and hypotheses

The n real valued random variables X 1 , ..., X n . are independent copies of a r.v. X with density p whose support is R + . As seen by the very nature of the problem handled in this paper, this assumption puts no restriction to the results. We write p(x) := exp -h(x) for positive functions h which are defined and denoted according to the context. For x ∈ R n define

I h (x) := 1≤i≤n h(x i ),
and for A a Borel set in R n denote

I h (A) = inf (x)∈A I h (x) .
Two cases will be considered: in the first one h is assumed to be a convex function, and in the second case h will be the sum of a convex function and a "smaller" function h in such a way that we will also handle non log-concave densities.(although not too far from them). Hence we do not consider heavy tailed r.v. X.

For positive r define

S(r) = x := (x 1 , .., x n ) : 1≤i≤n h(x i ) ≤ r .
3 Very Large Deviation for Exponential Density Functions associated to Convex Functions Lemma 1 Let g be a positive convex differentiable function defined on R + . Assume that g is strictly increasing on some interval [X, ∞). Let (1) hold. Then

I g (I c ∩ C) = min F g 1 (a n , ǫ n ), F g 2 (a n , ǫ n ) ,
where

F g 1 (a n , ǫ n ) = g(a n + ǫ n ) + (n -1)g a n - 1 n -1 ǫ n , and 
F g 2 (a n , ǫ n ) = g(a n -ǫ n ) + (n -1)g a n + 1 n -1 ǫ n .
Theorem 2 Let X 1 , ..., X n be i.i.d. copies of a r.v. X with density p(x) = c exp (-g(x)), where g(x) is a positive convex function on R + . Assume that g is increasing on some interval [X, ∞) and satisfies

lim x→∞ g(x)/x = ∞. Let a n satisfy lim inf n→∞ log a n log n n > 0
and that for some positive sequence ǫ n

lim n→∞ n log g (a n + ǫ n ) H(a n , ǫ n ) = 0, (8) 
lim n→∞ nG(a n ) H(a n , ǫ n ) = 0, (9) 
where

H(a n , ǫ n ) = min (F g 1 (a n , ǫ n ), F g 2 (a n , ǫ n )) -ng(a n ), G(a n ) = g(a n + 1 g(a n ) ) -g(a n ),
where F g 1 (a n , ǫ n ) and F g 2 (a n , ǫ n ) are defined as in Lemma 1.Then as n → ∞ it holds P (I|C) → 1.

Example 3 Let g(x) := x β . For power functions,through Taylor expansion it holds

g a n + 1 g(a n ) -g(a n ) = β a n + o 1 a n = o (log g(a n ))
hence condition (9) holds as a consequence of (8). If we assume that ǫ n = o(a n ), by Taylor expansion we obtain

min F g 1 (a n , ǫ n ), F g 2 (a n , ǫ n ) = na β n + C 2 β n n -1 a β-2 n ǫ 2 n + o(a β-2 n ǫ 2 n ).
Condition (8) then becomes

lim n→∞ n log a n a β-2 n ǫ 2 n = 0. Case 1: 1 < β ≤ 2.
To make (9) hold, we need ǫ n be large enough, specifically,

a 1-β 2 n log a n = o (ǫ n ) = o (a n ) which shows that ǫ n → ∞. Case 2: β > 2.
In this case, if we take n = a α n with 0 < α < β -2, then condition (9) holds for arbitrary sequences ǫ n bounded by below away from 0. The sequence ǫ n may also tend to 0; indeed with ǫ n = O(1/ log a n ), condition (9) holds. Also setting a n := n α for α > 0 there exist sequences ǫ n which tend to 0 such that the conclusion in Theorem 2 holds.

Example 4 Let g(x) := e x . Through Taylor expansion

g a n + 1 g(a n ) -g(a n ) = 1 + o 1 a n = o (log g(a n )) = o (a n ) ,
and if ǫ n → 0, it holds

min (F g 1 (a n , ǫ n ), F g 2 (a n , ǫ n )) = ne an + 1 2 n n -1 e an ǫ 2 n + o(e an ǫ 2 n ).
Hence condition (9) follows from condition (8); furthermore condition (8) follows from lim n→∞ na n e an ǫ 2 n = 0

if we set a n := n α where α > 0 then condition (9) holds, and ǫ n is rapidly decreasing to 0; indeed we may choose ǫ n = o(exp(-a n /4)).

Corollary 5 Let X 1 , .., X n be independent r.v's with common Weibull density with shape parameter k and scale parameter 1,

p(x) = kx k-1 e -x k when x > 0 0 otherwise,
where k > 2. Let a n = n 1 α , for some 0 < α < k -2 and let ǫ n be a positive sequence such that

lim n→∞ n log a n a k-2 n ǫ 2 n = 0.
Then lim n→∞ P (I|C) = 0.

.

Proof: Set g(x) = x k -(k -1) log x, which is a convex function for k > 2.
Also when x → ∞, g ′ (x) and g ′′ (x) are both infinitely small with respect to g(x) as x → ∞.

Both conditions ( 8) and ( 9) in Theorem 2 are satisfied. As regards to condition [START_REF] Csiszár | Imre Sanov property, generalized $I$I-projection and a conditional limit theorem[END_REF], notice firstly that, under the Weibull density by Taylor expansion

g(a n + ǫ n ) = g(a n ) + g ′ (a n )ǫ n + 1 2 g ′′ (a n )ǫ 2 n + o g ′′ (a n )ǫ 2 n .
Hence it holds

log g (a n + ǫ n ) ≤ log (3g(a n )) ≤ log 3a k n = log 3 + k log a n .
Using Taylor expansion in g(a n + ǫ n ) and g a n -ǫn n-1 , it holds

