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Abstract

In the articleMatrices de Stokes-Ramis et constantes de connexion
pour les systèmes différentiels linéaires de niveau unique (P. Remy),
we considered linear differential systems with a unique but arbitrary
level and we stated formulae to express all the Stokes multipliers in
terms of connection constants in the Borel plane generalizing thus the
calculations made in the article Resurgence, Stokes phenomenon and
alien derivatives for level-one linear differential systems (M. Loday-
Richaud, P. Remy). In the present paper, we provide a new proof of
these formulae. We perturb the given system in order that each Stokes
value generate its own anti-Stokes direction. We state the connection-
to-Stokes formulae for the perturbed system and we conclude by a
limit process. We believe the method could provide an efficient tool for
the numerical calculation of the Stokes multipliers. As an illustration,
we develop an example. No assumption of genericity is made.

Keywords. Linear differential system, Stokes phenomenon, summab-
ility, resurgence, Stokes multipliers, connection constants
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Introduction

All along the article, we are given a linear differential system (in short, a
differential system or a system)

(0.1) xr+1
dY

dx
= A(x)Y , A(x) ∈Mn(C{x}), A(0) 6= 0

of dimension n ≥ 2 with meromorphic coefficients of order r + 1 ≥ 2 at the
origin 0 in C. Such a system admits a formal fundamental solution of the
form

Ỹ (x) = F̃ (x)xLeQ(1/x)

where F̃ (x) ∈ Mn(C[[x]]) is a power series in x, the matrix L ∈ Mn(C) of
exponents of formal monodromy is a constant matrix and where the irregular
part Q(1/x) = diag(q1(1/x), ..., qn(1/x)) is a diagonal matrix with polyno-
mial entries qj(1/x) ∈ x−1/νC[x−1/ν ], ν ∈ {1, ..., n!}, in a fractional power of
1/x ([1,5]).
The finite algebraic extension x 7−→ xν of the variable x and a suitable

meromorphic gauge transformation Y 7−→ T (x)Y where T (x) has explicit
computable polynomial entries in x and 1/x allow to normalize Ỹ (x) as
follows ([1]):

• F̃ (x) ∈ Mn(C[[x]]) is a power series in x with condition F̃ (x) = In +
O(xr), where In is the identity matrix of size n,

• L =
J⊕

j=1

(λjInj + Jnj) where J ≥ 2, Re(λj) ∈ [0, 1[ and where

Jnj =





0 if nj = 1




0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · 0




if nj ≥ 2

is an irreductible Jordan block of size nj,

• Q(1/x) is a diagonal matrix with polynomial entries in 1/x of the form

Q

(
1

x

)
=

J⊕

j=1

qj

(
1

x

)
Inj
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with

qj

(
1

x

)
= −aj,r

xr
− aj,r−1
xr−1

− ...− aj,1
x
∈ x−1C[x−1]

Besides, we assume that

(0.2) λ1 = 0 and q1 ≡ 0

These conditions can always be fulfilled by means of the change of unknown
vector Y = xλ1eq1(1/x)Z.

The assumption “system (0.1) has the unique level r” is equivalent to the
conditions

(0.3)
1. qj − q` ≡ 0 or with degree r for all j, `

2. there exists j such that aj,r 6= 0

Note that these conditions imply

qj ≡ q` ⇔ aj,r = a`,r

The coefficients aj,r of the leading terms of the qj’s, j = 1, ..., J , are called
the Stokes values of system (0.1). Recall that the r-th roots of the points
aj,r − a`,r 6= 0 define the anti-Stokes directions of system (0.1).

Under the assumption (0.3), we are interested in the formulæ given the
Stokes multipliers of F̃ (x) in terms of connection constants in the Borel plane.
When r = 1, these constants are given by the singularities of the Borel

transform F̂ (ξ) of F̃ (x). Many proofs exist under sufficiently generic hy-
pothesis (see [7] for instance). A complete proof without assumption of
genericity was recently given by M. Loday-Richaud and the author ([6]).
In this proof, we used Écalle’s method by regular perturbation and major-
ant series quoted in [3]. We stated the summable-resurgence of F̃ (x) and
we displayed a precise description of the singularities of F̂ (ξ) in the Borel
plane; the connection-to-Stokes formulæ are performed by interpreting the
Stokes-Ramis matrices as Laplace integrals of these singularities.
Afterwards in [10], the author extended these results to the case r ≥ 2

by using the classical method of rank reduction and by applying Écalle’s
method to the reduced system. In this case, instead of F̃ (x), we considered
its sub-series F̃ [u](t), u = 0, ..., r−1 and t = xr, of terms r by r, also called r-
reduced series of F̃ (x). The connection-to-Stokes formulæ are performed by
connecting the Stokes-Ramis matrices of system (0.1) to those of its reduced
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system (cf. [5, prop. 4.2]) and the Stokes multipliers of the reduced system
to the connection constants given by the singularities of the Borel transforms
F̂ [u](τ), u = 0, ..., r − 1.

In the present paper, we shall provide a new proof of connection-to-Stokes
formulæ displayed in the case r ≥ 2. This proof is quite different from the
one in [10] since it is based on a perturbation of system (0.1) and a limit
process.
In section 1, we recall the results from [10] on the r-reduced series of

which we need.
In section 2, we state the connection-to-Stokes formulæ given in [10].

These formulæ make explicit the Stokes multipliers of F̃ (x) in any anti-
Stokes direction θ of system (0.1) in terms of the connection constants given
by the singularities of the Borel transforms F̂ [u](τ)’s at the various Stokes
values generating θ.
Section 3 is devoted to the proof of the connection-to-Stokes formulæ. We

first start by the generic situation where θ is generated by just one Stokes
value (section 3.1). The case of several Stokes values is treated by means of a
regular perturbation of system (0.1). We choose the perturbation so that the
Stokes values fit the previous generic situation; then, we connect the Stokes-
Ramis matrices of system (0.1) to the perturbed Stokes-Ramis matrices by
means of a limit process (sections 3.3 and 3.4).
Throughout the article, we develop an example in order to illustrate our

different results.

Acknowledgement I would like here to thank Professor M. Loday-Richaud
for all her comments and advice which enabled me to finalize this article.

1 r-reduced series: summable-resurgence and

singularities

For the convenience of the reader, we recall in this section some results from
[10] concerning the summable-resurgence and the singularities in the Borel
plane of the r-reduced series.

Since any of the J column-blocks of F̃ (x) associated with the Jordan
structure of L (matrix of exponents of formal monodromy) can be positionned
at the first place by means of a permutation P on the columns of Ỹ (x), we
can restrict ourselves to the study of the column-block f̃(x) formed by the
first n1 (= the dimension of the first Jordan block of L) columns of F̃ (x).
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Recall that, after permutation, the new formal fundamental solution Ỹ (x)P
reads Ỹ (x)P = F̃ (x)PxP

−1LP eP
−1Q(1/x)P .

Recall that the r-reduced series of f̃(x) ∈Mn,n1(C[[x]]) are the the formal
series f̃ [u](t) ∈Mn,n1(C[[t]]), u = 0, ..., r − 1, defined by

(1.1) f̃(x) := f̃ [0](xr) + xf̃ [1](xr) + ...+ xr−1f̃ [r−1](xr)

In other words,

f̃ [u](t) =
∑

m≥0

fu+mrt
m when f̃(x) =

∑

m≥0

fmx
m

1.1 Summable-resurgence theorem

Recall that a resurgent function is an analytic function at 0 ∈ C which can be
analytically continued to an adequate Riemann surface RΩ associated with
a so-called singular support Ω ⊂ C. For a more precise definition, we refer
to [11] and [6, def. 2.1 and 2.2]. Recall that the difference between RΩ and
the universal cover of C\Ω lies in the fact that RΩ has no branch point at 0
in the first sheet.
In the linear case, the singular support Ω is a finite set containing 0.

In a more general framework, convolutions of singularities may occur what
requires to consider for Ω a lattice, possibly dense in C (cf. [3, 8, 11] for
instance).

To define the summable-resurgence, we extend the classical definition of
sectorial regions of C used in summation theory into the one of sectorial
regions of RΩ. These regions are called ν-sectorial regions (cf. [6, def. 2.3])
and are defined for all ν > 0 small enough by the data of

• an open disc Dν centered at 0 ∈ C,

• an open sector Σν with bounded opening at infinity,

• a tubular neighborhood Nν of a piecewise-C1 path γ connecting Dν to
Σν after a finite number of turns around points of Ω,

such that the distance of Dν to Ω∗ = Ω\{0} and the distance of Nν ∪ Σν to
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Ω have to be greater than ν.

Figure 1.1 - A ν-sectorial region

Definition 1.1 (Summable-resurgent functions)
A resurgent function defined on RΩ is said to be summable-resurgent with
singular support Ω when it grows at most exponentially at infinity on any
ν-sectorial region ∆ν of RΩ.

We denote by R̂essumΩ the set of summable-resurgent functions with singular
support Ω.

Definition 1.2 (Summable-resurgent series)
A formal series is said to be a summable-resurgent series with singular sup-
port Ω when its formal Borel transform belongs to R̂essumΩ .
The set of summable-resurgent series with singular support Ω is denoted
R̃essumΩ .

Recall that the formal Borel transformation B̃ is an isomorphism from
the C-differential algebra (C[[t]],+, ·, t2 d

dt
) to the C-differential algebra (δC⊕

C[[τ ]],+, ∗, τ ·) that changes ordinary product · into convolution product ∗
and changes derivation t2 d

dt
into multiplication by τ . It also changes mul-

tiplication by 1
t
into derivation d

dτ
allowing thus to extend the isomorphism

from the meromorphic series C[[t]][t−1] to C[δ(k), k ∈ N]⊕ C[[τ ]].

