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Subdiffusive behavior generated by irrational rotations

We study asymptotic distributions of the sums yn(x) = n-1 k=0 ψ(x + kα) with respect to the Lebesgue measure, where α ∈ R -Q and where ψ is the 1-periodic function of bounded variation

If α is of constant type, we show that zn/||zn|| L 2 is also asymptotically normally distributed. We give an heuristic link with the theory of expanding maps of the interval.

Introduction

Some purely deterministic, smooth and finite dimensional dynamical systems may generate diffusion process. Such a diffusion is due to uncertainty on initial conditions. If a distribution is initially concentrated in one point, it will remain so under the flow of such a system. But if the initial conditions are distributed on some larger set of the phase space, it may well be that the distribution evolves diffusively. Some cases of deterministic diffusion have been successfully investigated [START_REF] Baladi | Positive Transfer Operators and Decay of Correlations[END_REF]. Let us mention the theory of expanding maps of the interval [START_REF] Hofbauer | Ergodic Properties of Invariant Measures for Piecewise Monotonic Transformations[END_REF], and the important result by Bunimovich and Sinai about the Lorentz gas [START_REF] Bunimovich | Statistical properties of Lorentz gas with a periodic configuration of scatterers[END_REF]. In the two previous examples, the underlying dynamical system is hyperbolic ;

and it has been suggested that macroscopic diffusion is generally due to microscopic chaos [START_REF] Gaspard | Experimental evidence for microscopic chaos[END_REF]. But numerical experiments with systems of zero Lyapunov exponents show that diffusion may happen even in the absence of hyperbolicity [START_REF] Dettmann | Microscopic chaos and diffusion[END_REF].

The rotation of the circle by an irrational angle is a well known example of ergodic non hyperbolic dynamical system. Burton and Denker [START_REF] Burton | On the central limit theorem for dynamical systems[END_REF] (see also [START_REF] De La Rue | On the Central Limit Theorem for Aperiodic Dynamical Systems and Applications[END_REF]) have shown that one may find a function ψ ∈ L 2 (T, R) such that y n /||y n || L 2 is asymptotically normally distributed. By Denjoy-Koksma inequality (see (4) below), this ψ is not a bounded variation function. Among other results, Liardet and Volný have shown (Theorems 1 and 2 in [START_REF] Liardet | Sums of continuous and differentiable functions in dynamical systems[END_REF]) that, if r ≥ 0, then there exist numbers α ∈ R -Q and a sequence (d n ) n ⊂ R + 0 such that for every ψ in a dense G δ set of C r (T, R), the distributions of d n y n form a dense set in the space of all probability measures on R. Their results do not cover the case where α is of constant type (see [START_REF] Gaspard | Experimental evidence for microscopic chaos[END_REF] below) and ψ of bounded variation.

Let T = R/Z. If u ∈ L 1 (T, R), one defines Var(u) = sup{ 1 0 uv ′ dx : v ∈ C 1 (T, R), ||v|| L ∞ ≤ 1}. ( 1 
)
One defines also the set BV(T, R) = {u ∈ L 1 (T, R) : Var(u) < ∞}.

Let ψ ∈ BV(T, R) be such that 1 0 ψdx = 0. Let α ∈ R -Q. We consider the map

F : T × R → T × R : (x, y) → (x + α, y + ψ(x)). (2) 
If n ∈ N, one defines implicitly the function y n ∈ BV(T, R) by the relation

F n (x, y) = (x + nα, y + y n (x)). (3) 
Explicitly, one has y n (x) = n-1 k=0 ψ(x + kα) for n ≥ 1. Although y n depends on ψ and α, one will not generally write it. Let m L be the Lebesgue measure on T. The space (T, m L ) is then a probability space, and (y n ) n≥0 is a sequence of random variables on this space.

The sequence (y n ) n≥0 has been widely studied [START_REF] Adamczewski | Répartition des suites (nα) n∈N et substitutions[END_REF][8] [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF] [START_REF] Kuipers | Uniform distribution of sequences[END_REF]. Here are two important informations.

First, the sequence (y n ) n≥0 is bounded in L 2 (T, R) if and only if there exists u ∈ L 2 (T, R) such that R α uu = ψ (where by definition R α u(x) = u(x + α)) ( [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF] p.183). Next, let p/q be an irreducible fraction such that |αp/q| ≤ 1/q 2 (by Dirichlet theorem, there are infinitely many such fractions). Denjoy-Koksma inequality ([11] p.73) asserts that

||y q || L ∞ = || q-1 k=0 R kα ψ|| L ∞ ≤ Var(ψ). (4) 
Let us now present our results. We will actually only consider the function ψ * defined by

ψ * (x) = 1 if 0 ≤ x < 1/2, ψ * (x) = -1 if 1/2 ≤ x < 1. ( 5 
) It is known that there is no u ∈ L 2 (T, R) that solves the equation R α u -u = ψ * (Lemma 2, Section 2).
First, can we find an increasing sequence (n j ) ≥1 ⊂ N such that y nj / √ j should be asymptotically normally distributed (with strictly positive variance) ? Proposition 1 answers this question positively.

This means that, if we looked at the system at the times n j only, we should observe a diffusion process.

Next, how fast has to grow the sequence (n j ) j≥1 ? If α is of constant type (see ( 9)), we will see that it may be taken to grow exponentially, but not slower (see Remark after Proposition 2, and Corollary 1).

It seems also natural to consider the sequence (z n ) n≥0 ⊂ BV(T, R), defined as follows :

z n ∈ (y m ) 0≤m≤n : ||z n || L 2 = max 0≤m≤n ||y m || L 2 (6) 
(one take the first element of (y m ) 0≤m≤n if there is more than one possibility). In Proposition 2, we will see that the sequence z n /||z n || L 2 is asymptotically normally distributed.

Let G(σ) be the probability measure on R that admits the density f (x) = e -x 2 /2σ 2 / √ 2πσ 2 (σ > 0).