F g 1 (a n , ǫ n ) -ng(a n ) = g(a n + ǫ n ) + (n -1)g a n - ǫ n n -1 -ng(a n ) = g(a n ) + g ′ (a n )ǫ n + 1 2 g ′′ (a n )ǫ 2 n + o g ′′ (a n )ǫ 2 n + (n -1)g(a n ) -g ′ (a n )ǫ n + 1 2 g ′′ (a n ) ǫ 2 n n -1 + o g ′′ (a n )ǫ 2 n -ng(a n ) ≥ 1 2 g ′′ (a n )ǫ 2 n + o g ′′ (a n )ǫ 2 n = k(k -1) 2 a k-2 n ǫ 2 n + o a k-2 n ǫ 2 n .
In the same way, it holds when a n → ∞

F g 2 (a n , ǫ n ) -ng(a n ) ≥ k(k -1) 2 a k-2 n ǫ 2 n + o a k-2 n ǫ 2 n .
Thus we have

H(a n , ǫ n ) ≥ k(k -1) 2 a k-2 n ǫ 2 n + o a k-2 n ǫ 2 n .
Hence, when n → ∞, with (??), (??), the condition (8) of Theorem (2) becomes

n log g (a n + ǫ n ) H(a n , ǫ n ) ≤ n log 3 + kn log a n k(k-1) 2 a k-2 n ǫ 2 n + o (a k-2 n ǫ 2 n ) ≤ 2kn log a n k(k-1) 4 a k-2 n ǫ 2 n = 8 k -1 n log a n a k-2 n ǫ 2 n -→ 0.
The last step holds from condition (??). As for condition (9) of Theorem (2), when

a n → ∞, it holds nG(a n ) = ng a n + 1 g(a n ) -ng(a n ) = ng(a n ) + n g ′ (a n ) g(a n ) + o g ′ (a n ) g(a n ) -ng(a n ) = n g ′ (a n ) g(a n ) + o g ′ (a n ) g(a n ) = o(n).
Hence under condition (??), it holds nG(a n ) = o(H(a n , ǫ n )), which means that condition (9) of Theorem 2 holds under condition (??), which completes the proof.

Very Large Deviation for Exponential Density Functions associated to non-convex Functions

In this section, we pay attention to exponential density functions whose exponents are non-convex functions. Namely, i.i.d random variables X 1 , ..., X n have common density with

f (x) = c exp -(g(x) + q(x))
assuming that the convex function g is twice differentiable and q(x) is of smaller order than log g(x) for large x.

Theorem 6 X 1 , ..., X n are i.i.d. real valued random variables with common density f (x) = c exp (-(g(x) + q(x))), where g(x) is some positive convex function on R + and g is twice differentiable. Assume that on[X, ∞), g(x) is increasing on [X, ∞) and satisfies

lim x→∞ g(x)/x = ∞.
Let M(x) be some nonnegative continuous function on R + for which -M(x) ≤ q(x) ≤ M(x) for all positive x together with

M(x) = O (log g(x)) (10) 
as x → ∞. Let a n be some positive sequence such that a n → ∞ and ǫ n = o(a n ) be a positive sequence. Assume

lim inf n→∞ log g(a n ) log n > 0 (11) lim n→∞ n log g (a n + ǫ n ) H(a n , ǫ n ) = 0, ( 12 
) lim n→∞ nG(a n ) H(a n , ǫ n ) = 0, ( 13 
)
where

H(a n , ǫ n ) = min (F g 1 (a n , ǫ n ), F g 2 (a n , ǫ n )) -ng(a n ), G(a n ) = g a n + 1 g(a n ) -g(a n ),
where F g 1 (a n , ǫ n ) and F g 2 (a n , ǫ n ) are defined as in Lemma 1.

Then it holds P (I|C) → 1 when n → ∞.

We now provide examples of densities which define r.v's X ′ i 's for which the above Theorem 6 applies. These densities appear in a number of questions pertaining to uniformity in large deviation approximations; see [START_REF] Jensen | Saddlepoint Approximations[END_REF] Ch 6.

Example 7 Almost Log-concave densities: p can be written as

p(x) = c(x) exp -h(x),
x < ∞ with h a convex function, and where for some x 0 > 0 and constants

0 < c 1 < c 2 < ∞, we have c 1 < c(x) < c 2 for x 0 < x < ∞.
Densities which satisfy the above condition include the Normal, the Gamma, the hyperbolic density, etc.

Example 8 Gamma-like densities are defined through densities of the form

p(x) = c(x) exp -h(x) for all x > 0, with 0 < c 1 < c(x) < c 2 ≤ ∞ when x is larger than some x 0 > 0 and h(x) is a convex function which satisfies h(x) = τ + h 1 (x) with, for x 1 < x 2 , a 1 log x 2 x 1 -b 1 < h 1 (x 2 ) -h 1 (x 1 ) < a 2 log x 2 x 1 -b 2
where a 1 , a 2 , b 1 and b 2 are positive constants with a 2 < 1.

A wide class of densities for which our results apply is when there exist constants x 0 > 0, α > 0, τ > 0 and A such that

p(x) = Ax α-1 l(x) exp (-τ x) x > x 0
where l(x) is slowly varying at infinity. Example 9 Almost Log-concave densities 1: p can be written as

p(x) = c(x) exp -g(x), 0 < x < ∞
with g a convex function, and where for some x 0 > 0 and constants

0 < c 1 < c 2 < ∞, we have c 1 < c(x) < c 2 for x 0 < x < ∞,
and g(x) is increasing on some interval [X, ∞) and satisfies

lim x→∞ g(x)/x = ∞.
Examples of densities which satisfy the above conditions include the Normal, the hyperbolic density, etc.