Under our hypothesis of “a single level equal to r” (cf. assumption (0.3)),
we proved the following result in [10]:



7

Theorem 1.3 (Summable-resurgence theorem, [10, thm. 1.2])
Let Ω = {aj,r , j = 1, ..., J} denote the set of Stokes values of system (0.1).
Then, for all u = 0, ..., r − 1,

f̃ [u](t) ∈ R̃essumΩ

1.2 Singularities in the Borel plane

For the convenience of the reader, we first recall some vocabulary used in
resurgence theory (see [3,8,11] for instance).
Denote by O the space of holomorphic germs at 0 on C and Õ the space

of holomorphic germs at 0 on the Riemann surface C̃ of the logarithm. One
calls singularity at 0 any element of the quotient space C := Õ/O 1. The
canonical quotient map Õ −→ C is denoted by “can”.
A singularity is usually denoted with a nabla. A representative of the

singularity
∇
ϕ in Õ is called a major of ∇ϕ and is often denoted by ϕ

̂

: can(ϕ

̂

) =
∇
ϕ.
Given ω 6= 0 in C, we denote by Cω the space of the singularities at ω,

i.e., the space C translated from 0 to ω. Then, a function ϕ

̂

ω is a major of a
singularity at ω if ϕ

̂
ω(ω + τ) is a major of a singularity at 0.

1.2.1 General structure of singularities

Theorem 1.3 tells us that, for all u = 0, ..., r− 1, the Borel transform f̂ [u](τ)
of f̃ [u](t) is analytic on the Riemann surface RΩ, its possible singular points
being the Stokes values of Ω including 0 out of the first sheet.
For any Stokes value ω ∈ Ω, we call front of ω the set

Fr(ω) := {qj such that aj,r = ω}

of polynomials qj(1/x)’s, the leading term of which is −ω/xr. Under our
hypothesis of a single level (cf. assumption (0.3)), Fr(ω) is a singleton:

Fr(ω) =

{
− ω
xr
+ q̇ω

(
1

x

)}

where q̇ω ≡ 0 or q̇ω(1/x) is a polynomial in 1/x of degree ≤ r − 1 and with
no constant term.

1The elements of C are also calledmicro-functions by B. Malgrange ([8]) by analogy with
hyper- and micro-functions defined by Sato, Kawai and Kashiwara in higher dimensions.
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Definition 1.4 (Singularity with monomial front)
A Stokes value ω ∈ Ω is said to be a singular point with monomial front when
q̇ω ≡ 0. The corresponding singularity is called singularity with monomial
front.

In the case of level-one systems (case r = 1), all singularities are with
monomial front and they are regular, i.e., in the Nilsson class ([2]). A more
precise description was displayed in [6, thm. 3.7].
For systems with single level r ≥ 2, the situation is much more involved

since q̇ω is not necessarily zero. This polynomial plays an essential role in
the structure of the singularities. Indeed, one can show that the singularity
at ω ∈ Ω is irregular when q̇ω 6≡ 0 and keeps being regular when q̇ω ≡ 0. For
a general description of singularities, we refer to [10, thm. 2.13].
Actually, as we shall show in sections 2 and 3, it is sufficient to know the

regular structure of the singularities with monomial front to make explicit
and to prove the connection-to-Stokes formulæ in full generality. For such
singularities, a more precise description than the one of [10, thm. 2.13] is
displayed in [10, thm. 3.5]. We recall it in theorem 1.5 below.

1.2.2 Singularities with monomial front

For all u = 0, ..., r − 1, the behavior of the function f̂ [u] at any Stokes value
ω ∈ Ω depends on the sheet of the Riemann surface RΩ where we are, i.e., it
depends on the “homotopic class of” the path γ of analytic continuation fol-
lowed from 0 (first sheet) to a neighborhood of ω. We denote by contω,γ f̂ [u]

the analytic continuation of f̂ [u] along the path γ and by
∇

f
[u]
ω,γ the corres-

ponding singularity.

From now on, given a matrix M split into blocks fitting to the Jordan
structure of L (matrix of exponents of formal monodromy), we denote by
M j;• the j-th row-block of M . So, M j;• is a nj × p-matrix when M is a
n× p-matrix (recall that nj is the size of the j-th Jordan block of L).

Theorem 1.5 (Singularities with monomial front, [10, thm. 3.5])

Fix u ∈ {0, ..., r − 1} and ω ∈ Ω\{0} a singular point of f̂ [u] with monomial
front.

For any path γ on C\Ω from 0 to a neighborhood of ω, the singularity
∇

f
[u]
ω,γ

admits a major f

̂

[u]
ω,γ of the form

f

̂

[u]j;•
ω,γ (ω + τ) = τ

λj−u

r
−1τ

Jnj
r K [u]j;•

ω,γ τ
−
Jn1
r + rem

[u]j;•
ω,γ (τ)



9

for all j = 1, ..., J with a remainder

rem[u]j;•
ω,γ (τ) =

∑

λ`;a`,r=ω

r−1∑

v=0

τ
λ`−v

r R
[u]j;•
λ`,v;ω,γ

(ln τ)

where

• K [u]j;•
ω,γ denotes a constant nj × n1-matrix such that K [u]j;•

ω,γ = 0 when
aj,r 6= ω,

• R[u]j;•
λ`,v;ω,γ

(X) denotes a polynomial matrix with summable-resurgent coef-

ficients in R̂essumΩ−ω, the columns of which are of log-degree

N [`] =





[
(n` − 1) (n` − 1) + 1 · · · (n` − 1) + (n1 − 1)

]
if λ` 6= 0

[
n` n` + 1 · · · n` + (n1 − 1)

]
if λ` = 0

The constants K [u]j;•
ω,γ and the remainders rem[u]j;•

ω,γ depend on the path
of analytic continuation γ and on the chosen determination of the argument
around ω. From now on,

• we consider a path γ+ going along the straight line [0, ω] from 0 to a
point τ close to ω and avoiding all singular points of Ω∩]0, ω] to the
right (see figure 1.2 below),

• we choose the principal determination of the variable τ around ω, say
arg(τ) ∈]− 2π, 0].

Figure 1.2

For such choices, we respectively denote
∇

f
[u]
ω?,+, K

[u]j;•
ω?,+ and rem

[u]j;•
ω?,+ for

∇

f
[u]
ω,γ,

K [u]j;•
ω,γ and rem[u]j;•

ω,γ .
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Definition 1.6 (Principal major and connection constants)

• Given u ∈ {0, ..., r − 1} and a singular point ω ∈ Ω\{0} of f̂ [u] with
monomial front, we call principal major of f̂ [u] at ω the major f

̂

[u]
ω?,+

of
∇

f
[u]
ω?,+ given in theorem 1.5. Recall that, for all j = 1, ..., J ,

(1.2) f

̂

[u]j;•
ω?,+ (ω + τ) = τ

λj−u

r
−1τ

Jnj
r K

[u]j;•
ω?,+ τ

−
Jn1
r + rem

[u]j;•
ω?,+ (τ)

• The entries of the matrices K [u]j;•
ω?,+ when aj,r = ω are called the con-

nection constants of f̂ [u] at ω. Recall that K [u]j;•
ω?,+ = 0 when aj,r 6= ω.

Note that, in practice, the matrix K [u]j;•
ω?,+ can be determined as the coef-

ficient of the monomial τ (λj−u)/r−1.

Let us end this section with an example which will be resumed throughout
the article in order to illustrate our different results.

Example 1.7 We consider the system

(1.3) x3
dY

dx
=




0 0 0
x4 − x5 2 0

x4 + x5 0 4 + x2

2


Y

and its formal fundamental solution Ỹ (x) = F̃ (x)xLeQ(1/x) where

• Q
(
1
x

)
= diag

(
0,− 1

x2
,− 2

x2

)
,

• L = diag
(
0, 0, 1

2

)
,

• F̃ (x) =




1 0 0

f̃2(x) 1 0

f̃3(x) 0 1


 is a power series such that F̃ (x) = I3 +O(x4).

System (1.3) has the unique level 2 and the set of its Stokes values is Ω =
{0, 1, 2}.
Although system (1.3) may seem a little bit involved since it admits two

aligned non-zero Stokes values, the fact that its matrix is triangular makes it
simple enough to allow the exact calculation of the connection constants and
the Stokes multipliers. For a more general system, .i.e., the matrix of which
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is no longer triangular, such exact calculations no longer hold in general.
The 2-reduced series of the first column of F̃ (x) are of the form

f̃ [0](t) =




1

f̃ 2(t)

f̃ 3(t)


 and f̃ [1](t) =




0

f̃ 5(t)

f̃ 6(t)




where the f̃ j’s are power series in t satisfying f̃ j(t) = O(t
2) (cf. (1.1)). Our

aim is the calculation of the connection constants of the f̂ [u]’s, u = 0, 1, at
the Stokes values τ = 1 and τ = 2.
By using rank reduction ([5]), we can check that the matrix

f̃(t) :=

[
f̃ [0](t)

f̃ [1](t)

]
∈M6,1(C[[t]])

is uniquely determined by the system

2t2
df̃

dt
=




0 0 0 0 0 0
t2 2 0 −t3 0 0
t2 0 4 + t

2
t3 0 0

0 0 0 −t 0 0
−t2 0 0 t2 2− t 0
t2 0 0 t2 0 4− t

2



f̃

jointly with the initial condition f̃(0) = I6,1 (first column of the identity
matrix I6 of size 6). Therefore, the formal series f̃ j’s are the unique solutions
of the equations