Proposition 1 Let (y n ) n≥0 be defined in [START_REF] Bricmont | KAM Theorem and Quantum Field Theory[END_REF]. If ψ = ψ * (see ( 5)), and if α ∈ R -Q, there exists an increasing sequence

(n j ) j≥1 ⊂ N such that y nj / √ j D → G(1) as j → ∞.
This result is quite weak, because the sequence (n j ) j≥1 is completely unknown. Nevertheless, we believe it has some interest. First, the result is valid for any irrational number α. Next, the proof is not technical but contains the principal ideas we need for proving our second Proposition. Finally, it allows us to make an heuristic link between our case and the theory of expanding maps of the interval (see Section 2, after the proof of Proposition 1).

One will then need the theory of continued fractions. Let (a n ) n≥0 ⊂ N be the sequence of partial quotients of α (see for example [START_REF] Hardy | An introduction to the theory of numbers[END_REF] for definition and details). The sequence (p n /q n ) n≥0 ⊂ Q of convergents of α is then defined as follows : p 0 /q 0 = a 0 /1, p 1 /q 1 = (a 0 a 1 + 1)/a 1 , and, for n ≥ 1,

q n+1 = a n+1 q n + q n-1 , p n+1 = a n+1 p n + p n-1 . (7) 
One will usually not write explicitly the dependence of a n and p n /q n on α. Here is a fundamental result of the theory of continued fractions : for n ≥ 0, one has

1 q n + q n+1 ≤ |q n α -p n | ≤ 1 q n+1 ≤ 1 a n+1 q n . (8) 
Let us introduce a particular class of numbers. One says that α

∈ R -Q is of constant type if ∃C > 0 : ∀q ∈ Z 0 , ∀p ∈ Z, |qα -p| ≥ C |q| . (9) 
Equivalently, α is of constant type if

∃d ≥ 1 : ∀n ≥ 0, a n ≤ d. ( 10 
)
This implies that the sequence (q n ) n≥0 grows only exponentially with n. These numbers form a set of zero Lebesgue measure.

Proposition 2 Let (z n ) n≥0 be defined in [START_REF] De La Rue | On the Central Limit Theorem for Aperiodic Dynamical Systems and Applications[END_REF]. Let ψ = ψ * be defined in [START_REF] Burton | On the central limit theorem for dynamical systems[END_REF]. Let α be a number of constant type. One has

z n /||z n || L 2 D → G(1)
as n → ∞. Moreover, there exist C, ǫ > 0 such that, if

q j ≤ n < q j+1 , one has ǫ √ j ≤ ||z n || L 2 ≤ C √ j.
Remark. Let ψ = ψ * , and let α be a number of constant type. Let n j be such that z qj = y nj . One has n j ≤ q j . Let σ j = ||y nj || L 2 / √ j. By Proposition 2, one has ǫ ≤ σ j = ||z qj || L 2 / √ j ≤ C, and

y nj / √ jσ j = z qj /||z qj || L 2 D → G(1).
Corollary 1 Let (y n ) n≥0 be defined in [START_REF] Bricmont | KAM Theorem and Quantum Field Theory[END_REF]. Let ψ = ψ * be defined in [START_REF] Burton | On the central limit theorem for dynamical systems[END_REF]. Let α be a number of constant type. Let (n j ) j≥1 ⊂ N and let (σ j ) j≥1 ⊂ R + 0 be such that y nj /σ j √ j D → G(1). Moreover, suppose that there exist C > ǫ > 0 such that ǫ ≤ σ j ≤ C for every j ≥ 1. Then, the sequence (n j ) j≥1

does not grow slower than exponentially with j.

Question. What happens when ψ = ψ * ? The choice ψ = ψ * is only needed to prove

||z n || L 2 ≥ ǫ √ j
when n ≥ q j . (Lemma 11, Section 4). It follows from the proof of this Lemma that other choices should be possible.

The organization of the paper is as follows. Proposition 1 is shown in Section 2. In Section 3, one shows an abstract central limit theorem ; this Section is independent of the others. One proves Proposition 2 and Corollary 1 in Section 4.

The letter C is used to denote a strictly positive constant that may vary from place to place.

Proof of Proposition 1

Let α ∈ R-Q. Let (p n /q n ) n≥0 be its convergents, and (a n ) n≥0 its partial quotients. Let ψ ∈ BV(T, R)

be such that

1 0 ψdx = 0.
Lemma 1 Let n ≥ 0.

1) Of the fractions p n /q n et p n+1 /q n+1 , one at least satisfies |αp/q| < 1/2q 2 .

2) If q n is even, then q n+1 is odd.

3) If q n and q n+2 are even, then |αp n+1 /q n+1 | < 1/2q 2 n+1 . 4) From four consecutive convergents, one at least has an odd denominator and satisfies the inequality |αp/q| < 1/2q 2 .

Proof. For 1), see [START_REF] Hardy | An introduction to the theory of numbers[END_REF] p.152. Let us show 2) by contradiction. Let us suppose we have found a smallest j ∈ N such that q j and q j+1 are even. We have j ≥ 1 and therefore q j+1 = a j+1 q j + q j-1 . Because q j-1 is odd and q j is even, q j+1 should also be odd. Let us show 3). By 2), q n+1 is odd, and on the other hand we have that q n+2 = a n+2 q n+1 + q n . The number a n+2 has to be even, and therefore a n+2 ≥ 2.

The result follows from [START_REF] Drmota | Sequences, Discrepancies and Applications[END_REF]. Finally, 4) is obtained by considering all the possibilities.

If u ∈ L 2 (T, R), if k ∈ Z, one writes û(k) = 1 0 u(x)e -2iπkx dx. If u ∈ BV(T, R), it follows from (1) that |û(k)| ≤ Var(u)/2π|k| for k = 0. One has y n (k) = 1 -e 2iπnkα 1 -e 2iπkα ψ(k), (n ≥ 1, k ∈ Z 0 ). ( 11 
)
Let us also introduce the following notation : if x ∈ R, one writes

|x| T = inf p∈Z |x -p|. (12) 
One checks the two following inequalities : for all x, y ∈ R, one has

4|x| T ≤ |1 -e 2iπx | ≤ 2π|x| T , (13) 
|x

+ y| T ≤ |x| T + |y| T and |1 -e 2iπ(x+y) | ≤ |1 -e 2iπx | + |1 -e 2iπy |. (14) 
Therefore, for every m ∈ Z,

|1 -e 2iπmx | ≤ |m|.|1 -e 2iπx |. (15) 
Moreover, if n ≥ 1, |q n α -p n | = |q n α| T ([11] p.63).
Lemma 2 Let ψ = ψ * given by [START_REF] Burton | On the central limit theorem for dynamical systems[END_REF].