Example 10 Almost Log-concave densities 2: A wide class of densities for which our results apply is when there exist constants x 0 > 0, α > 0, and A such that

p(x) = Ax α-1 l(x) exp (-g(x)) x > x 0
where l(x) is slowly varying at infinity, g a convex function, increasing on some interval [X, ∞) and satisfies

lim x→∞ g(x)/x = ∞.
Remark 11 All density functions in Examples (9) (10) satisfy the assumptions of the above Theorem 6 . Also the conditions in Theorem 6 about a n and ǫ n are the same as those in the convex case, so that if g(x) is some power function with index larger than 2, ǫ n can go to 0 more rapidly than

O(1/ log a n )(see Example 3); If g(x)
is of exponential function form, ǫ n goes to 0 more rapidly than any power 1/a n (see Example 4 ).*

Application

An extended LDP holds for the partial sum S n 1 where the i.i.d. summands X i 's are unbounded above whenever

lim n→∞ - log P (S n 1 /n > x n ) I(x n ) = 1
holds where lim n→∞ x n = +∞. In the above display the Cramer function I(x) is defined for all x > EX through

I(x) := sup t tx -log E exp tX.
Thne following result holds (see [START_REF] Broniatowski | Extended large deviations[END_REF], Proposition 1.1). Assume that X is unbounded above and satisfies the Cramer condition. Assume further that

-log P (X > x) = I(x)(1 + o(1))) (14) 
as x → ∞. Then for any sequence a n going to infinity with n it holds

-log P (S n 1 /n > a n ) = nI(a n )(1 + o(1))) (15) 
as n → ∞. It is readily seen that ( 14) holds in any of the cases considered in the present paper (see [START_REF] Broniatowski | Extended large deviations[END_REF], Remark 1.1). See also [START_REF] Book | Probabilities of very large deviations[END_REF] for a sharp result. We now consider the local behaviour of a random walk with independent summands X i , 1 ≤ i ≤ n which are identically distributed as X. Let a > EX . We consider random paths T n := (S 1 1 , S 2 1 , .., S n 1 ) which satisfy (S n 1 > na) hence under a large deviation condition pertaining to the end value. In the following result we state that the trajectory T n exhibits a peculiar feature.

Let k = k n be an integer sequence such that lim n→∞ k = ∞ together with lim n→∞ k/n = 0, and

α n → ∞ such that lim n→∞ na -kα k n -k = ∞.
Denote A k the event

A k := (there exists j, 1 ≤ j ≤ n -k such that ∆ j,k > α k ) .

It holds

Proposition 12 When X satisfies the hypotheses in Theorem 6 it holds

P ( A k | S n 1 > na) → 1. Proof.
The proof is simple and we briefly sketch the argument. Clearly

P ( A k | S n 1 > na) = 1 -P ∩ [n/k] j=0 S kj kj+1 < kα k S n 1 > na ≤ 1 -P S k 1 < kα k S n 1 > na [n/k] =: 1 -P.
Now applying Bayes Theorem and the independence of the r.v's X i 's, it holds

P ≤ P S n k+1 > na-kα k n-k P (S n 1 > na)
.

Under the present hypotheses ( 14) holds.Using [START_REF] Jensen | Saddlepoint Approximations[END_REF] in the numerator and the classical first order LDP result log P (S n 1 > na) = -nI(a) (1 + o(1)) in the denominator, it follows that P → 0 as n → ∞, which concludes the proof.

The consequence of Theorem 6 is that on this segment of length k where the slope exceeds α k all the summands are of order α k so that the behaviour of the trajectory is nearly linear. Numerical evidence confirm the theoretical ones; for very large a and fixed (large) n , not surprisingly, the democratic localisation holds on the entire trajectory , in accordance with the results in this paper; therefore T n is nearly a straight line from the origin up to the point (n, na n ). For smaller values of a (typically for a defined through P (S n 1 > na) of order 10 -3 the phenomenon quoted in the above proposition holds: T n consists in a number of oblic segments. When n is allowed to increase, the segments are longer and longer, with increasing slope. A k := there exist i 1 , .., i k such that x i j ≥ a n + ǫ n for all j with 1 ≤ j ≤ k and B k := there exist i 1 , .., i k such that x i j ≤ a n -ǫ n for all j with 1 ≤ j ≤ k .

Define A = n lim k=1 A k and B = n lim k=1 B k .
It then holds

I c = A ∪ B.
It follows that

I g (I c ∩ C) = I g ((A ∪ B) ∩ C) = inf x∈(A∩C)∪(B∩C) I g (x)
= min (I g (A ∩ C), I g (B ∩ C)) .

Thus we may calculate the minimum values of both I g (A ∩ C) and I g (B ∩ C) respectively, and finally I g (I c ∩ C).

Step 1: In this step we prove that

I g (A ∩ C) = F g 1 (a n , ǫ n ). (16) 
Let x := (x 1 , ..., x n ) belong to A ∩ C and assume that I g (A ∩ C) = I g (x). Without loss of generality, assume that the x i 's are ordered ascendently,

x 1 ≤ ... ≤ x i ≤ x i+1≤ , ... ≤ x n and let i and k := n -i with 1 ≤ i ≤ n such that n-k x 1 ≤ ... ≤ x i < a n + ǫ n ≤ k x i+1 ≤ ... ≤ x n .
We first claim that k < n. Indeed let y := (y 1 = a n -ǫ n , y 2 = ... = y n-1 = a n + ǫ n ) which clearly belongs to A ∩ C. For this y it holds I g (y) = (n -1)g(a n + ǫ n ) + g(a n -ǫ n ) which is strictly smaller than ng(a n + ǫ n ) = I g (A n ∩ C) for large n. We have proved that x does not belong to A n ∩ C. Let α i+1 , ..., α n be nonnegative, and write x i+1 , ..., x n as

x i+1 = a n + ǫ n + α i+1 , ..., x n = a n + ǫ n + α n .
Under condition (C), it holds

x 1 + ... + x i ≥ na n -(x i+1 + ... + x n ) = na n -k(a n + ǫ n ) -(α i+1 + ... + α n ) .
Applying Jensen's inequality to the convex function g, we have

n i=1 g(x i ) = (g(x i+1 ) + ... + g(x n )) + (g(x 1 ) + ... + g(x i )) ≥ (g(x i+1 ) + ... + g(x n )) + (n -k)g(x * ),
where equality holds when x 1 = ... = x i = x * , with

x * = na n -k(a n + ǫ n ) -(α i+1 + ... + α n ) n -k . Define now the function function (α i+1 , ..., α n , k) → f (α i+1 , ..., α n , k) through f (α i+1 , ..., α n , k) = g(x i+1 ) + ... + g(x n ) + (n -k)g(x * ) = g(a n + ǫ n + α i+1 ) + ... + g(a n + ǫ n + α n ) + (n -k)g(x * ).
Then I g (A ∩ C) is given by

I g (A ∩ C) = inf α i+1 ,...,αn≥0,1≤k≤n
f (α i+1 , ..., α n , k).