2t2
df̃ 2
dt

− 2f̃ 2 = t2 2t2
df̃ 5
dt

− (2− t) f̃ 5 = −t2

2t2
df̃ 3
dt

−
(
4 +

t

2

)
f̃ 3 = t

2 2t2
df̃ 6
dt

−
(
4− t

2

)
f̃ 6 = t

2

satisfying the condition f̃ j(t) = O(t2). As a result, their Borel transforms

f̂ j’s are defined, for all |τ | < 1, by

f̂ 2(τ) = −
τ

2(1− τ) f̂ 5(τ) =
1

3
(1− τ)−3/2 − 1

3

f̂ 3(τ) = −
27/4

3
(2− τ)−3/4 + 2

3
f̂ 6(τ) = −

29/4

5
(2− τ)−5/4 + 2

5
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In particular, f̂ 2 and f̂ 5 (resp. f̂ 3 and f̂ 6) have just one singular point,
located at the Stokes value τ = 1 (resp. τ = 2). More precisely, their
analytic continuation f̂+j to the right of these points are defined by

f̂+2 (1 + τ) =
τ + 1

2τ
f̂+5 (1 + τ) =

i

3
τ−3/2 − 1

3

f̂+3 (2 + τ) = −
27/4e−

3iπ
4

3
τ−3/4 +

2

3
f̂+6 (2 + τ) = −

29/4e−
5iπ
4

5
τ−5/4 +

2

5

Consequently, the connection matrices K [u]
1,+ and K

[u]
2,+ are given by

K
[0]
1,+ =




0

k
[0]2
1,+ =

1

2
0


 K

[0]
2,+ =




0
0

k
[0]3
2,+ = −

27/4

3
e−3iπ/4




K
[1]
1,+ =




0

k
[1]2
1,+ =

i

3
0


 K

[1]
2,+ =




0
0

k
[1]3
2,+ = −

29/4

5
e−5iπ/4




We end the study of system (1.3) with the calculation of its Stokes mul-
tipliers in section 2.2.1 (see example 2.3).

2 Stokes-Ramis matrices and connection con-

stants

2.1 Stokes-Ramis automorphisms

Given a non anti-Stokes direction θ ∈ R/2πZ of system (0.1) and a choice of
an argument of θ, say its principal determination θ? ∈]−2π, 0] as previously2,
we consider the sum of Ỹ in the direction θ given by

Yθ(x) = sr;θ(F̃ )(x)Y0,θ?(x)

2Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 ≤ arg(z = 1/x) < 2π of the principal determination at infinity, we
suggest to choose −2π < arg(x) ≤ 0 as principal determination about 0 as well as about
any ω at finite distance.
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where sr;θ(F̃ )(x) is the uniquely determined r-sum of F̃ at θ and where
Y0,θ?(x) is the actual analytic function Y0,θ?(x) := xLeQ(1/x) defined by the
choice arg(x) close to θ? (denoted below by arg(x) ' θ?). Recall that sr;θ(F̃ )
is an analytic function defined and 1

r
-Gevrey asymptotic to F̃ on a sector

bisected by θ with opening larger than π/r.
When θ ∈ R/2πZ is an anti-Stokes direction of system (0.1), we consider

the two lateral sums sr;θ−(F̃ ) and sr;θ+(F̃ ) respectively obtained as analytic
continuations of sr;θ−η(F̃ ) and sr;θ+η(F̃ ) to a sector with vertex 0, bisected by
θ and opening π/r. Notice that such analytic continuations exist without am-
biguity when η > 0 is small enough. We denote by Yθ− and Yθ+ the two sums
of Ỹ respectively defined for arg(x) ' θ? by Yθ−(x) := sr;θ−(F̃ )(x)Y0,θ?(x)

and Yθ+(x) := sr;θ+(F̃ )(x)Y0,θ?(x).
The two lateral sums sr;θ−(F̃ ) and sr;θ+(F̃ ) of F̃ are not analytic con-

tinuations from each other in general. This fact is the Stokes phenomenon
of system (0.1). It is characterized by the collection, for all anti-Stokes dir-
ections θ ∈ R/2πZ of system (0.1), of the automorphisms

Stθ? : Yθ+ 7−→ Yθ−

that one calls Stokes-Ramis automorphisms relative to Ỹ .

Definition 2.1 (Stokes-Ramis matrices)

One calls Stokes-Ramis matrix associated with Ỹ in the direction θ the mat-
rix of Stθ? in the basis Yθ+

3. We denote it by In + Cθ?.

Note that the matrix In + Cθ? is uniquely determined by the relation

Yθ−(x) = Yθ+(x)(In + Cθ?) for arg(x) ' θ?

2.2 Relations between Stokes multipliers and connec-
tion constants

Recall that the set Ω denotes the set of Stokes values aj,r of system (0.1).
Given a direction θ ∈ R/2πZ, we denote by

• dθ the half line issuing from 0 with argument θ,

3In the literature, a Stokes matrix has a more general meaning where one allows to
compare any two asymptotic solutions whose domains of definition overlap. According to
the custom initiated by J.-P. Ramis ([9]) in the spirit of Stokes’ work, we exclude this case
here. We consider only matrices providing the transition between the sums on each side
of a same anti-Stokes direction.
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• Ωθ := Ω∗ ∩ dθ with Ω∗ = Ω\{0} the set of non-zero Stokes values of
system (0.1) with argument θ.

The anti-Stokes directions of system (0.1) associated with f̃ are the dir-
ections of maximal decay of the exponentials eqj(1/x), qj 6≡ 0. Therefore, to
each non-zero polynomial qj −i.e., such that aj,r 6= 0 under our hypothesis
of a single level (cf. assumption (0.3))− correspond r anti-Stokes directions
θ0, θ1, ..., θr−1 ∈ R/2πZ regularly distributed around x = 0. They are given
by the arguments of the r-th roots of aj,r; then, we say that aj,r generates
the collection (θk)k=0,...,r−1

4.
Such a collection being chosen, we assume, to fix ideas, that the principal

determinations θ?k satisfy

−2π < θ?r−1 < ... < θ?1 < θ?0 ≤ 0

A Stokes value ω ∈ Ω∗ generates the collection (θk)k=0,...,r−1 if and only if
ω ∈ Ωrθ0 .

Let ρ := e−2iπ/r. For all k = 0, ..., r−1, the Stokes-Ramis matrix In+Cθ?
k

of Ỹ in the direction θk is uniquely determined by the relation

(2.1) Yθ−
k
(ρkx) = Yθ+

k
(ρkx)(In + Cθ?

k
) for arg(x) ' θ?0

We denote by cθ?
k
the first n1 columns of Cθ?

k
and we split cθ?

k
into row-blocks

cj;•θ?
k
accordingly to the Jordan structure of L (we refer to page 8 for the

notations). The nj × n1-matrix cj;•θ?
k
is zero for all k = 0, ..., r − 1 as soon

as aj,r /∈ Ωrθ0. When aj,r = ω ∈ Ωrθ0, the entries of cj;•θ?
k
are called Stokes

multipliers of f̃ associated with ω in the direction θk.

2.2.1 Case of singularities with monomial front

Recall that

• ρ = e−2iπ/r,

• the f̃ [u]’s, u = 0, ..., r − 1, denote the r-reduced series of f̃ (cf. (1.1)),

• the singularities of the Borel transforms f̂ [u]’s of the f̃ [u]’s are located
at the Stokes values of system (0.1) (cf. thm. 1.3).

4From now on, we say that a point ω 6= 0 generates a collection of r directions
α0, α1, ..., αr−1 ∈ R/2πZ regularly distribued around 0 when ω ∈ drα0 .
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We denote moreover by Lj := λjInj + Jnj the j-th Jordan block of L
(matrix of exponents of formal monodromy).

Let ω ∈ Ωrθ0 be a non-zero Stokes value of system (0.1) generating the
collection (θk)k=0,...,r−1. We assume besides, in this section, that the front of
ω is monomial.
Under this hypothesis, theorem 2.2 below tells us that the Stokes multipli-

ers of f̃ associated with ω are expressed in terms of the connection constants
at ω of the f̂ [u]’s, u = 0, ..., r − 1.

Theorem 2.2 (Connection-to-Stokes formulæ, [10, thm. 4.4])

For all j such that aj,r = ω, the data of (c
j;•
θ?
k
)k=0,...,r−1 and of (K

[u]j;•
ω?,+ )u=0,...,r−1

are equivalent and are related, for all k = 0, ..., r − 1, by the relations

(2.2) cj;•θ?
k
=

r−1∑

u=0

ρk(uInj−Lj)I
[u]j;•
ω? ρkJn1

where

(2.3) I
[u]j;•
ω? :=

∫

γ0

τ
λj−u

r
−1τ

Jnj
r K

[u]j;•
ω?,+ τ

−
Jn1
r e−τdτ

and where γ0 is a Hankel type path around the non-negative real axis R
+ with

argument from −2π to 0.

The proof given in [10, § 4.3] of theorem 2.2 is, on the one hand, based on
the relations between the Stokes-Ramis matrices of system (0.1) and those
of its reduced system ([5, prop. 4.2]) and requires, on the other hand, to
know explicitly the structure of all singularities in the Borel plane (i.e., with
monomial front or not). The proof that we shall give in section 3 is quite
different since it is based on a regular perturbation of the matrix A(x) of
system (0.1) and a limit process. As a consequence, we show in particular
that it is sufficient to know the structure of singularities with monomial front.

An expanded form providing each entry of the connection-to-Stokes for-
mulæ (2.2) is given in [10, cor. 4.6]. This can be useful for effective numerical
calculations. We recall this expanded form below in the particular case where
the matrix L of exponents of formal monodromy is diagonal: L =

⊕n
j=1 λj.

In this case, the matrices cj;•θ?
k
and K [u]j;•

ω?,+ are reduced to just one entry

which we respectively denote by cjθ?
k
and K [u]j

ω?,+.
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Since the Jordan blocks Jnj are zero for all j, identity (2.3) becomes

∫

γ0

τ
λj−u

r
−1K

[u]j
ω?,+e

−τdτ = 2iπ
e−iπ

λj−u

r

Γ
(
1− λj−u

r

)K [u]j
ω?,+

Therefore, the Stokes multipliers cjθ?
k
are related to the connection constants

K
[u]j
ω?,+ by the formulæ

(2.4) cjθ?
k
= 2iπ

r−1∑

u=0

ρk(u−λj)
e−iπ

λj−u

r

Γ
(
1− λj−u

r

)K [u]j
ω?,+ for all k = 0, ..., r − 1

Let us end this section with a numerical application of theorem 2.2.