There exists no u ∈ L 2 (T, R) such that R α u -u = ψ * . Proof. A solution u should be such that û(k) = ψ * (k)/(e 2iπkα -1) = -2i/πk(e 2iπkα -1) if k is odd.
By point 2) of Lemma 1, for infinitely many odd k, one may write k = q j for some j ≥ 1. But one has

|kα| T ≤ 1/|k| for those k. Therefore û(k) should not go to 0 as k → ∞. Lemma 3 One has y qn ⇀ 0 in L 2 (T, R) as n → ∞.
Proof. By Denjoy-Koksma inequality (4),

||y qn || L 2 ≤ ||y qn || L ∞ ≤ Var(ψ)
. Therefore, we only need to check that, if k ∈ Z 0 , y qn (k) → 0 as n → ∞. By [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF],

| y qn (k)| ≤ Var(ψ) 2π|k| 1 |1 -e 2iπkα | |1 -e 2iπqnkα | if k = 0. But by (15) |1 -e 2iπqnkα | ≤ |k|.|1 -e 2iπqnα | ≤ 2π|k|.|q n α| T → 0 as n → ∞.
A direct consequence of this Lemma is that, for every

β ∈ R, R β y qn ⇀ 0 in L 2 (T, R) as n → ∞. If x ∈ R, one sets x = x -⌊x⌋.
Following [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF] p.64, we give some informations about some finite sequences (nα

) n . If p/q ∈ Q is irreducible, one has {j.p/q} 0≤j≤q-1 = {j/q} 0≤j≤q-1 . We say that p/q ∈ Q (p/q irreducible) is a rational approximation of α for the constant 0 < β ≤ 1 if the inequality |α -p/q| < β/q 2 is satisfied. Let us write {jα} 0≤j≤q-1 = {α j } 0≤j≤q-1 , where 0 = α 0 < α 1 < • • • < α q-1 < 1.
If α > p/q, one has kαk.p/q < kβ/q 2 < 1/q if 1 ≤ k ≤ q -1. Therefore, if 0 ≤ j ≤ q -1, there exists some l(j) ∈ N such that 0 ≤ α jl(j)/q ≤ 1/q. But the sequence {α j } 0≤j≤q-1 is ordered, and so l(j) = j. One may thus write

0 = α 0 < 1 q < α 1 < 2 q < α 2 < • • • < q -1 q < α q-1 < 1. ( 16 
)
Similarly, if α < p/q, one has

α 0 = 0 < α 1 < 1 q < α 2 < 2 q < • • • < α q-1 < q -1 q < 1. (17) 
In both cases one has

|α j -j/q| < β/q (1 ≤ j ≤ q -1). ( 18 
)
The following Lemma gives a slight improvement of Denjoy-Koksma (4) inequality when ψ = ψ * (5).

Lemma 4 Let ψ = ψ * given by (5). Let p/q be a rational approximation of α for the constant β ≤ 1/2, and suppose that q is odd. Then the function y q takes only the values ±1. 16) and if α > p/q, one has, for 0

Proof. Let φ = q-1 k=0 R kp/q ψ = q-1 k=0 R k/q ψ. One has φ(x) = ψ(qx) ; indeed, one has R 1/q φ = φ and φ| [0,1/q[ = (q -1)/2 + (R (q-1)/2 ψ)| [0,1/q[ -(q -1)/2. Let us then write {jα} 0≤j≤q-1 = {α j } 0≤j≤q-1 , where 0 = α 0 < α 1 < • • • < α q-1 < 1. One has y q = q-1 k=0 R kα ψ = q-1 k=1 (R α k -R k/q )ψ + φ. By (
≤ k ≤ q -1, (R α k -R k/q )ψ(x) =          +2 if x ∈ [1 -α k , 1 -k/q[, -2 if x ∈ [1/2 -α k , 1/2 -k/q[ (mod1), 0 otherwise.
Similarly, if α < p/q, one has by (17) that, for 0

≤ k ≤ q -1, (R α k -R k/q )ψ(x) =          -2 if x ∈ [1 -k/q, 1 -α k [, +2 if x ∈ [1/2 -k/q, 1/2 -α k [ (mod1), 0 otherwise.
One now computes y q . To fix the ideas, let us consider the case α > p/q. If 0 ≤ j ≤ q -1, one has

y q [j/q,(j+1)/q[ = q-1 k=1 (R α k -R k/q )ψ [j/q,(j+1)/q[ + φ [j/q,(j+1)/q[ = (2χ [ j+1 q -δ1(j), j+1 q [ -2χ [ j q + 1 2q -δ2(j), j q + 1 2q [ ) + (χ [ j q , j q + 1 2q [ -χ [ j q + 1 2q , j+1 q [ ),
where, by (18

), 0 ≤ δ 1 (j), δ 2 (j) < 1/2q. One checks that, if u : T → R, if n ≥ 1, if c 0 = 0, if c 1 , . . . , c n ≥ 1, then c1+•••+cn-1 k=0 R kα u = n j=0 R (c0+•••+cj-1)α cj-1 k=0 R kα u. ( 19 
)
Proof of Proposition 1. By point 4) of Lemma 1, there exists a subsequence (p k /q k ) k≥1 ⊂ (p n /q n ) n≥0 such that |αpk /q k | < 1/2q 2 k . Moreover, once q1 , . . . , qk (k ≥ 1) are given, one may take qk+1 as large as we please (by still taking a subsequence). So, by Lemma 4, R β y qk takes only the values ±1

(β ∈ R). For k ≥ 1, let n k = q1 + • • • + qk and define f 1 = y q1 and f k = R n k-1 α y qk (thus f k (x) = ±1
and f 2 k (x) = 1 for every x ∈ T and every k ≥ 1). By (19), one has

y n k = k j=1 f j . Let (δ k ) k≥1 ⊂ R + 0 be such that k j=1 δ j / √ k → 0 as k → ∞.
One may suppose that, for every k ≥ 1, and for every γ ∈ [-1, 1]

| 1 0 f n k+1 e iγ(fn 1 +•••+fn k ) dx| ≤ δ k . (20) 
Indeed, for some m(k) ∈ N, one may write [0, 1] = m(k) j=1 I j , in such a way that e iγ(fn

1 +•••+fn k ) is constant on each I j (1 ≤ j ≤ m(k)). But, by Lemma 3, one may suppose that | Ij f n k+1 dx| ≤ δ k /m(k) (1 ≤ j ≤ m(k))
; indeed one just needed to take qk+1 large enough.