We now obtain [START_REF] Juszczak | Local large deviation theorem for sums of I.I.D. random vectors when the Cramér condition holds in the whole space[END_REF] through the properties of the function f. Using (??), the first order partial derivative of f (α i+1 , ..., α n , k) with respect to

α i+1 is ∂f (α i+1 , ..., α n , k) ∂α i+1 = g ′ (a n + ǫ n + α i+1 ) -g ′ (x * ) > 0,
where the inequality holds since g(x) is strictly convex and a n + ǫ n + α i+1 > x * . Hence f (α i+1 , ..., α n , k) is an increasing function with respect to α i+1 . This implies that the minimum value of f is attained when α i+1 = 0. In the same way, we have α i+1 = ... = α n = 0. Therefore it holds

I g (A ∩ C) = inf 1≤k≤n f (0, k), with f (0, k) = kg(a n + ǫ n ) + (n -k)g(x * 0 ), where x * 0 = a n - k n -k ǫ n .
The function y → f (0, y) with 0 < y < n is increasing with respect to y, since

∂f (0, y) ∂y = g(a n + ǫ n ) -g(x * 0 ) - nǫ n n -y g ′ (x * 0 ) = nǫ n n -y g(a n + ǫ n ) -g(x * 0 ) a n + ǫ n -x * 0 -g ′ (x * 0 ) > 0,
due to the convexity of g(x) and a n +ǫ n > x * 0 . Hence f (0, k) is increasing with respect to k; the minimal value of f (0, k)attains with k = 1. Thus we have

I g (A ∩ C) = f (0, 1) = F g 1 (a n , ǫ n )
which proves [START_REF] Juszczak | Local large deviation theorem for sums of I.I.D. random vectors when the Cramér condition holds in the whole space[END_REF].

Step 2: In this step, we follow the same proof as above and prove that

I g (B ∩ C) = F g 2 (a n , ǫ n ).
With x defined through I g (x) := I g (B ∩ C) with the coordinates of x ranked in ascending order, with j such that 1 ≤ j ≤ n and

j x 1 ≤ ... ≤ x j < a n + ǫ n ≤ n-j
x j+1 ≤ ... ≤ x n we obtain j < n through the same argument as above. Denote x 1 , ..., x j by

x 1 = a n -ǫ n -α 1 , ..., x n = a n -ǫ n -α j ,
where α 1 , ..., α j are nonnegative. Under condition (C), it holds

x j+1 + ... + x n ≥ na n -(x 1 + ... + x j ) = na n -j(a n -ǫ n ) + (α 1 + ... + α j ) .
Using Jensen's inequality to the convex function g(x), we have

n i=1 g(x i ) = (g(x 1 ) + ... + g(x j )) + (g(x j+1 ) + ... + g(x n )) ≥ (g(x 1 ) + ... + g(x j )) + (n -j)g(x ♯ ),
where the equality holds when x j+1 = ... = x n = x ♯ , with

x ♯ = na n -j(a n -ǫ n ) + (α 1 + ... + α j ) n -j .
Define the function (α i+1 , ..., α n , k) → f (α i+1 , ..., α n , k) through f (α 1 , ..., α j , j) = g(x 1 ) + ... + g(x j ) + (n -j)g(x ♯ ) = g(a n -ǫ n -α 1 ) + ... + g(a n -ǫ n -α j ) + (n -j)g(x ♯ ), then I g (A ∩ C) is given by

I g (A ∩ C) = inf α 1 ,...,α j ≥0,1≤j≤n
f (α 1 , ..., α j , j).

Using (??), the first order partial derivative of f (α 1 , ..., α j , j) with respect to α 1 is

∂f (α 1 , ..., α j , j) ∂α 1 = -g ′ (a n -ǫ n -α 1 ) + g ′ (x ♯ ) > 0,
where the inequality holds since g(x) is convex and a n -ǫ n -α 1 < x ♯ . Hence f (α 1 , ..., α j , j) is increasing with respect to α 1 . This yields

α 1 = ... = α j = 0.
Therefore it holds

I g (B ∩ C) = inf 1≤k≤n f (0, j), with f (0, j) = jg(a n -ǫ n ) + (n -j)g(x ♯ 0 ), where x ♯ 0 = a n + j n -j ǫ n .
The function y → f (0, y) with 0 < y < n is increasing with respect to y, since

∂f (0, y) ∂y = g(a n -ǫ n ) -g(x ♯ 0 ) + nǫ n n -j g ′ (x ♯ 0 ) = nǫ n n -y g ′ (x ♯ 0 ) - g(x ♯ 0 ) -g(a n -ǫ n ) x ♯ 0 -(a n -ǫ n ) > 0,
by is convexity of g ; in the above display x ♯ 0 > a n -ǫ n . Hence f (0, k) is increasing with respect to k. Thus we have

I g (B ∩ C) = f (0, 1) = F g (a n , ǫ n ) which proves the claim.
Thus the proof is completed using ( 16) and (??).

Proof of Theorem 2

For

x = (x 1 , ..., x n ) ∈ R n + , define S g (r) = x : 1≤i≤n g(x i ) ≤ r .
Then for any Borel set A in R n it holds

P (A) = A exp - 1≤i≤n p(x i ) dx 1 , ..., dx n = exp(-I g (A)) A dx 1 , ..., dx n 1 [ 1≤i≤n g(x i )-Ig(A),∞) (s)e -s ds = exp(-I g (A)) ∞ 0 V olume(A ∩ S g (I g (A) + s))e -s ds.
The proof is divided in three steps.