Example 2.3 We calculate here below the Stokes multipliers of system (1.3)
by using theorem 2.2 and formula (2.4) above.
With notations as example 1.7, the anti-Stokes directions of system (1.3)

associated with the first column f̃(x) of F̃ (x) are θ0 = 0 and θ1 = −π (the
directions of maximal decay of the exponentials e−1/x

2

and e−2/x
2

). Obvi-
ously, the Stokes-Ramis matrices I3 + C0 and I3 + C−π are of the form

C0 =



0 0 0
c20 0 0
c30 0 0


 and C−π =



0 0 0
c2−π 0 0
c3−π 0 0




Indeed, f̃(x) is the unique column of F̃ (x) which is divergent.
The collection (0,−π) is generated by the two Stokes values 1 and 2

(Ω0 = {1, 2}) which are both with monomial front. Therefore, we deduce,
from theorem 2.2, that the Stokes multipliers c20 and c

2
−π (resp. c

3
0 and c

3
−π)

are expressed in terms of the connection constants at τ = 1 (resp. τ = 2) of
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f̂ [0](τ) and f̂ [1](τ). Precisely, since L is diagonal, it results from (2.4) that

(2.5)

c20 = 2iπk
[0]2
1,+ + 2iπ

e
iπ
2

Γ
(
3
2

)k[1]21,+

c30 = 2iπ
e−

iπ
4

Γ
(
3
4

)k[0]32,+ + 2iπ
e
iπ
4

Γ
(
5
4

)k[1]32,+

c2−π = 2iπk
[0]2
1,+ + 2iπe

−iπ e
iπ
2

Γ
(
3
2

)k[1]21,+

c3−π = 2iπe
iπ
2

e−
iπ
4

Γ
(
3
4

)k[0]32,+ + 2iπe
− iπ

2

e
iπ
4

Γ
(
5
4

)k[1]32,+

(recall that ρ = e−iπ since system (1.3) has the unique level 2). Hence,

(2.6)

c20 =

(
π − 4

√
π

3

)
i c30 = 2

3/4

(
4π

3Γ(3
4
)
+
16

5
Γ(3

4
)

)
i

c2−π =

(
π +

4
√
π

3

)
i c3−π = −23/4

(
4π

3Γ(3
4
)
− 16
5
Γ(3

4
)

)

2.2.2 General case

Let ω ∈ Ωrθ0 be a non-zero Stokes value of system (0.1) generating the
collection (θk)k=0,...,r−1. Recall that the front of ω reads

Fr(ω) =

{
qω

(
1

x

)
= − ω

xr
+ q̇ω

(
1

x

)}

where q̇ω ≡ 0 or q̇ω(1/x) is a polynomial in 1/x of degree ≤ r − 1 and with
no constant term (cf. section 1.2.1).
When ω is with monomial front (i.e., q̇ω ≡ 0), theorem 2.2 above allows us

to express the Stokes multipliers of f̃ associated with ω in terms of connection
constants in the Borel plane.
When ω is with non-monomial front (i.e., q̇ω 6≡ 0), a result of the same

type exists but requires to reduce ω into a Stokes value with monomial front
by means of lemma 2.4 below.

Lemma 2.4 (M. Loday-Richaud, [4])
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1. There exists, in the x-plane (Laplace plane), a change of the variable x
of the form

(2.7) x =
y

1 + α1y + ...+ αr−1yr−1
, α1, ..., αr−1 ∈ C

such that the polar part pω(1/y) of qω(1/x(y)) reads

pω

(
1

y

)
= − ω

yr

2. The Stokes-Ramis matrices of system (0.1) are preserved by the change
of variable (2.7).

Indeed, lemma 2.4 allows us to construct a new system (S) such that

• (S) has the unique level r and satisfies normalizations as system (0.1)
(cf. page 2),

• ω is a Stokes value of (S) and is with monomial front,

• systems (S) and (0.1) have the same Stokes-Ramis matrices.

Hence, applying theorem 2.2 to (S), we can again express the Stokes multi-
pliers of f̃ associated with ω in terms of connection constants in the Borel
plane. Note however that these constants are calculated from system (S) and
not from system (0.1). A numerical example was treated in detail in [10, §
5.3].

3 Proof of theorem 2.2

3.1 Case of a unique Stokes value

In this section, we assume that

(A1) the collection (θk)k is generated by a unique Stokes value ω 6= 0 of
system (0.1): Ωrθ0 = {ω},

(A2) the front of ω is monomial.

Recall that condition (A2) can always be fulfilled by means of a change of
the variable x (cf. lemma 2.4).
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Given k ∈ {0, ..., r − 1}, identity (2.1) reads

sr;θ−
k
(F̃ )(ρkx)− sr;θ+

k
(F̃ )(ρkx) = sr;θ+

k
(F̃ )(ρkx)Y0,θ?

k
(ρkx)Cθ?

k
Y −10,θ?

k
(ρkx)

for arg(x) ' θ?0. Recall that Y0,θ?k(X) is the actual analytic function Y0,θ?k(X) :=
XLeQ(1/X) defined by the choice of arg(X) ' θ?k.
Since the matrices cj;•θ?

k
are zero as soon as aj,r 6= ω, we obtain, in restriction

to the first n1 columns,

(3.1)
sr;θ−

k
(f̃)(ρkx)− sr;θ+

k
(f̃)(ρkx) = sr;θ+

k
(F̃ )(ρkx)Mk,ω?(x)e

−ω/xr

for arg(x) ' θ?0
where

(3.2) M j;•
k,ω? =





0nj×n1 if aj,r 6= ω

(ρkx)Ljcj;•θ?
k
(ρkx)−Jn1 if aj,r = ω

for all j = 1, ..., J . Recall that nj is the size of the j-th Jordan block Lj =
λjInj + Jnj of L. The matrix 0nj×n1 denotes the nj × n1-null matrix.

By definition (cf. (1.1)), the series f̃ is related to its r-reduced series f̃[u]’s
by the formula

f̃(x) =
r−1∑

u=0

xuf̃ [u](xr)

Therefore, the r-sum sr;θ(f̃) of f̃ in a direction θ is related to the 1-sums
(or Borel-Laplace sums) s1;rθ(f̃ [u])’s of the f̃ [u]’s in the direction rθ. More
precisely,

sr;θ(f̃)(x) =

r−1∑

u=0

xus1;rθ(f̃
[u])(xr)

Consequently, the left hand side of (3.1) reads, for arg(x) ' θ?0,

(3.3) sr;θ−
k
(f̃)(ρkx)− sr;θ+

k
(f̃)(ρkx) =

r−1∑

u=0

(ρkx)u
(
s1;rθ−

0
(f̃ [u])(xr)− s1;rθ+

0
(f̃ [u])(xr)

)

Recall that, when θ is not an anti-Stokes direction for f̃[u] (i.e., Ωθ = ∅),

the 1-sum s1;θ(f̃[u])(t) is given by the Borel-Laplace integral
∫

dθ

f̂[u](τ)e−τ/tdτ

in the direction θ (cf. thm. 1.3 for instance).
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When θ is an anti-Stokes direction for f̃ [u], the 1-sums s1;θ±(f̃ [u])(t) to
the left and right of θ are defined as the analytic continuations to a germ of
half-plane bisected by θ of s1;θ±η(f̃ [u])(t) as η tends to 0.

Thus, for η > 0 small enough, each term of the right hand side of (3.3)
can be seen as the Laplace integral

(3.4) s1;rθ−
0
(f̃ [u])(xr)− s1;rθ+

0
(f̃ [u])(xr) =

∫

γrθ0

f̂ [u](τ)e−τ/x
r

dτ

where γrθ0 is the path going along the straight line drθ0+η from infinity to 0
and going back to infinity along the straight line drθ0−η.
Due to the summable-resurgence of the f̃ [u]’s (cf. thm. 1.3) and hypo-

thesis (A1), the value of integral (3.4) is preserved by deforming the path
γrθ0 into a Hankel type path γ

+
rθ0
(ω) with asymptotic direction rθ0 around ω

as shown on figure 3.1 below5.
Hence, by means of a translation T from ω to 0 and using the fact that

holomorphic functions at ω contributes 0 to the integral around ω, we can
replace f̂ [u] by its principal major f

̂

[u]
ω?,+(ω + τ) at ω obtaining so, for all

u = 0, ..., r − 1,

(3.5) s1;rθ−
0
(f̃ [u])(xr)− s1;rθ+

0
(f̃ [u])(xr) = e−ω/x

r

∫

γ+
rθ0

f

̂
[u]
ω?,+(ω + τ)e

−τ/xrdτ

where, as shown on figure 3.2 below, γ+rθ0 := T (γ
+
rθ0
(ω)) is the image of γ+rθ0(ω)

by T . Recall that, since the front of ω is monomial (cf. assumption (A2)),
the major f

̂

[u]
ω?,+(ω + τ) is given by (1.2).

Figure 3.1 Figure 3.2

Then, we deduce from (3.1), (3.3) and (3.5) the new i Figure 3.1dentity

5Contrarily to formula (3.4) which only requires the 1-summability of the series f̃[u]’s,
the individual resurgence and 1-summability are not sufficient here. We do need summable-
resurgence.
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(3.6)

r−1∑

u=0

(ρkx)u
∫

γ+
rθ0

f

̂

[u]
ω?,+(ω + τ)e

−τ/xrdτ = sr;θ+
k
(F̃ )(ρkx)Mk,ω?(x)

for arg(x) ' θ?0

Lemma 3.1 ([6, prop. 4.1 and thm. 4.3])
Let x = t1/r be the r-th root of t corresponding to the choice arg(x = t1/r) '
θ?0.
Then, for all u = 0, ..., r − 1 and j = 1, ..., J such that aj,r = ω,
∫

γ+
rθ0

f

̂

[u]j;•
ω?,+ (ω + τ)e

−τ/tdτ = t
λj−u

r t
Jnj
r I

[u]j;•
ω? t−

Jn1
r +

∑

λ`;a`,r=ω

r−1∑

v=0

t
λ`−v

r
+1P

[u]j;•
λ`,v;ω?,+

(ln t)

where

• I [u]j;•ω? is the integral given in (2.3),

• P [u]j;•
λ`,v;ω?,+

(ln t) is a polynomial in ln t, the coefficients of which are 1-
sums of 1-summable series in direction rθ0 + ε (ε > 0 small enough).