Let λ ∈ R. For k ≥ 2 and for 2 ≤ j ≤ k, one has

e i λ √ k (fn 1 +•••+fn j ) = e i λ √ k (fn 1 +•••+fn j-1 ) (1 + i λ √ k f nj - λ 2 2k + O |λ| 3 k 3/2 ). ( 21 
)
For k ≥ 1 big enough, one has |λ/ √ k| ≤ 1 and |1 -λ 2 2k | ≤ 1. Therefore, using (21) recursively, and applying (20), one finds that

| 1 0 e i λ √ k (fn 1 +•••+fn k ) dx -(1 - λ 2 2k ) k | ≤ |λ| √ k k-1 j=1 δ j + O |λ| 3 √ k .
So, for each λ ∈ R,

1 0 e i λ √ k yn k dx → e -λ 2 /2 as k → ∞.
We now give an heuristic link between Proposition 1 and the theory of expanding maps of the interval [START_REF] Hofbauer | Ergodic Properties of Invariant Measures for Piecewise Monotonic Transformations[END_REF]. If k ≥ 2 is an integer, one defines the map T k : T → T, x → kx (with the notation

x = x -⌊x⌋). For n ≥ 1, T n k = T k • • • • • T k = T k n .
Let ψ * be the function given by [START_REF] Burton | On the central limit theorem for dynamical systems[END_REF]. If k ≥ 2, (ψ * • T n k ) n≥1 is a sequence of random variables on (T, m L ). One shows that there exists σ k > 0 such that

1 √ n n j=1 ψ * • T j k = 1 √ n n j=1 ψ * • T k j D → G(σ k ) as n → ∞. (22) 
Indeed, if k is even, the random variables (ψ * • T n k ) n≥1 are actually independent and equidistributed (so σ k = 1). In general, one may use Theorem 5 of [START_REF] Hofbauer | Ergodic Properties of Invariant Measures for Piecewise Monotonic Transformations[END_REF] : one checks that T k is mixing with respect to the invariant measure m L , and that the equation u • T ku = ψ * admits no solution u ∈ L 2 (T, R) (by Fourier expansion for example), so that σ k > 0.

Let us now consider the sequence (f k ) k≥1 constructed in the proof of Proposition 1 (we keep the notations of this part). One has

f k = R n k-1 α y qk (k ≥ 2). First, one may expect the rotation R n k-1 α
to play no essential role in the decorrelation properties of the variables f k (k ≥ 1). Next, the proof of Lemma 4 was entirely based on the fact that y qk may be approximated by ψ * • T qk . For each irrational number α, the sequence (q k ) k≥0 grows at least exponentially with k (a superexponential growth improves actually the decorrelations).

One comes thus to the conclusion that the sequence

y n k / √ k = k j=1 f j / √
k is likely to have a statistical behavior analogous to (22). The proof of Proposition 1 was greatly simplified by the fact that one allowed qk to grow arbitrarily fast with k. In the two next Sections, we prove basically that an exponential growth is enough in some cases.

Central Limit Theorem

Let µ be a probability measure on T. In this Section, L p (T, R) = L p (T, R, dµ) (p ≥ 1).

Proposition 3 Let (q k ) k≥1 ⊂ N 0 , and suppose there exists ρ > 0 such that for every k ≥ 1,

q k+1 ≥ e 2ρ q k . ( 23 
)
Let (f jk ) j,k≥1 ⊂ BV(T, R) be random variables on (T, µ) such that

1 0 f jk dµ = 0 (j, k ≥ 1). Let S n = f n1 + • • • + f nn . Suppose that there exists C > 0 such that 1) for every j, k ≥ 1, ||f jk || L ∞ ≤ C and Var(f jk ) ≤ Cq k ,
2) for some β ∈ R, for every φ ∈ BV(T, R) such that 1 0 φdµ = 0, for j ≥ 1 and for t ≥ s ≥ 1,

| 1 0 φ.f js dµ| ≤ C.Var(φ) s β q s , (24) 
| 1 0 φ.f js f jt dµ| ≤ C.Var(φ) s β q s , (25) 
3

) if σ n = ||S n / √ n|| L 2 , there exists ǫ > 0 such that ǫ ≤ σ n ≤ C for each n ≥ 1. Then, S n / √ nσ n D → G(1) as n → ∞.
Proof. To simplify notations, one will only consider the case where f jk = f lk for all j, l, k ≥ 1, and write

f k = f 1k (k ≥ 1)
. The hypotheses of the Proposition only involve estimates which are independent of the index j of f jk (j, k ≥ 1). Therefore, the proof of the general case is a straightforward adaptation of this one. We begin by a Lemma.

Lemma 5 Under the hypothesis of Proposition 3, there exists C > 0 such that for every m, n ≥ 1,

|| m+n k=m f k || L 4 ≤ C(n ln(n + m)) 1/2 .
Proof. One has

|| m+n k=m f k || 4 L 4 = m≤s,t,u,v≤m+n 1 0 f s f t f u f v dµ ≤ 4! m≤s≤t≤u≤v≤m+n | 1 0 f s f t f u f v dµ|. ( 26 
)
Until the end of this proof, one assumes m ≤ s ≤ t ≤ u ≤ v ≤ m + n. One defines

S stuv = | 1 0 f s f t f u f v dµ| and S tu = s,v S stuv . (27) 
By hypothesis 1), one has always S stuv ≤ C. Let us obtain two others estimates of this quantity. If

f, g ∈ BV(T, R), one has Var(f g) ≤ ||f || L ∞ Var(g) + ||g|| L ∞ Var(f )
. Therefore, by 1), one has Var(f s f t f u ) ≤ C(q s + q t + q u ) ≤ 3Cq u .