Step 1: We prove that

P (C) ≥ c n exp (-I g (C) -τ n -n log g(a n )) . ( 17 
)
where

τ n = ng a n + 1 g(a n ) -ng(a n ). ( 18 
)
By convexity of the function g, and using condition (C), applying Jensen's inequality, with x 1 = ... = x n = a n it holds

I g (C) = ng(a n ).
We now consider the largest lower bound for

log V olume (C ∩ S g (I g (C) + τ n )) . Denote B = x : x i ∈ [a n , a n + 1 g(an) ] , S g (I g (C)+τ n ) = {x : n i=1 g(x i ) ≤ ng(a n ) + τ n }.
For large n and any x := (x 1 , .., x n ) in B, it holds

n i=1 g(x i ) ≤ n i=1 g a n + 1 g(a n ) = ng a n + 1 g(a n ) = ng(a n ) + τ n ,
where we used the fact that g is an increasing function for large argument. Hence

B ⊂ S g (I g (C) + τ n ). It follows that log V olume (C ∩ S g (I g (C) + τ n )) ≥ log V olume(B) = log 1 g(a n ) n = -n log g(a n ) (19)
which in turn using (??) and ( 19),implies

log P (C) := log C exp - 1≤i≤n g(x i ) dx 1 , ..., dx n ≥ log exp(-I g (C)) ∞ τn V olume(C ∩ S g (I g (C) + s))e -s ds ≥ -I g (C) -τ n + log V olume(C ∩ S g (I g (C) + τ n )) ≥ -I g (C) -τ n -n log g(a n ),
This proves the claim.

Step 2: In this step, we prove that

P (I c ∩ C) ≤ c n exp (-I g (I c ∩ C) + n log I g (I c ∩ C) + log(n + 1)) . (20) 
For any Borel set A in R n it holds , for positive s, let

S g (I g (A) + s) = x : 1≤i≤n g(x i ) ≤ I g (A) + s and F = {x : g(x i ) ≤ I g (A) + s, i = 1, ..., n} . It holds. S g (I g (A) + s) ⊂ F. Since lim x→∞ g(x)/x = +∞ F ⊂ {x : x i ≤ (I g (A) + s), i = 1, ..., n}, which yields S g (I g (A) + s) ⊂ {x : x i ≤ (I g (A) + s), i = 1, ..., n},
from which we obtain

V olume(A ∩ S g (I g (A) + s)) ≤ V olume(S g (I g (A) + s)) ≤ (I g (A) + s) n .
With this inequality, the upper bound of integration (??) can be given when a n → ∞.

log P (A) = log A exp - 1≤i≤n g(x i ) dx 1 , ..., dx n = -I g (A) + log ∞ 0 V olume(A ∩ S g (I g (A) + s))e -s ds ≤ -I g (A) + log ∞ 0 (I g (A) + s) n e -s ds,
with integrating repeatedly by parts it holds

∞ 0 (I g (A) + s) n e -s ds (21) = I g (A) n + n ∞ 0 (I g (A) + s) n-1 e -s ds = I g (A) n + nI g (A) n-1 + n(n -1) ∞ 0 (I g (A) + s) n-2 e -s ds ≤ (n + 1)I g (A) n , hence we have log A exp - 1≤i≤n g(x i ) dx 1 , ..., dx n ≤ -I g (A) + log ((n + 1)I g (A) n ) = -I g (A) + n log I g (A) + log(n + 1).
Replace A by I c ∩ C. We then obtain

P (I c ∩ C) ≤ c n exp (-I g (I c ∩ C) + n log I g (I c ∩ C) + log(n + 1))
as sought.

Step 3: In this step, we will complete the proof , showing that

lim an→∞ P (I c ∩ C) P (C) = 0.
By Lemma 1,

I g (I c ∩ C) = min (F g 1 (a n , ǫ n ), F g 2 (a n , ǫ n )) .
Using (17) and (20) it holds

P (I c ∩ C) P (C) ≤ exp (-H(a n , ǫ n ) + n log I g (I c ∩ C) + τ n + n log g(a n ) + log(n + 1)) .
Under conditions [START_REF] Csiszár | Imre Sanov property, generalized $I$I-projection and a conditional limit theorem[END_REF], by (18) when a n → ∞, we have

τ n H(a n , ǫ n ) = nG(a n ) H(a n , ǫ n ) -→ 0,
Using conditions (??) and ( 8), when a n → ∞,

n log g(a n ) H(a n , ǫ n ) -→ 0, and log(n + 1) H(a n , ǫ n ) -→ 0.
As to the term n log I g (I c ∩ C), we have

n log I g (I c ∩ C) = n min (F g 1 (a n , ǫ n ), F g 2 (a n , ǫ n )) ≤ n log (ng(a n + ǫ n )) = n log n + n log g (a n + ǫ n ) .
Under condition [START_REF] Broniatowski | Extended large deviations[END_REF], when a n → ∞, n log g (a n + ǫ n ) is of small order with respect to H(a n , ǫ n ) as n tends to infinity. Under condition (??), for a n large enough, there exists some positive constant Q such that log n ≤ Q log g(a n ). Hence we have

n log n ≤ Qn log g(a n )
which under condition [START_REF] Broniatowski | Extended large deviations[END_REF], yields that n log n is negligible with respect to H(a n , ǫ n ). Hence when a n → ∞, it holds

n log (I g (I c ∩ C)) H(a n , ǫ n ) -→ 0.
Further, (??), (??) and (??) make (??) hold. This completes the proof.

Proof of Theorem 6

The proof is is the same vein as that of Theorem 2; some care has to be taken in order to get similar bounds as developped in the convex case. Denote x = (x 1 , ..., x n ) in R n and, for a Borel set A ∈ R + n define

I g,q (A) = inf x∈A I g,q (x),
where I g,q (x) := 1≤i≤n (g(x i ) + q(x i )) .