Consequently, identity (3.6) becomes, for all j = 1, ..., J such that aj,r = ω
and arg(x) ' θ?0,

r−1∑

u=0


ρkuxLjI [u]j;•ω? x−Jn1 +

∑

λ`;a`,r=ω

r−1∑

v=0

xλ`−v+rQ
[u]j;•
λ`,v

(ln x)


 =

sr;θ+
k
(F̃ )(ρkx)Mk,ω?(x)

whereQ[u]j;•
λ`,v

(ln x) is a polynomial in ln x, the coefficients of which are r-sums
of r-summable series in direction θ+k . Then, equating the dominant terms,
we obtain

r−1∑

u=0

ρkuI
[u]j;•
ω? = ρkLjcj;•θ?

k
ρ−kJn1

for all j such that aj,r = ω. This ends the proof of theorem 2.2 in the case
of a unique Stokes value. �
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3.2 An example

Before to start the calculations in the case when the collection (θk) is gener-
ated by p ≥ 2 Stokes values, let us study again the system

(1.3) x3
dY

dx
= A(x)Y , A(x) =




0 0 0
x4 − x5 2 0

x4 + x5 0 4 + x2

2




together with its formal fundamental solution Ỹ (x) = F̃ (x)xLeQ(1/x) in an-
other way. We refer to examples 1.7 and 2.3 for the notations.
Recall that

• the set of Stokes values of system (1.3) is Ω = {0, 1, 2},
• the non-zero Stokes values 1 and 2 generate the collection (θ0 = 0, θ1 =
−π) of the anti-Stokes directions associated with the first column f̃(x)
of F̃ (x).

Recall also that the corresponding Stokes multipliers are given by (2.6)
and have been calculated by means of theorem 2.2 (cf. example 2.3).
The method of calculation which we shall present below is based on a

regular perturbation of system (1.3) and on the result of section 3.1. This
method will be generalized in sections 3.3 and 3.4 in order to end the proof
of theorem 2.2.

3.2.1 A perturbed system

We consider, for all ε ≥ 0, the regularly perturbed system

(3.7) x3
dY

dx
= Aε(x)Y , Aε(x) =




0 0 0
x4 − x5 2 0

x4 + x5 0 4e−2iε + x2

2




together with its formal fundamental solution Ỹ ε(x) = F̃ ε(x)xLeQ
ε(1/x) at 0

where

• Qε( 1
x
) = diag(0,− 1

x2
,−2e−2iε

x2
) (hence, system (3.7) has the unique level

2 and the set of its Stokes values is Ωε := {0, 1, 2e−2iε}),
• L = diag(0, 0, 1

2
),

• F̃ε(x) =




1 0 0

f̃ ε2(x) 1 0

f̃ ε3(x) 0 1


 is a power series in x verifying f̃εj(x) ∈ x4C[[x]].

Note that, for ε = 0, we get A0 ≡ A, Ỹ 0 ≡ Ỹ and Ω0 ≡ Ω.
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3.2.2 Action of the perturbation

The perturbation in ε acts on the anti-Stokes directions of system (1.3) as
follows: for ε > 0 small enough, the collection (θ0, θ1) splits into the distinct
three collections (0,−π), (−ε,−ε − π) and (αε, βε := αε − π) respectively
generated by the Stokes values 1, 2e−2iε and 2e−2iε − 1 so that

0 > −ε > α?ε and − π > −ε− π > β?ε
Note that the first two collections are the anti-Stokes directions associated
with the first column f̃ ε of F̃ ε and are generated by just one Stokes value of
system (3.7).
For any previous six directions ∗, we denote by I3+Sε

∗? the corresponding
Stokes-Ramis matrix associated with Ỹ ε. Clearly,

S
ε
0 =



0 0 0
σε0 0 0
0 0 0


 S

ε
−π =



0 0 0
σε−π 0 0
0 0 0




S
ε
−ε =



0 0 0
0 0 0
σε−ε 0 0


 S

ε
−ε−π =




0 0 0
0 0 0

σε−ε−π 0 0




S
ε
α?ε
= 0 S

ε
β?ε
= 0

Indeed, f̃ ε(x) is the unique column of F̃ ε(x) which is divergent.

Proposition 3.2 The Stokes-Ramis matrices I3+C0 and I3+C−π of system
(1.3) are related to the perturbed Stokes-Ramis matrices above by the formulæ

(3.8)

I3 + C0 = lim
ε→0
(I3 +S

ε
0)(I3 +S

ε
−ε)(I3 +S

ε
α?ε
)

I3 + C−π = lim
ε→0
(I3 +S

ε
−π)(I3 +S

ε
−ε−π)(I3 +S

ε
β?ε
)

In particular,

(3.9)

lim
ε→0
σε0 = c

2
0 lim

ε→0
σε−π = c

2
−π

lim
ε→0
σε−ε = c

3
0 lim

ε→0
σε−ε−π = c

3
−π

Proof. Fix δ > 0 small enough such that
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1. for all ε ∈]0, δ], the directions 0, −ε and αε (resp. −π, −ε − π and
βε) are the only anti-Stokes directions of system (3.7) with principal
determinations in [α?ε, 0] (resp. [β

?
ε ,−π]),

2. the direction α?δ (resp. β
?
δ ) is close enough to 0 (resp. −π) in order that

the two sectors with vertex 0, opening π/2 and respectively bisected
by 0 and αδ (resp. −π and βδ) overlap.

Then, the sums Y ε
α−ε
and Y ε0+ , on the one hand, and the sums Y

ε
β−ε
and Y ε

−π+ ,
on the other hand, are related, for arg(x) ' 0, by the formulæ

(3.10)
Y ε
α−ε
(x) = Y ε0+(x)(I3 +S

ε
0)(I3 +S

ε
−ε)(I3 +S

ε
α?ε
)

Y ε
β−ε
(−x) = Y ε

−π+(−x)(I3 +Sε
−π)(I3 +S

ε
−ε−π)(I3 +S

ε
β?ε
)

Otherwise, let us denote by f̃ ε[u](t), u = 0, 1, the 2-reduced series of f̃ ε(x).
Similar calculations to those of example 1.7 show that their Borel transforms
f̂ ε[u](τ)’s are defined, for all |τ | < 1, by

f̂ ε[0](τ) =




0

− τ

2(1− τ)

−2
7/4

3
e−3iε/2(2e−2iε − τ)−3/4 + 2

3




and

f̂ ε[1](τ) =




0

1

3
(1− τ)−3/2 − 1

3

−2
9/4

5
e−5iε/2(2e−2iε − τ)−5/4 + 2

5




In particular,
lim
ε→0

f̂ ε[u](τ) = f̂ [u](τ)

for all u = 0, 1 and τ /∈ ⋃ε∈[0,δ]Ω
ε. Recall that the f̂ [u]’s denote the Borel

transforms of the 2-reduced series of the first column f̃(x) of F̃ (x) (cf. ex-
ample 1.7 for more precisions). The last two columns of F̃ ε(x) and F̃ (x)
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being trivial, we can then check, by using Lebesgue dominated convergence
theorem, that, for arg(x) ' 0,

lim
ε→0
sr;0+(F̃

ε)(x) = sr;0+(F̃ )(x) lim
ε→0
sr;−π+(F̃

ε)(−x) = sr;−π+(F̃ )(−x)

lim
ε→0
sr;α−ε (F̃

ε)(x) = sr;0−(F̃ )(x) lim
ε→0
sr;β−ε (F̃

ε)(−x) = sr;−π−(F̃ )(−x)

obtaining so, for arg(x) ' 0,

lim
ε→0
Y ε0+(x) = Y0+(x) lim

ε→0
Y ε
−π+(−x) = Y−π+(−x)

lim
ε→0
Y ε
α−ε
(x) = Y0−(x) lim

ε→0
Y ε
β−ε
(−x) = Y−π−(−x)

Indeed, lim
ε→0
αε = 0 and lim

ε→0
βε = −π. Therefore, when ε goes to 0, identities

(3.10) become, for arg(x) ' 0,

lim
ε→0
(I3 +S

ε
0)(I3 +S

ε
−ε)(I3 +S

ε
α?ε
) = lim

ε→0
Y ε0+(x)

−1Y ε
α−ε
(x)

= Y0+(x)
−1Y0−(x)

= I3 + C0

and

lim
ε→0
(I3 +S

ε
−π)(I3 +S

ε
−ε−π)(I3 +S

ε
β?ε
) = lim

ε→0
Y ε−π+(−x)−1Y εβ−ε (−x)

= Y−π+(−x)−1Y−π−(−x)
= I3 + C−π

Hence the result.