By ( 24) and ( 23), one first obtains that

S stuv = | 1 0 (f s f t f u ).f v dµ| ≤ C q u q v v β ≤ Ce -2ρ(v-u) v β . (28) 
Similarly, by (25), ( 24) and (23), one then gets

S stuv ≤ | 1 0 f s f t - 1 0 f s f t dµ .f u f v dµ| + | 1 0 f s .f t dµ|.| 1 0 f u f v dµ| ≤ C( q t q u u β + q s q t t β ) ≤ C(e -2ρ(u-t) u β + e -2ρ(t-s) t β ). ( 29 
)
Set κ = (β/ρ) ln(n + m). One assumes κ ≥ 1. Inequalities (28) and (29) imply respectively

S stuv ≤ Ce -ρ(v-u) if v -u ≥ κ, (30) 
S stuv ≤ C(e -ρ(u-t) + e -ρ(t-s) ) if u -t ≥ κ and t -s ≥ κ. (31) 
We now estimate S tu in (26) for fixed t, u. First we consider the case ut < κ. By (30) one gets (setting vu = k after the second inequality)

S tu = s,v:v-u<κ S stuv + s,v:v-u≥κ S stuv ≤ s,v:v-u<κ C + s,v:v-u≥κ Ce -ρ(v-u) ≤ k<κ,s C + k≥κ,s Ce -ρk ≤ Cnκ + Cn ≤ Cnκ. (32)
Next, we consider the case ut ≥ κ. We write the decomposition S tu = S tu (1) + S tu (2) + S tu (3).

Those three terms will be defined one by one. First, in the same way as (32), one gets S tu (1)

∆ = s,v:u-t≤v-u S stuv ≤ s,v:u-t≤v-u Ce -ρ(v-u) ≤ Cne -ρ(u-t) . (33) 
Then, if vu < ut ≤ ts, one uses (31) to get S stuv ≤ Ce -ρ(u-t) , and so

S tu (2) ∆ = s,v:v-u<u-t≤t-s S stuv ≤ Ce -ρ(u-t) k<u-t,s 1 ≤ Cn(u -t)e -ρ(u-t) . ( 34 
)
Finally, let B = {(s, v) : vu < ut, ts < u -t}. For at most κ 2 elements (s, v) ∈ B, one has vu < κ and ts < κ, and so only the estimate S stuv ≤ C. For all the others, one has S stuv ≤ min{Ce -ρ(v-u) , Ce -ρ(t-s) } by ( 30) and (31) (to use (31) one uses the fact that ts < ut).

Therefore,

S tu (3) = s,v∈B S stuv ≤ Cκ 2 + C j,k≥0 min{e -ρj , e -ρk } ≤ Cκ 2 + C ≤ Cκ 2 . ( 35 
)
By (26 -27) and (32 -35) one obtains

|| m+n k=m f k || 4 L 4 ≤ C t,u:u-t<κ nκ + C t,u ne -ρ(u-t) + n(u -t)e -ρ(u-t) + κ 2 .
Because κ = (β/ρ) ln(n + m), this gives the result.

Let us now come to the proof of the Proposition. Like in [START_REF] Bunimovich | Statistical properties of Lorentz gas with a periodic configuration of scatterers[END_REF], one defines a kind of coarse grained variables that get more and more decorrelated as

n → ∞. Let γ 1 , γ 2 ∈]0, 1[ be such that γ 1 > γ 2 + 1/2
(and thus γ 2 < 1/2). If n ≥ 1, set n 1 = ⌊n γ1 ⌋ and n 2 = ⌊n γ2 ⌋. In the sequel, we suppose that n is large enough to have n 2 ≥ 1. One writes S n = p(n) k=1 (X nk + Y nk ) where p(n) is the smallest integer such that p(n).(n 1 + n 2 ) ≥ n and where

X nk = f (k-1)(n1+n2)+1 + • • • + f (k-1)(n1+n2)+n1 , (36) 
Y nk = f (k-1)(n1+n2)+n1+1 + • • • + f k(n1+n2) (37) 
(1 ≤ k ≤ p(n) -1 ; for k = p(n) the definition is the same but one puts 0 instead of f j whenever j > n). One has p(n)/n 1-γ1 → 1 as n → ∞.

Let λ ∈ R. This number will be treated as a constant in all our estimates. For n ≥ 1, one defines

J n (λ) = 1 0 e i λ √ nσn Sn dµ, (38) 
and, for 1 ≤ k ≤ p(n),

I nk (λ) = 1 0 e i λ √ nσn (Xn1+•••+X nk ) dµ. ( 39 
)
One puts also I n0 (λ) = 1. By hypothesis 3) and ( 37), one has

|J n (λ) -I np(n) (λ)| ≤ || λ √ nσ n p(n) k=1 Y nk || L ∞ ≤ C p(n)n 2 √ n ≤ Cn -(γ1-(γ2+1/2)) . ( 40 
)
Lemma 6 Under the hypothesis of Proposition 3 and if 1 ≤ k ≤ p(n), one has

I nk (λ) = (1 - λ 2 2nσ 2 n 1 0 X 2 nk dµ)I n(k-1) (λ) + r nk (λ)
with |r nk (λ)| ≤ C(n β+1 e -2ρn2 + n -3 2 (1-γ1) ln 3/2 n) (where C depends on λ).

Proof. Let us only consider the most difficult case k ≥ 2. To simplify formulas, one will assume that σ n = 1 for all n ≥ 1. By hypothesis 3), this does not change our estimates. One has