Also for any positive r define S g,q (r) = x :

1≤i≤n (g(x i ) + q(x i )) ≤ r .
Then it holds

P (A) = A exp - 1≤i≤n (g(x i ) + q(x i )) dx 1 , ..., dx n = exp(-I g,q (A)) A dx 1 , ..., dx n 1 [ 1≤i≤n (g(x i )+q(x i ))-Ig,q(A),∞) (s)e -s ds = exp(-I g,q (A)) ∞ 0 V olume(A ∩ S g,q (I g,q (A) + s))e -s ds. (22) 
Step 1: In this step we prove that

I g,q (C) ≥ I g 1 (C) ≥ nh(a n ) = ng(a n ) -nN log g(a n ).
For large x it holds

g(x) -M(x) ≤ g(x) + q(x) ≤ g(x) + M(x). (23) 
Set g 1 (x) = g(x) -M(x) and g 2 (x) = g(x) + M(x), then it follows

I g 1 (C) ≤ I g,q (C) ≤ I g 2 (C). (24) 
In the same way, it holds

I g 1 (I c ∩ C) ≤ I g,q (I c ∩ C) ≤ I g 2 (I c ∩ C). (25) 
By condition [START_REF] Darling | The influence of the maximum term in the addition of independent random variables[END_REF], there exists some sufficiently large positive y 0 and some positive constant N such that for x ∈ [y 0 , ∞)

M(x) ≤ N log g(x). (26) 
Set r(x) = g(x) -N log g(x), the second order derivative of r(x) is

r ′′ (x) = g ′′ (x) 1 - N g(x) + N (g ′ (x)) 2 g 2 (x) ,
where the second term is positive. The function g is increasing on some interval [X, ∞) where we also have g(x) > x. Hence there exists some

y 1 ∈ [X, ∞) such that s g(x) > N when x ∈ [y 1 , ∞)
. This implies that r ′′ (x) > 0 and r ′ (x) > 0 and therefore r(x) is convex and increasing on [y 1 , ∞).

In addition, M(x) is bounded on any finite interval; there exists some

y 2 ∈ [y 1 , ∞) such that for all x ∈ (0, y 2 ) M(x) ≤ N log g(y 2 ). ( 27 
)
The function g is convex and increasing on [y 2 , ∞). Thus there exists y 3 such that g ′ (y 3 ) > 2g ′ (y 2 ) and g(y 3 ) > 2N.

We now construct a function h as follows. Let

h(x) = r(x)1 [y 3 ,∞) (x) + s(x)1 (0,y 3 ) (x), (29) 
where s(x) is defined by

s(x) = r(y 3 ) + r ′ (y 3 )(x -y 3 ). ( 30 
)
We will show that

g 1 (x) ≥ h(x) (31) 
for x ∈ (0, ∞) . If x ∈ [y 3 , ∞), then by (26), it holds h(x) = r(x) = g(x) -N log g(x) ≤ g(x) -M(x) = g 1 (x). (32) 
If x ∈ (y 2 , y 3 ), using (30), we have

s(x) ≤ r(x) = g(x) -N log g(x) ≤ g(x) -M(x) = g 1 (x), (33) 
where the first inequality comes from the convexity of r(x). We now show that (31) holds when x ∈ (0, y 2 ] if y 3 is large enough. For this purpose, set t(x) = g(x) -s(x) -N log g(y 2 ).

Take the first order derivative of t and use the convexity of g on (0, y 2 ]. We have

t ′ (x) = g ′ (x) -s ′ (x) = g ′ (x) -r ′ (y 3 ) = g ′ (x) -g ′ (y 3 ) - Ng ′ (y 3 ) g(y 3 ) = g ′ (x) -1 - N g(y 3 ) g ′ (y 3 ) ≤ g ′ (y 2 ) -1 - N g(y 3 ) g ′ (y 3 ) < 1 2 g ′ (y 3 ) -1 - N g(y 3 ) g ′ (y 3 ) < 0,
where the inequalities in the last line hold from (28). Therefore t is decreasing on (0, y 2 ]. It follows that t(x) ≥ t(y 2 ) = g(y 2 )-N log g(y 2 )-s(y 2 ) ≥ g(y 2 )-N log g(y 2 )-r(y 2 ) = 0, which, together with (27), yields, when x ∈ (0, y 2 ]

g 1 (x) = g(x) -M(x) ≥ g(x) -N log g(y 2 ) ≥ s(x).
Together with (32), (33), this last display means that (31) holds. We now prove that h is a convex function on on (0, ∞).; indeed for x such that 0 < x ≤ y 3 , h ′′ (x) = 0, and if x > y 3 , h ′′ (x) = r ′′ (x) > 0. The left derivative of h(x) at y 3 is h ′ (y - 3 ) = r ′ (y 3 ), and it is obvious that the right derivative of h(x) at y 3 is also h ′ (y + 3 ) = r ′ (y 3 ); hence h is derivable at y 3 and h ′ (y 3 ) = r ′ (y 3 ), hence h ′′ (y 3 ) = r ′′ (y 3 ) > 0. This shows that h is convex on (0, ∞). Now under condition (C), using the convexity of h and (31), it holds

I g 1 (x) = n i=1 (g(x i ) -M(x i )) ≥ n i=1 h(x i ) ≥ nh n i=1 x i n = nh(a n ).
Using (24), we obtain the lower bound of I g,q (C) under condition (C) for a n large enough (say, a n > y 3 )

I g,q (C) ≥ I g 1 (C) ≥ nh(a n ) = nr(a n ) = ng(a n ) -nN log g(a n ). ( 34 
)
Step 2: In this step, we will show that the following lower bound of P (C) holds

P (C) ≥ c n exp (-I g,q (C) -τ n -n log g(a n )) , (35) 
where τ n is defined by

τ n = ng a n + 1 g(a n ) -ng(a n ) + nN log g a n + 1 g(a n ) + nN log g(a n ) (36) = nG(a n ) + nN log g(a n ) + nN log g a n + 1 g(a n ) . Denote B = x : x i ∈ [a n , a n + 1 g(an) ]. . If x ∈ B, by (26) 
, which holds for large n (say, a n > y 3 and assuming that g is an increasing function on (y 3 , ∞)), we have

I g,q (x) ≤ n i=1 (g(x i ) + M(x i )) ≤ n i=1 (g(x i ) + N log g(x i )) ≤ n i=1 g a n + 1 g(a n ) + N log g a n + 1 g(a n ) = ng a n + 1 g(a n ) + nN log g a n + 1 g(a n ) = τ n + ng(a n ) -nN log g(a n ) ≤ τ n + I g,q (C),
where the last inequality holds from (34). Since B ⊂ C, we have B ⊂ C ∩ S g,q (I g,q (C) + τ n ). Now we may obtain the lower bound log V olume (C ∩ S g,q (I g,q (C) + τ n )) ≥ log V olume(B) = -n log g(a n ).