3.2.3 Perturbed Stokes multipliers vs Stokes multipliers

We are left to calculate the perturbed Stokes multipliers defined in (3.9). As
we previously said, for ε > 0 small enough, the two collections of anti-Stokes
directions (0,−π) and (−ε,−ε − π) associated with f̃ ε are generated by
just one Stokes value of system (3.7), respectively 1 and 2e−2iε. Since these
two points are both with monomial front, section 3.1 applies: the perturbed
Stokes multipliers σε0 and σ

ε
−π (resp. σ

ε
−ε and σ

ε
−ε−π) are expressed in terms

of the connection constants at τ = 1 (resp. τ = 2e−2iε) of the f̂ ε[u](τ)’s,
u = 0, 1. Similar calculations to those detailed in examples 1.7 and 2.3 give
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us

(3.11)

σε0 = 2iπk
ε[0]2
1,+ + 2iπ

e
iπ
2

Γ
(
3
2

)kε[1]21,+

σε−ε = 2iπ
e−

iπ
4

Γ
(
3
4

)kε[0]3
2e−2iε,+

+ 2iπ
e
iπ
4

Γ
(
5
4

)kε[1]3
2e−2iε,+

σε−π = 2iπk
ε[0]2
1,+ + 2iπe−iπ

e
iπ
2

Γ
(
3
2

)kε[1]21,+

σε−ε−π = 2iπe
iπ
2

e−
iπ
4

Γ
(
3
4

)kε[0]3
2e−2iε,+

+ 2iπe−
iπ
2

e
iπ
4

Γ
(
5
4

)kε[1]3
2e−2iε,+

where

(3.12)

k
ε[0]2
1,+ =

1

2
k
ε[0]3

2e−2iε,+
= −2

7/4

3
e−3iε/2e−3iπ/4

k
ε[1]2
1,+ =

i

3
k
ε[1]3

2e−2iε,+
= −2

9/4

5
e−5iε/2e−5iπ/4

We obtain

σε0 =

(
π − 4

√
π

3

)
i σε−ε = 2

3/4

(
4πe−3iε/2

3Γ(3
4
)
+
16

5
Γ(3

4
)e−5iε/2

)
i

σε−π =

(
π +

4
√
π

3

)
i σε−ε−π = −23/4

(
4πe−3iε/2

3Γ(3
4
)
− 16
5
Γ(3

4
)e−5iε/2

)

Note that, letting ε tend to 0, these relations reduce to relations (3.9).

Remark 3.3 When ε goes to 0, identities (3.12) become

(3.13)

lim
ε→0
k
ε[0]2
1,+ = k

[0]2
1,+ lim

ε→0
k
ε[0]3

2e−2iε,+
= k

[0]3
2,+

lim
ε→0
k
ε[1]2
1,+ = k

[1]2
1,+ lim

ε→0
k
ε[1]3

2e−2iε,+
= k

[1]3
2,+

where k[u]21,+ and k
[u]3
2,+ , u = 0, 1, respectively denote the connection constants

of the f̂ [u]’s at τ = 1 and τ = 2 (cf. example 1.7).
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Remark 3.4 Obviously, identities (3.9), (3.11) and (3.13) imply identities
(2.5), i.e., theorem 2.2 in restriction to system (1.3). Actually, as we shall
show below, this kind of identities is the core of the proof of theorem 2.2
when the collection (θk) is generated by p ≥ 2 Stokes values.

3.3 Case of two Stokes values

We assume in this section that the collection (θk)k of anti-Stokes directions
associated with f̃(x) is generated by just two Stokes values ω1 and ω2 satis-
fying |ω1| < |ω2|.
Recall that we must prove identity (2.2) when the front of ω1 (resp. ω2)

is monomial. We proceed similarly as in section 3.2 by considering a regular
perturbation of system (0.1).

3.3.1 A perturbed system

According to the normalization of Ỹ (x) (cf. page 2), the matrix A(x) of
system (0.1) reads

A(x) =
J⊕

j=1

[(
r∑

k=1

kaj,kx
r−k

)
Inj + x

rLj

]
+B(x)

where Lj := λjInj + Jnj denotes the j-th Jordan block of the matrix L
of exponents of formal monodromy and where B(x) is analytic at the origin
0 ∈ C. More precisely, split B(x) = [Bj;`(x)] into blocks fitting to the Jordan
structure of L. Then,

(3.14) Bj;`(x) =

{
O(xr) if aj,r 6= a`,r
O(x2r) if aj,r = a`,r

For all ε ≥ 0, we define the regularly perturbed system

(3.15) xr+1
dY

dx
= Aε(x)Y

with

Aε(x) =
J⊕

j=1

[(
raεj,r +

r−1∑

k=1

kaj,kx
r−k

)
Inj + x

rLj

]
+B(x)

where, for all j = 1, ..., J ,

aεj,r =

{
aj,r if aj,r 6= ω2
ω2e

−riε if aj,r = ω2
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For all ε ≥ 0, system (3.15) has for formal fundamental solution the
matrix Ỹ ε(x) = F̃ ε(x)xLeQ

ε(1/x) where

• F̃ ε(x) ∈Mn(C[[x]]) is a power series in x verifying same normalization
as F̃ (x): F̃ ε(x) = In +O(xr),

• L is the matrix of exponents of formal monodromy of system (0.1),

• Qε(1/x) = ⊕J
j=1 q

ε
j (1/x)Inj is the diagonal matrix, the polynomial

entries qεj of which are defined, for all j, by




qεj ≡ qj if aj,r 6= ω2

qεj

(
1

x

)
= −ω2e

−riε

xr
+ q̇j

(
1

x

)
if aj,r = ω2

Note that the following condition holds for ε > 0 small enough:

(C1) System (3.15) has the unique level r and satisfies normalizations as
system (0.1); the set Ωε of its Stokes values is deduced from the set Ω
of Stokes values of system (0.1) by replacing ω2 by ω2e−riε.

Note also that, for ε = 0, we get A0 ≡ A, Ỹ 0 ≡ Ỹ and Ω0 ≡ Ω.

Let us now fix δ > 0 such that condition (C1) above be verified for all
ε ∈ [0, δ].

For all ε ∈ [0, δ], we denote as previously by
• f̃ ε(x) the first n1 columns of F̃ ε(x),

• f̃ ε[u](t), u = 0, ..., r − 1, the r-reduced series of f̃ ε(x) (cf. (1.1)).
Proposition 3.5 Let Ωε denote the set of Stokes values of system (3.15).
Then, for all ε ∈ [0, δ] and u = 0, ..., r − 1,

f̃ ε[u](t) ∈ R̃essumΩε

Moreover, the singularity
∇

f
ε[u]
ω?,+ at any Stokes value ω ∈ Ωε\{0} with monomial

front is given by (1.2).

Proposition 3.5 is straightforward from condition (C1) and theorem 1.3.
However, in view to study the dependence of the Borel transforms f̂ ε[u](τ)
of f̃ ε[u](t) in the parameter ε, we need to give again a complete proof of the
summable-resurgence of the f̃ ε[u](t)’s. We proceed as in [10] by following
Écalle’s method by regular perturbation and majorant series quoted in [3].
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3.3.2 Proof of the summable-resurgence for the perturbed system

Fix ε ∈ [0, δ]. By definition of rank reduction, the vector

f̃ ε(t) :=



f̃ ε[0](t)
...

f̃ ε[r−1](t)


 ∈Mrn,n1(C[[t]])

is a column-block of a formal fundamental solution of the reduced system of
(3.15) ([5]). Hence, its homological system provides a system characterizing
the f̃ ε[u](t)’s.
Denote respectively by Aε[u](t) and B[u](t) the r-reduced series of Aε(x)

and B(x). Then ([5]), f̃ ε(t) is uniquely determined by the system

(3.16) rt2
df

dt
= Aε(t)f − tfJn1

jointly with the initial condition f̃ ε(0) = Irn,n1 (the first n1 columns of the
identity matrix of size rn). The matrix Aε(t) is the matrix of size rn × rn
defined by

Aε(t) =




Aε[0](t) tAε[r−1](t) · · · · · · tAε[1](t)

Aε[1](t) Aε[0](t)
. . .

...
...

. . . . . . . . .
...

...
. . . Aε[0](t) tAε[r−1](t)

Aε[r−1](t) · · · · · · Aε[1](t) Aε[0](t)



−

r−1⊕

u=0

utIn

where

Aε[0](t) =
J⊕

j=1

(
raεj,rInj + tLj

)
+B[0](t)

and, for all u = 1, ..., r − 1,

Aε[u](t) =

J⊕

j=1

(r − u)aj,r−uInj +B[u](t)

Moreover, according to (3.14), the series B[u](t) = [B[u]j;`(t)] ∈ Mn(C{t})
satisfy, for all u = 0, ..., r − 1, the condition

(3.17) B[u]j;`(t) =

{
O(t) if aj,r 6= a`,r
O(t2) if aj,r = a`,r
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Note that the definition of the matrix Aε(x) of system (3.15) implies that
only the matrix Aε[0](t) depends on the parameter ε.

Following J. Écalle ([3]), we consider, instead of system (3.16), the regu-
larly perturbed system

(3.18) rt2
df

dt
= Aε(t, α)f − tfJn1

obtained by substituting αB[u] for B[u] for all u = 0, ..., r − 1 in the matrix
Aε(t) of system (3.16).
An identification of equal powers in α allows us to state that system (3.18)

admits a unique formal solution of the form

f̃ ε(t, α) =
∑

m≥0

f̃ εm(t)α
m

satisfying f̃ ε0(t) = Irn,n1 and f̃
ε
m(t) ∈ Mrn,n1(C[[t]]) for all m ≥ 1. More

precisely, split f̃ εm(t) =
[
f̃
ε[0]
m (t), ..., f̃

ε[r−1]
m (t)

]
into r blocks of size n × n1

like f̃ ε(t) and denote by

f̃ εm,j(t) :=



f̃
ε[0]j;•
m (t)
...

f̃
ε[r−1]j;•
m (t)


 for all j = 1, ..., J

the matrix of size rnj×n1 formed by the j-th row-blocks of the f̃ ε[u]m (t)’s (we
refer to page 8 for the notations).