I nk (λ) = 1 0 (1 + i λ √ n X nk - λ 2 2n X 2 nk + O |X nk | 3 n 3/2 )e i λ √ n (Xn1+•••+X n(k-1) ) dµ. ( 41 
) If g ∈ C 1 (R, R) ∩ L ∞ (R, R), and if u ∈ BV(T, R), then Var(g • u) ≤ ||g ′ || L ∞ Var(u)
. By (23), one has

q 1 + • • • + q n ≤ Cq n . So,

by (36) and hypothesis 1), one has

Var(e

i λ √ n (Xn1+•••+X n(k-1) ) ) ≤ C √ n q (k-2)(n1+n2)+n1 . (42) 
Therefore, first, using (36), ( 24), ( 42) and (23), one gets

| 1 0 λ √ n X nk e i λ √ n (Xn1+•••+X n(k-1) ) dµ| ≤ λ √ n n1 j=1 | 1 0 e i λ √ n (Xn1+•••+X n(k-1) ) .f (k-1)(n1+n2)+j dµ| ≤ C n n1 j=1 q (k-2)(n1+n2)+n1 q (k-1)(n1+n2)+j ((k -1)(n 1 + n 2 ) + j) β ≤ C n n 1 e -2ρn2 n β ≤ Cn β e -2ρn2 . (43) 
Then, similarly, using (25) instead of (24), and noticing that nor X 2 nk nor e

i λ √ n (Xn1+•••+X n(k-1)
) have in general a zero integral, one gets

| 1 0 λ 2 2n X 2 nk e i λ √ n (Xn1+•••+X n(k-1) ) dµ- λ 2 2n 1 0 X 2 nk dµ. 1 0 e i λ √ n (Xn1+•••+X n(k-1) ) dµ| ≤ Cn β+1 e -2ρn2 . (44) 
Finally, by Lemma 5 and (36), one has

| 1 0 |X nk | 3 n 3/2 e i λ √ n (Xn1+•••+X n(k-1) ) dµ| ≤ C n 3/2 ||X nk || 3 L 3 ≤ C n 3/2 ||X nk || 3 L 4 ≤ C n 3/2 (n 1 ln n) 3/2 ≤ Cn -3 2 (1-γ1) ln 3/2 n. (45) 
Inserting (43-45) in (41), one gets the result.

To prove Proposition 3, it is enough to show that J n (λ) → e -λ 2 /2 as n → ∞. For n large enough,

one has |1 -(λ 2 /2n) 1 0 X 2 nk dx| ≤ 1.
Thus, by (40) and by recursive application of Lemma 6, one has

|J n (λ) -(1 - λ 2 2nσ 2 n 1 0 X 2 np(n) dµ) . . . (1 - λ 2 2nσ 2 n 1 0 X 2 n1 dµ)| ≤ Cp(n)(n β+1 e -2ρn2 + n -3 2 (1-γ1) ln 3/2 n) + Cn -(γ1-(γ2+1/2)) .
Because p(n)/n 1-γ1 → 1 as n → ∞, the right hand side of this inequality goes to 0 as n → ∞.

Therefore, it is enough to show that ln

p(n) k=1 (1 -(λ 2 /2n) 1 0 X nk dµ) → -λ 2 /2 as n → ∞. By hypothesis 3), one has ln p(n) k=1 (1 - λ 2 2nσ 2 n 1 0 X 2 nk dµ) = - λ 2 2nσ 2 n p(n) k=1 1 0 X 2 nk dµ + O 1 n 2 p(n) k=1 ( 1 0 X 2 nk dµ) 2 . First, Lemma 5 is still valid if ||.|| L 2 is used in place of ||.|| L 4 (because ||.|| L 2 ≤ ||.|| L 4
), and so, by (36),

1 n 2 p(n) k=1 ( 1 0 X 2 nk dµ) 2 = 1 n 2 p(n) k=1 ||X nk || 4 L 2 ≤ C n 2 p(n)n 2 1 ln 2 n ≤ C n 2 n 1-γ1 n 2γ1 ln 2 n → 0 as n → ∞.
Next, one has

1 0 ( p(n) k=1 X nk ) 2 dµ = 1 0 p(n) k=1 X 2 nk dµ + 2 p(n) j=2 j-1 k=1 1 0 X nj X nk dµ.
By (36) and hypothesis 1), Var(X nk ) ≤ Cq (k-1)(n1+n2)+n1 . So, by (36), ( 24) and ( 23), one obtains as

for (43) that, if 1 ≤ k < j ≤ p(n), | 1 0 X nj X nk dµ| ≤ n1 l=1 | 1 0 X nk f (j-1)(n1+n2)+n1 dµ| ≤ Cn β e -2ρn2 .
Therefore

1 0 p(n) k=1 X 2 nk dµ - 1 0 ( p(n) k=1 X nk ) 2 dµ → 0 as n → ∞.
By (37),

|| 1 √ n p(n) k=1 Y nk || L 2 ≤ || 1 √ n p(n) k=1 Y nk || L ∞ → 0 as n → ∞. Therefore p(n) k=1 1 0 X 2 nk dµ/nσ 2 n -||S n || 2 L 2 /nσ 2 n → 0 as n → ∞.
One concludes by hypothesis 3).

Proof of Proposition 2 and Corollary 1

Proof of Proposition 2. Let α be a number of constant type (see ( 9)), and let d be the constant given by [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. Let (p n /q n ) n≥0 be its convergents, and (a n ) n≥0 be its partial quotients. One may decompose an integer r ≥ 1 according to the Ostrowski system of numeration. One has q n ≤ r < q n+1 for some n ≥ 0. One writes

r = b n q n + • • • + b 0 q 0 , (46) 
where b k ≥ 0 (0 ≤ k ≤ n) are integers defined recursively : first b n ≥ 1 is the only integer such that

0 ≤ r -b n q n < q n ; then, if b k+1 ≥ 0 (0 ≤ k ≤ n -1) is given, b k ≥ 0 is the only integer such that 0 ≤ r -(b n q n + • • • + b k q k ) < q k . One has b k ≤ a k+1
, and by [START_REF] Hardy | An introduction to the theory of numbers[END_REF],

b k ≤ d (1 ≤ k ≤ n).
Now let us consider a sequence (s n ) n≥1 such that q n ≤ s n < q n+1 . One wants to show that

z sn /||z sn || L 2 D → G(1)
as n → ∞. All our estimates will be independent of the choice of the sequence (s n ) n≥1 . Therefore, this will actually imply that

z n /||z n || L 2 D → G(1)
as n → ∞. Indeed, for n ≥ q 1 , one finds a sequence (s k ) k≥1 with q k ≤ s k < q k+1 for every k, and such that n = s j for some j ≥ 1 ;

one has j → ∞ as n → ∞.