(37) Using ( 22) and (37), it holds log C exp -1≤i≤n (g(x i ) + q(x i )) dx 1 , ..., dx n = -I g,q (C) + log ∞ 0 V olume(C ∩ S g,q (I g,q (C) + s))e -s ds ≥ -I g,q (C) + log ∞ τn V olume(C ∩ S g,q (I g,q (C) + τ n ))e -s ds ≥ -I g,q (C) -τ n -n log g(a n ), so (35) holds.

Step 3: We prove that P (I c ∩ C) ≤ c n exp (-I g,q (I c ∩ C) + n log I g (I c ∩ C) + log(n + 1) + n log 2) .

(38)

For any Borel set A in R n and any positive s, S g,q (I g,q (A) + s) = x : 1≤i≤n (g(x i ) + q(x i )) ≤ I g,q (A) + s is included in {x : g(x i ) + q(x i ) ≤ I g,q (A) + s, i = 1, ..., n} which in turn is included in F = {x : g(x i ) -M(x i ) ≤ (I g,q (A) + s), i = 1, ..., n} by (23). Set H = {x := (x 1 , .., x n ) : x i ≤ 2(I g,q (A) + s), i = 1, ..., n}, we will show it holds for a n large enough

F ⊂ H.
Suppose that for some x := (x 1 , .., x n ) in F ,some x i is larger than 2(I g,q (A)+ s). For a n large enough, by (34), it holds

x i ≥ 2(I g,q (A) + s) ≥ 2 (ng(a n ) -nN log g(a n )) > 2 ng(a n ) - 1 4 ng(a n ) = 3 2 ng(a n ).
Since 3 2 ng(a n ) ≥ 3 2 na n for large n, by (26) and since x → g(x) -N log g(x) is increasing, we have

g(x i ) -M(x i ) ≥ g(x i ) -N log g(x i ) ≥ g (2(I g,q (A) + s)) -N log g (2(I g,q (A) + s)) > g (2(I g,q (C) + s)) - 1 2 g (2(I g,q (C) + s)) ≥ 1 2
(2(I g,q (C) + s)) = I g,q (C) + s.

Therefore since x ∈ F , x i ≤ 2(I g,q (A) + s) for every i, which implicates that (??) holds. Thus we have S g,q (I g,q (A) + s) ⊂ H, from which we deduce that V olume (A ∩ S g,q (I g,q (A) + s)) ≤ V olume (S g,q (I g,q (A) + s))

≤ V olume(H) = 2 n (I g,q (A) + s) n .
With this inequality, the upper bound of integration (22) can be given when a n → ∞ through log C exp -1≤i≤n (g(x i ) + q(x i )) dx 1 , ..., dx n = -I g,q (A) + log ∞ 0 V olume(A ∩ S g,q (I g,q (A) + s))e -s ds ≤ -I g,q (A) + log ∞ 0 (I g,q (A) + s) n e -s ds + n log 2.

According to (21), it holds ∞ 0 (I g,q (A) + s) n e -s ds ≤ (n + 1)I g,q (A) n ,

Hence we have log

A exp - 1≤i≤n (g(x i ) + q(x i )) dx 1 , ..., dx n ≤ -I g,q ( 
A) + log ((n + 1)I g,q (A) n ) + n log 2 = -I g,q (A) + n log I g,q (A) + log(n + 1) + n log 2.

Replacing A by I c ∩ C yields (38).

Step 4: In this step, we derive crude bounds for I g 2 (C), I g 1 (I c ∩ C) and I g 2 (I c ∩ C).

From ( 26) and ( 27), there exists some a

n ∈ [X, ∞) (say, a n > y 2 ) such that M(x) ≤ max(N log g(a n ), N log g(x)) (39) 
holds on (0, ∞). Hence for a n large enough

g 2 (x) = g(x) + M(x) ≤ g(x) + max(N log g(a n ), N log g(x)),
which in turn yields

I g 2 (C) ≤ inf x∈C n i=1 g(x i ) + n i=1 max(N log g(a n ), N log g(x i )) . (40) It holds inf x∈C n i=1 max(N log g(a n ), N log g(x i )) = nN log g(a n ) (41) which implies that inf x∈C n i=1 g(x i ) + n i=1 max(N log g(a n ), N log g(x i )) = inf x∈C n i=1 g(x i ) + inf x∈C n i=1 max(N log g(a n ), N log g(x i )) = inf x∈C n i=1 g(x i ) + nN log g(a n ) = I g (C) + nN log g(a n ) = ng(a n ) + nN log g(a n ).
Thus we obtain the inequality

I g 2 (C) ≤ ng(a n ) + nN log g(a n ). ( 42 
)
We now provide a lower bound of I g 1 (I c ∩C). Consider the inequality of (31) in Step 1, where we have showed that h is convex for x large enough; hence, using (31) when a n is sufficiently large, it holds

I g 1 (I c ∩ C) ≥ I h (I c ∩ C) = min (F h 1 (a n , ǫ n ), F h 2 (a n , ǫ n )) ,
where the second inequality holds from Lemma 1. By the definition of the function h in (29), for large x it holds h(x) = r(x) which yields the following lower bound of I g 1 (I c ∩ C)