Lemma 3.6 For all m ≥ 1, the components f̃ ε
m,j(t) ∈ Mrnj ,n1(C[[t]]) of

f̃ ε
m(t) are uniquely determined, for all j = 1, ..., J , as formal solutions of

systems

(3.19) rt2
df̃ εm,j
dt

−Aε
jf̃

ε
m,j − tAjf̃

ε
m,j = Bj(t)f̃

ε
m−1 − tf̃ εm,jJn1

where

Bj(t) :=




B[0]j;•(t) tB[r−1]j;•(t) · · · · · · tB[1]j;•(t)

B[1]j;•(t) B[0]j;•(t)
. . .

...
...

. . .
. . .

. . .
...

...
. . . B[0]j;•(t) tB[r−1]j;•(t)

B[r−1]j;•(t) · · · · · · B[1]j;•(t) B[0]j;•(t)




is a matrix of size rnj × rn with analytic entries at 0 ∈ C and where the
matrices Aε

j and Aj are the constant rnj × rnj-matrices defined by
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• Aε
j :=




raεj,r 0 · · · 0

(r − 1)aj,r−1 . . .
. . .

...
...

. . . . . . 0
aj,1 · · · (r − 1)aj,r−1 raεj,r


⊗ Inj

• Aj :=




0 aj,1 · · · (r − 1)aj,r−1
...
. . .

. . .
...

...
. . . aj,1

0 · · · · · · 0


⊗ Inj −

r−1⊕

u=0

(Lj − uInj)

Remark 3.7 When aεj,r 6= 0, the matrix Aε
j is invertible. Moreover, since

system (3.15) has the unique level r, assumption (0.3) implies that Aε
j = 0

and

Aj =
r−1⊕

u=0

(
Lj − uInj

)

as soon as aεj,r = 0. Note also that only the matrix A
ε
j depends on ε.

Relations (3.19) and normalizations (3.17) show in particular that

f̃ ε2m−1,j(t) = O(t
m) and f̃ ε2m,j(t) =

{
O(tm) if aj,r = 0
O(tm+1) if aj,r 6= 0

for all m ≥ 1 and j = 1, ..., J . As a result, the series f̃ ε(t, α) can be
rewritten as a series in t with polynomial coefficients in α. Consequently,
f̃ ε(t) = f̃ ε(t, 1) (by unicity of f̃ ε(t) and f̃ ε(t, 1)) and, for all α, the series
f̃ ε(t, α) admits a formal Borel transform ϕε(τ, α) with respect to t of the
form

ϕε(τ, α) = δIrn,n1 +
∑

m≥1

ϕεm(τ)α
m

where ϕεm(τ) denotes, for all m ≥ 1, the Borel transform of f̃ ε
m(t). In

particular, for α = 1, lemma 3.8 below tells us that the Borel transform
f̂ε(τ) = ϕε(τ, 1) of f̃ε(t) can be interpreting as a series of resurgent functions
on RΩε.
As previously, we split ϕεm(τ) =

[
ϕ
ε[0]
m (τ), ...,ϕ

ε[r−1]
m (τ)

]
into r blocks of

size n× n1 and we denote by

ϕεm,j(τ) :=



ϕ
ε[0]j;•
m (τ)
...

ϕ
ε[r−1]j;•
m (τ)


 for all j = 1, ..., J
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the matrix of size rnj × n1 formed by the j-th row-blocks of the ϕε[u]
m (τ)’s.

Since ϕεm,j(τ) is the Borel transform of f̃
ε
m,j(t), identities (3.19) provide iden-

tities satisfied by the ϕεm,j(τ)’s. More precisely, we can check the following
result:

Lemma 3.8 (Decomposition of the Borel transform f̂ ε(τ))

The Borel transform f̂ ε(τ) of f̃ ε(t) reads in the form

f̂ ε(τ) =
∑

m≥1

ϕεm(τ) with ϕεm(τ) ∈Mrn,n1(C[[τ ]]) for all m ≥ 1

Moreover, for all m ≥ 1, the components ϕεm,j(τ) ∈Mrnj ,n1(C[[τ ]]) of ϕ
ε
m(τ)

are iteratively determined, for all j = 1, ..., J , as solutions of systems

(3.20) Rεj
dϕεm,j
dτ

= Sjϕ
ε
m,j +

d

dτ

(
B̂j ∗ϕεm−1

)
−ϕεm,jJn1

where ϕε0 = δIrn,n1 and where

• Rεj =




r(τ − aεj,r) 0 · · · 0

(r − 1)aj,r−1 . . . . . .
...

...
. . .

. . . 0
aj,1 · · · (r − 1)aj,r−1 r(τ − aεj,r)


⊗ Inj ,

• Sj =




0 aj,1 · · · (r − 1)aj,r−1
...
. . .

. . .
...

...
. . . aj,1

0 · · · · · · 0


⊗ Inj −

r−1⊕

u=0

(Lj − (u+ r)Inj).

In particular, the ϕεm(τ), m ≥ 1, are resurgent functions defined on RΩε.

The resurgence of the ϕεm’s is due to the fact that the only singularities
of systems (3.20) are the Stokes values aεj,r ∈ Ωε. Indeed, the homogeneous
equation associated with (3.20) is singular at aεj,r. Moreover, since Bj(t)

is analytic at 0, its Borel transform B̂j(τ) is an entire function on C and,
consequently, the singularities of the convolution product B̂j∗ϕεm−1 are those
of ϕεm−1.

We are left to prove (cf. def 1.2) that

(a) f̂ ε(τ) is analytic at 0 and can be analytically continued to RΩε (we
keep denoting by f̂ ε(τ) the analytic continuation),
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(b) f̂ ε(τ) grows at most exponentially on any ν-sectorial region ∆ε
ν of RΩε.

These properties are proved below by using a technique of majorant series
satisfying a convenient system. There exists, of course, many possible ma-
jorant system. Here, we make explicit a possible one.

Let g =
[
g [0], ..., g [r−1]

]
be a matrix of size rn×n1 split as previously into

r blocks of size n× n1 and, for all j = 1, ..., J , let

gj :=



g [0]j;•

...
g [r−1]j;•




be the matrix of size rnj × n1 formed by the j-th row-blocks of the g [u]’s.
When g = Irn,n1, we denote by I

j
rn,n1

the matrix gj.
Fix ν > 0 and consider, for j = 1, ..., J , the perturbed linear system

(3.21)



Cj(gj − Ijrn,n1) = (Ir ⊗ Jnj)gj + gjJn1 − 2Ijrn,n1Jn1 + α
|Bj| (t)
t

g

if aεj,r = 0

(Rj − tSj)gj = tgjJn1 + α |Bj| (t)g
if aεj,r 6= 0

where

• |Bj| (t) denotes the series Bj(t) in which the coefficients of the powers
of t are replaced by their module,

• Cj is an invertible constant rnj × rnj-diagonal matrix with positive
entries,

• Rj and Sj are the constant rnj × rnj-matrices defined by

Rj :=




ν 0 · · · 0

− |aj,r−1| . . . . . .
...

...
. . . . . . 0

− |aj,1| · · · − |aj,r−1| ν


⊗ Inj

and

Sj :=




0 |aj,1| · · · |aj,r−1|
...

. . . . . .
...

...
. . . |aj,1|

0 · · · · · · 0


⊗ Inj +

r−1⊕

u=0

(∣∣∣∣
λj
r
− u
r
− 1
∣∣∣∣ Inj + Jnj

)
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Note that, for now, the constants Cj are just arbitrary. They are to be
adequatly chosen below (cf. lemma 3.8).

Note also that system (3.21) does not depend on the parameter ε. Ac-
tually, system (3.21) is the majorant system that we used in [10] to prove
summable-resurgent theorem for f̃(t) (thm. 1.3). In particular, we showed
that the Borel transformed system of system (3.21) admits, for α = 1, a
solution of the form

ĝ(τ) = δIrn,n1 +
∑

m≥1

Φm(τ) ∈Mrn,n1(C[[τ ]])

which is entire on all C with exponential growth at infinity. Moreover, for
all m ≥ 1, the Φm(τ)’s are also entire functions on all C with exponential
growth at infinity. More precisely, using notations as above, the components
Φm,j(τ) of Φm(τ), m ≥ 1 and j = 1, ..., J , are iteratively determined from
Φ0 = δIrn,n1 as solutions of the following systems:

• Case aεj,r = 0:

CjΦm,j = (Ir ⊗ Jnj)Φm,j +Φm,jJn1 +
d

dτ

(
|̂Bj| ∗Φm−1

)

• Case aεj,r 6= 0:

Rj
dΦm,j
dτ

= SjΦm,j +Φm,jJn1 +
d

dτ

(
|̂Bj| ∗Φm−1

)

In particular, the series Φm(τ) have non-negative coefficients.

Since only the Stokes values aεj,r ∈ Ωε depend on the parameter ε in
system (3.15), the calculations detailed in [10, § 3.2.2] apply allowing us to
make explicit a convenient majorant series of f̂ ε(τ) (cf. lemma 3.9 below).

Recall that, according to the definition of ∆ε
ν (cf. page 5), there exists

a constant K > 0 so that, for all τ ∈ ∆ε
ν , there is a piecewise-C1-path γτ

contained in ∆ε
ν and parametrized by arc length from 0 to τ such that the

arc length sη of all η ∈ γτ satisfies |η| ≤ sη ≤ K |η|; |η| denotes the modulus
of the projection of η in C ([6, lem. 2.4]). Besides, since points in ∆ε

ν have
bounded arguments, there also exists a constant a > 0 such that |arg(τ)| ≤ a
for all τ ∈ ∆ε

ν .
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Lemma 3.9 (Majorant series, [10])
Let K and a be two constants as above.
Let

Cj =
1

K max
1≤j≤J

exp(2a |Imλj|)

r−1⊕

u=0

(
1− Re

(
λj
r
− u
r

))
Inj

for all j = 1, ..., J .
Then, for all m ≥ 1, τ ∈ ∆ε

ν and j = 1, ..., J , the following inequalities hold:

(3.22)
∣∣ϕεm,j(τ)

∣∣ ≤ Φm,j(sτ ) ≤ Φm,j(K |τ |)

In particular, the series ĝ(K |τ |) =
∑

m≥1

Φm(K |τ |) is a majorant series of

f̂ ε(τ).