For each n ≥ 1, there exists one and only one 1 ≤ r n ≤ s n such that y rn = z sn . Let (b k (n)) 1≤k≤n

be the sequence associated to the canonical decomposition (46) of r n (b k (n) may not be defined for

large k, one set then b k (n) = 0). Let us define (f jk ) j,k≥1 ⊂ BV(T, R). Let j ≥ 1. If 1 ≤ k ≤ j, one sets 
f jk = R (b0(j)q0+•••+b k-1 (j)q k-1 )α b k (j)q k -1 l=0 R lα ψ. (47) 
If k > j, one sets f jk = 0. By (19), one has z sn = y rn = 1≤k≤n f nk .

Therefore, it is enough to show that the sequences (q k ) k≥1 and (f jk ) jk≥1 satisfy the hypotheses of Proposition 3. The estimates on ||z n || L 2 will then be also proven. Indeed, we will need to show that hypothesis 3) is satisfied, and thus that ǫ

√ n ≤ ||z sn || L 2 ≤ C √ n (where q n ≤ s n < q n+1 ).
First, (23) is satisfied. One has q 2 > q 1 , and, for n ≥ 2, q n-1 ≥ q n /2d by [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. Therefore, for n ≥ 2,

q n+1 ≥ q n + q n-1 ≥ (1 + 1/2d)q n .
Next, hypothesis 1) is satisfied. By (47), ( 19), [START_REF] Hardy | An introduction to the theory of numbers[END_REF] and Denjoy-Koksma inequality (4), one has for all

j, k ≥ 1 ||f jk || L ∞ ≤ b k (j)|| q k -1 l=0 R lα ψ|| L ∞ ≤ d.Var(ψ).
And, by (47) and [START_REF] Hardy | An introduction to the theory of numbers[END_REF], one has, for all j, k ≥ 1

Var(f jk ) ≤ Var(ψ)b k (j)q k ≤ d.Var(ψ)q k .
Let us show that hypothesis 2) is satisfied.

and, because ||Ph||

L 2 ≤ ||h|| L 2 ≤ ||h|| L ∞ , one has similarly 1 0 |φQgPh|dx ≤ ||φ|| L ∞ ||Qg|| L 2 ||Ph|| L 2 ≤ C.Var(φ) 1 q t .
Therefore, it will suffice to estimate | 

| 1 0 (φg).hdx| ≤ C(||g|| L ∞ Var(φ) + Var(φ)Var(h)) t β q t ≤ C Var(φ) q s ( q s t β q t + q 2 s t β q t ).
By Lemma 7, there exists c ′ ∈ N such that q c ′ n ≥ q 2 n for every n ∈ N. Therefore, if t ≥ c ′ s, one may write t = c ′ s + u with u ≥ 0, and so, using (23),

q s t β q t + q 2 s t β q t ≤ 2q c ′ s (c ′ s + u) β q c ′ s+u ≤ C (c ′ s + u) β e 2ρu ≤ Cc ′β s β (1 + u/cs) β e 2ρu ≤ Cs β .
One now comes to the proof itself (and one supposes t < c ′ s). After some algebra one gets

| 1 0 φPgPhdx| = | j,k:|j|,|k|≤qct ĝ(j) ĥ(-k) φ(k -j)| ≤ 4Var(φ) 2π 1≤j,k≤qct,k =j |ĝ(j)|.| ĥ(k)|. 1 |k -j| + Var(φ) 2π 1≤k≤qct |ĝ(k)|.| ĥ(k)| k ∆ = Var(φ) 2π (4S 1 + S 2 ). ( 52 
)
Let us estimate S 1 given by (52). The set Γ n (n ≥ 1) are defined in (48). By (49) and ( 23), there exists a constant w ≥ 0 such that, if j ∈ Γ m+w , then j > q m (m ≥ 1), and therefore

S 1 = 1≤m,n≤ct+w j∈Γm,j≤qct k∈Γn,k≤qct,k =j |ĝ(j)|.| ĥ(k)|. 1 |k -j| ∆ = 1≤m,n≤ct+w S(m, n). (53) 
Let us fix m, n ∈ {1, . . . , ct + w} and estimate S(m, n). Let us first consider the case m ≤ n. By (47), ( 11), ( 15), ( 10) and ( 48), one has

|ĝ(j)| = | f ls (j)| ≤ |1 -e 2iπbs(l)qsjα | |1 -e 2iπjα | Var(ψ) 2πj ≤ dj.|1 -e 2iπqsα | 1/q m Var(ψ) 2πj ≤ C q m q s . (54) 
By ( 47), [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF], the fact that |1e 2iπx | ≤ 2 for all x ∈ R, and (48), one has

| ĥ(k)| = | f lt (k)| ≤ |1 -e 2iπbt(l)qtkα | |1 -e 2iπkα | Var(ψ) 2πk ≤ C q n k . (55) 
Therefore, by (53), ( 54) and (55), and then (49), one has

S(m, n) ≤ C q m q n q s j∈Γm,j≤qct k∈Γn,k≤qct,k =j 1 k|k -j| ≤ C q m q n q s k∈Γn,k≤qct 1 k j∈Γm,j≤qct,j =k 1 |k -j| ≤ C q m q n q s C q n 1≤u≤qct 1 u . C q m 1≤u≤qct 1 u ≤ C q s ln 2 q ct .
The case m ≥ n is analogous : one uses the estimates |ĝ(j)| ≤ Cq m /j and | ĥ(k)| ≤ Cq n /q t , to obtain S(m, n) ≤ (C/q t ) ln 2 q ct . Therefore, one has S 1 ≤ C(ct + w) 2 (ln 2 q ct )/q s .

The sum S 2 is estimated in the same way. One gets S 2 ≤ C(ct + w)(ln q ct )/q s . To get the result, one uses then the inequality q ct ≤ (2d) ct , where d is given by [START_REF] Hardy | An introduction to the theory of numbers[END_REF], and one takes β = 4.

Let us show that hypothesis 3) is satisfied.

Lemma 10 Let α be a number of constant type. Let n ≥ 0 and 0 ≤ m ≤ q n . One has ||y m || L 2 ≤ C √ n.