I g 1 (I c ∩ C) ≥ I h (I c ∩ C) = I r (I c ∩ C) = min (F r 1 (a n , ǫ n ), F r 2 (a n , ǫ n )) . By Lemma 1, it holds F r 1 (a n , ǫ n ) = g(a n + ǫ n ) + (n -1)g a n - 1 n -1 ǫ n -N log g(a n + ǫ n ) -(n -1)N log g a n - 1 n -1 ǫ n ≥ g(a n + ǫ n ) + (n -1)g a n - 1 n -1 ǫ n -nN log g (a n + ǫ n ) ,
by the same way, we have also

F r 2 (a n , ǫ n ) ≥ g(a n -ǫ n ) + (n -1)g a n + 1 n -1 ǫ n -nN log g (a n + ǫ n ) , hence I g 1 (I c ∩ C) ≥ min (F g 1 (a n , ǫ n ), F g 2 (a n , ǫ n )) -nN log g (a n + ǫ n ) holds.
The method of the estimation of the upper bound of I g 1 (I c ∩ C) is similar to that used for I g 1 (C) above. In (40), replace C by I c ∩ C; we obtain The last inequality holds from (24) and (25). Replace I g 1 (I c ∩ C), I g 2 (C) by the upper bound of (42) and the lower bound of (??), respectively, we obtain I g 1 (I c ∩ C) -I g 2 (C) ≥ min (F g 1 (a n , ǫ n ), F g 2 (a n , ǫ n )) -nN log g (a n + ǫ n ) -(ng(a n ) + nN log g(a n )) = H(a n , ǫ n ) -nN log g (a n + ǫ n ) -nN log g(a n ) ≥ H(a n , ǫ n ) -2nN log (a n + ǫ n ) .

I g 2 (I c ∩ C) ≤ inf
(44)

Under condition [START_REF] Dembo | Refinements of the Gibbs conditioning principle[END_REF], there exists some Q such that n log n ≤ Qn log g(a n ), which, together with (43) and ( 44 ≤ exp (-H(a n , ǫ n ) + n(2N + 1) log g (a n + ǫ n ) + τ n + 2n log g(a n ) + 2n log n) ≤ exp (-H(a n , ǫ n ) + n(2N + 1) log g (a n + ǫ n ) + τ n + (2Q + 2)n log g(a n )) ≤ exp (-H(a n , ǫ n ) + n(2N + 2Q + 3) log g (a n + ǫ n ) + τ n ) .

(45)

The second term in the bracket in the last line above and τ n are both of small order with respect to H(a n , ǫ n ). Indeed under condition [START_REF] Diaconis | Conditional limit theorems for exponential families and finite versions of de Finetti's theorem[END_REF], when a n → ∞, it holds lim n→∞ n(2N + 2Q + 3) log g a n + ǫn n-1

H(a n , ǫ n ) = 0. ( 46 
)
For τ n which is defined in (36)under conditions ( 12), ( 13), nN log g(a n ) and nG(a n ) are both of smaller order than H(a n , ǫ n ). As regards to the third term of τ n , it holds nN log g a n + 1 g(a n ) = nN log g a n + 1 g(a n ) -g(a n ) + g(a n )

≤ nN log (2 max (G(a n ), g(a n ))) = nN log 2 + max (nN log G(a n ), nN log g(a n )) .

Under conditions ( 12) and ( 13), both nN log G(a n ) and nN log g(a n ) are small with respect to H(a n , ǫ n ); therefore nN log g (a n + 1/g(a n )) is small with respect to H(a n , ǫ n ) when a n → ∞. Hence it holds when

a n → ∞ lim n→∞ τ n H(a n , ǫ n ) = 0.
Finally, (45), together with (46) and (??), implies that (??) holds.

  Write x = (x 1 , ..., x n ) ∈ R n+ , we firstly define the following sets. Let for all k between O and n

1 , 1 = 1 ≤ 1 ≤ 1 . 1 .Step 5 : 2 ≤

 11111152 log g(a n ), N log g(x i )) log g a n + ǫ n n -1, N log g(x i )) .Similarly to (41), it holds infx∈I c ∩C n i=1 max(N log g a n + ǫ n n -1 , N log g(x i )) = nN log g a n + ǫ n n -where equality is attained setting x 1 = ... = x n-1 = a n + ǫ n /(n-1), x n = a n -ǫ n . Hence we have, when n → ∞I g 2 (I c ∩ C) ≤ inf i ) + nN log g a n + ǫ n n -I g (I c ∩ C) + nN log g a n + ǫ n ng(a n -ǫ n ) + (n -1)g a n + 1 n -1 ǫ n + nN log g a n + ǫ n nng a n + ǫ n n -1 + nN log g a n + ǫ n n -1 ≤ n(N + 1)g a n + ǫ n n -Therefore we obtain log I g 2 (I c ∩ C) ≤ log n + log(N + 1) + log g a n +ǫ n n -In this step, we complete the proof by showing that lim an→∞P (I c ∩ C) P (C) = 0.Using the upper bound of P (I c ∩ C), together with the lower bound of P (C) above, we have under condition[START_REF] Dembo | Refinements of the Gibbs conditioning principle[END_REF] when a n is large enoughP (I c ∩ C) P (C) ≤ exp -(I g,q (I c ∩ C) -I g,q (C)) + n log I g,q (I c ∩ C) +τ n + n log g(a n ) + log(n + 1) + n log exp (-(I g,q (I c ∩ C) -I g,q (C)) + n log I g,q (I c ∩ C) + τ n + 2n log g(a n )) ≤ exp (-(I g 1 (I c ∩ C) -I g 2 (C)) + n log I g 2 (I c ∩ C) + τ n + 2n log g(a n )) .

  ), givesP (I c ∩ C) P (C) ≤ exp -(H(a n , ǫ n ) -2nN log (a n + ǫ n )) + n log n + n log(N + 1) +n log g a n + ǫn n-1 + τ n + 2n log g(a n ) = exp -H(a n , ǫ n ) + n(2N + 1) log g (a n + ǫ n ) +τ n + 2n log g(a n ) + n log n + n log(N + 1)