Proof. By Lemma 7, there exists c ∈ N such that q cn ≥ q 2 n for every n ∈ N. By [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF], one has 

) 56 
Because y m = m-1 j=0 R jα ψ (m ≥ 1), one has Var(y m ) ≤ Var(ψ)m ≤ Var(ψ)q n , and thus the second term in (56) is bounded by a constant. The sets Γ m (m ≥ 1) are defined in (48). By (49) and ( 23), there exists a constant w ≥ 0 such that, if j ∈ Γ m+w , then j > q m (m ≥ 1), and so Proof. Let δ > 0. By (23), there exists l ≥ 1 such that, for each n ≥ 0, q n /q n+l ≤ δ. Therefore, for each k ≥ 0, q n /q n+kl ≤ δ k . Now let us construct a sequence (t n ) n≥1 ⊂ N. For n ≥ 1, t n = 0 except in the following cases. If n = 4kl for some k ≥ 1, then, by point 4) of Lemma 1, there exists m ∈ {n, . . . , n + 3} such that q m is odd and that q m |q m α| T < 1/2 ; one sets then t m = q m (and one takes the smallest m if there is more than one possibility).

Let us fix n ≥ 1. Because, q 0 + • • • + q n ≤ q n+3 , one has t 1 + • • • + t n ≤ q n+3 . Therefore, if Let u ∈ {1, . . . , n} be such that t u = 0 (and thus t u = q u ). One writes rt u α = t 2 u α + τ , where τ = (t 1 + • • • + t u-1 )t u α + t u (t u+1 α + • • • + t n α). By [START_REF] Liardet | Sums of continuous and differentiable functions in dynamical systems[END_REF], one has |τ | T ≤ (t 1 + • • • + t u-1 )|t u α| T + t u (|t u+1 α| T + • • • + |t n α| T ). Let us now adopt the convention that 1/t n = 0 when t n = 0. One has

r = t 1 + • • • + t n ,
|τ | T ≤ t 1 q u + • • • + t u-1 q u + q u t u+1 + • • • + q u t n ≤ 2 ∞ k=1 δ k . (57) 

1 0 φPgPhdx| instead of | 1 0

 11 φghdx|.Next, let us prove that, if t ≥ c ′ s for some c ′ ∈ N, then the first inequality (50) implies the second one (the proof of the first inequality makes obviously no use of this fact). If u, v ∈ BV(T, R), one has Var(uv) ≤ ||u|| L ∞ Var(v) + ||v|| L ∞ Var(u). Therefore, using again the fact that ||φ|| L ∞ ≤ Var(φ), hypothesis 1), and the first inequality (50), one gets

  has S n = z sn = y m for some m ≤ q n+1 , and therefore, by Lemma 10,||S n || L 2 ≤ C √ n + 1 ≤ C √ n.The estimate||S n || L 2 ≥ ǫ √ n isobtain by the next Lemma. Lemma 11 Under the hypotheses of Proposition 2, there exits ǫ > 0 such that ||z sn || L 2 ≥ ǫ √ n for every n ≥ 1.

1 q 2 u|1 -e 2iπrquα | 2 |1 -e 2iπquα | 2 ≥

 1222 

  one has ||z sn+3 || L 2 ≥ ||z qn+3 || L 2 ≥ ||y r || L 2 . But, by[START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF], (5) and (8), one has

	||y r || 2 L 2	=	8 π 2	k≥1,kodd	1 k 2	|1 -e 2iπrkα | 2 |1 -e 2iπkα | 2 ≥	8 π 2	1≤u≤n:quodd
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 Lemma 7If α is of constant type, then ∀p ∈ N, ∃c 0 ∈ N : (∀c ∈ N : c ≥ c 0 ), ∀n ∈ N, q cn ≥ q p n .

Proof. Let d be given by [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. For c large enough and n ≥ 1, one has by (23), q cn ≥ e 2ρcn ≥ (2d) pn ≥ q p n .

Like in [START_REF] Bricmont | KAM Theorem and Quantum Field Theory[END_REF], one defines the sets

One has

Lemma 8 There exists C > 0 such that, for every m ≥ 1,

Proof. If j ∈ Γ m , |1e 2iπjα | < 1/q m-1 . By ( 9) and ( 13), there exists C > 0 such that 4C/|j| ≤ 4|jα| T ≤ 1/q n-1 . Let d be given by [START_REF] Hardy | An introduction to the theory of numbers[END_REF]. One has q m-1 ≥ q m /2d, and so |j| ≥ Cq m . Next, if j, k ∈ n≥m Γ n , one has by ( 14) that

and so one gets the second inequality (49) as the first.

Lemma 9 There exist C, β ∈ R such that, for every φ ∈ BV(T, R) with

Proof. Both inequalities may be shown in the same way, but the first one is simpler, and we will only prove the second one. In this proof, we consider as constants, numbers that depend only on α or ψ.

Let l ≥ 1 and t ≥ s ≥ 1. One writes First, by Lemma 7, there exists c ∈ N such that q cn ≥ q 4 n for every n ∈ N. Let P : L 2 (T, R) → L 2 (T, R) be the projector defined by Pu(x) = k≤qct û(k)e 2iπkx . Let Q = Id -P. One has ||Qg|| L 2 ≤ C/q t and ||Qh|| L 2 ≤ C/q t ; indeed, by hypothesis 1), one has for example

. By hypothesis 1) and (51), one has

So, taking δ small enough (and thus l big enough), |τ | T can be made arbitrarily small.

If p ∈ N, if x ∈ R and if p|x| T ≤ 1/2, then |px| T = p|x| T . Therefore, if d is given by [START_REF] Hardy | An introduction to the theory of numbers[END_REF], one has by [START_REF] Drmota | Sequences, Discrepancies and Applications[END_REF], and because t u |t u α| T < 1/2 by construction, that

Therefore, there exists C > 0 such that |rt u α| 2 T ≥ C, and so ||y r || 2 L 2 ≥ Cn/l. This ends the proof of Proposition 2.

Proof of Corollary 1. For j large enough, one has n j ≥ 1, and one may thus find τ (j) ∈ N such that q τ (j) ≤ n j < q τ (j)+1 . Now, by Lemma 10 and the hypothesis on (σ j ) j≥1 , one has ||y nj /σ j √ j|| L 2 ≤ C (τ (j) + 1)/j. Because y nj /σ j √ j D → G(1), there has to be a number C > 0 such that τ (j) ≥ Cj for j large enough. The result follows from the fact that n j ≥ q τ (j) and that (q n ) n≥0 grows exponentially with n.