Recall that the second inequality of (3.22) is due to the fact that the
series Φm(τ) has non-negative coefficients; the first inequality is proved by
using Grönwall lemma.
Since ĝ is well defined on∆ε

ν with exponential growth at infinity, the same
property holds for f̂ε(τ) which achieves the proof of the summable-resurgence
of f̂ ε(τ).

Remark 3.10 Although this proof is similar to the one in [10], it has its
own interest. Indeed, it allows to deal with a particular case of regularly
perturbed systems with a single level.

Remark 3.11 The majorant series ĝ(K|τ |) does not depend on the para-
meter ε. This point, which is crucial in the proof of the connection-to-Stokes
formulæ that we present in this article, was obtained because the parameter
ε is only related to the Stokes values of Ωε. Of course, for a more general
perturbation, this fact no longer holds in general.

3.3.3 Dependence of the Borel transforms f̂ ε[u](τ) in ε

Let Wδ :=
⋃
ε∈[0,δ]Ω

ε denote the set of Stokes values of systems (3.15) for all
ε ∈ [0, δ]. By definition, Wδ is the union of the set Ω\{ω2} of Stokes values
aj,r 6= ω2 and the circle arc A(ω2, δ) := {ω2e−riε , ε ∈ [0, δ]} of length δ. Note
that, according to condition (C1), the sets Ω\{ω2} and A(ω2, δ) are disjoints.
Definition 3.12 (ν-generalized sectors of C)
Let ν > 0 be a positive number smaller than half the minimal distance between
the elements of Ω\{ω2} and smaller than the distance between the closed sets
Ω\{ω2} and A(ω2, δ). We call ν-generalized sectors of C associated with Wδ

any open domain Σν ⊂ C satisfying
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1. Σν is of the form

{x ∈ C ; α < arg(x) < β and |x− w| ≥ ν for all w ∈ Wδ\{0}}

with α, β ∈]− 2π, 0],

2. Σν is simply connected.

We are now able to state the result in view in this section.

Proposition 3.13 (Dependence of the Borel transforms f̂ ε[u](τ))
Fix u ∈ {0, .., r − 1}.

1. Given ν > 0 as in definition 3.12, there exists an entire function ψ[u]

on all C growing at most exponentially at infinity such that, for any
ν-generalized sectors Σν of C associated with Wδ, there is a constant
c ≥ 1 such that

∣∣∣f̂ ε[u](τ)
∣∣∣ ≤ ψ[u](c |τ |) for all τ ∈ Σν and ε ∈ [0, δ]

2. For all τ /∈ Wδ, the function ε 7−→ f̂ ε[u](τ) is continuous on [0, δ].
In particular,

lim
ε→0

f̂ ε[u](τ) = f̂ [u](τ)

Recall that the f̂ ε[u](τ)’s, u = 0, ..., r−1, are the components of the Borel
transform f̂ ε(τ) of f̃ ε(t):

f̂ ε(τ) =



f̂ ε[0](τ)
...

f̂ ε[r−1](τ)




Proof. The proof of proposition 3.13 is derived from the proof of summable-
resurgence of the f̃ ε[u](t)’s given above.
Point (1) is straightforward from lemma 3.9. Indeed, Σν can be seen as a
ν-sectorial region ∆ε

ν of RΩε for any ε ∈ [0, δ] and the majorant series of
f̂ ε(τ) does not depend on ε.
Otherwise, lemma 3.8 shows that f̂ε(τ) reads as a series f̂ε(τ) =

∑
m≥1ϕ

ε
m(τ)

where, for all m ≥ 1, the terms ϕεm(τ) are analytic functions on all RΩε and
are solutions of systems (3.20) which continuously depend on ε. In particular,
for all τ /∈ Wδ and m ≥ 1, the function ε 7−→ ϕεm(τ) is continuous on
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[0, δ]. Thus, by applying again lemma 3.9, the series
∑

m≥1ϕ
ε
m(τ) is, for all

τ /∈ Wδ, a series of continuous functions in ε which normally converges on
[0, δ]. Hence, point (2) and proposition 3.13.

Note that the fact that the majorant series given in lemma 3.9 does not
depend on the parameter ε is crucial.

Proposition 3.13 above can be extended to the other columns of F̃ ε. Let
us denote by

• F̃ ε[u], u = 0, ..., r − 1, the r-reduced series of F̃ ε,

• Ωε := {α − β, α, β ∈ Ωε} the set of Stokes values of the homological
system associated with (3.15),

• W δ :=
⋃
ε∈[0,δ]Ω

ε the set of Stokes values of the homological systems
of (3.15) for all ε ∈ [0, δ].

SinceW δ is, like Wδ, the union of a finite set of points and a finite number
of circle arcs of length δ 6, we can extend definition 3.12 into the one of ν-
generalized sectors of C associated with W δ allowing so to state the following
result:

Corollary 3.14 (Dependence of the Borel transforms F̂ ε[u](τ))
Fix u = 0, ..., r − 1.

1. Given ν > 0 small enough, there exists an entire function Ψ[u] on
all C growing at most exponentially at infinity such that, for any ν-
generalized sectors Σν of C associated with W δ, there is a constant
C ≥ 1 such that

∣∣∣F̂ ε[u](τ)
∣∣∣ ≤ Ψ[u](C |τ |) for all τ ∈ Σν and ε ∈ [0, δ]

2. For all τ /∈W δ, the function ε 7−→ F̂ ε[u](τ) is continuous on [0, δ]. In
particular,

lim
ε→0

F̂ ε[u](τ) = F̂ [u](τ)

6More precisely, W δ is the union of the set of Stokes values aj,r − a`,r with a∗,r 6= ω2
and the circle arcs {±(ω2e−riε − a`,r) , ε ∈ [0, δ] and a`,r 6= ω2}.
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3.3.4 Perturbed Stokes-Ramis matrices vs Stokes-Ramis matrices

Recall that

• Ω denotes the set of Stokes values of system (0.1),

• Ωrθ0 := Ω∗ ∩ drθ0 denotes the set of non-zero Stokes values of system
(0.1) generating the collection (θk)k=0,...,r−1 of anti-Stokes direction as-
sociated with f̃(x).

Recall also that we suppose in section 3.3 that Ωrθ0 = {ω1, ω2} with |ω1| <
|ω2|.
In addition to these notations, we denote by

• Ω := {α − β ; α, β ∈ Ω} the set of Stokes values of the homological
system of (0.1),

• Ωrθ0 := Ω
∗ ∩ drθ0 the set of non-zero Stokes values of the homological

system of (0.1) generating the collection (θk)k=0,...,r−1.

Note that the Stokes values of Ωrθ0 are the three Stokes values ω1, ω2 and
ω2 − ω1 and possibly the Stokes values of the form

• ωj − ak,r with j = 1, 2 and arg(ak,r) = rθ0 − π,

• α− β with α, β /∈ Ωrθ0 = {ω1, ω2}.

We can now study the action of the perturbation in ε on the collection
(θk).

Lemma 3.15 (Action of the perturbation on (θk))
For ε > 0 small enough, the collection (θk)k=0,...,r−1 splits into the following
collections of anti-Stokes directions of system (3.15):

1. the three collections (θk)k=0,...,r−1, (θk − ε)k=0,...,r−1 and (θk,ε)k=0,...,r−1
respectively generated by the Stokes values ω1

7, ω2 and ω2e
−2iε − ω1,

2. the possibly collections which are generated by the Stokes values of the
form ω2e

−2iε − ak,r with arg(ak,r) = rθ0 − π.
7Note the collection (θk)k=0,...,r−1 can be also generated by the Stokes values of the

form ω1−ak,r with arg(ak,r) = rθ0−π or of the form α−β with α, β /∈ Ωrθ0 if they exist.
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When they exist, we denote the collections of (2) by (θk,s,ε)k=0,...,r−1, s =
1, ..., p, so that

(3.23) θ?k > θ
?
k,1,ε > ... > θ

?
k,p,ε > (θk − ε)? > θ?k,ε

for all k = 0, ..., r − 1. Note that only (θk) and (θk − ε) are collections of
anti-Stokes directions associated with f̃ ε(x).
For any directions ∗ above, we denote by In + Sε

∗? the corresponding
Stokes-Ramis matrix associated with Ỹ ε (the formal fundamental solution of
system (3.15) given page 28). As usually, we split Sε

∗? := [S
ε j;`
∗? ] into blocks

S
ε j;`
∗? of size nj×n` fitting to the Jordan structure of L (matrix of exponents

of formal monodromy). Recall that nj is the size of the j-th Jordan block
Lj = λjInj + Jnj of L.

Lemma 3.16 (Perturbed Stokes-Ramis matrices)
For all k = 0, ..., r − 1,

• the block Sε j;1
θ?
k

is zero as soon as aj,r 6= ω1,

• the `-th column-block Sε •;`
θ?
k

of Sε
θ?
k
is zero as soon as a`,r = ω2,

• the block Sε j;`
(θk−ε)?

is zero as soon as aj,r 6= ω2 or ` 6= 1,

• the block Sε j;`
θ?
k,ε

is zero as soon as aj,r 6= ω2 or a`,r 6= ω1

• when the direction θk,s,ε exists, the `-th column-block Sε •;`
θ?
k,s,ε

of Sε
θ?
k,s,ε

is

zero as soon as ` = 1 or a`,r = ω2.

Proposition 3.17 below makes explicit the Stokes-Ramis matrices In+Cθ?
k

of system (0.1) in terms of the perturbed Stokes-Ramis matrices above.

Proposition 3.17 (Perturbed vs initial Stokes-Ramis matrices)
Fix k ∈ {0, ..., r − 1}.
Let M ε

k be the matrix defined by

M ε
k := (In +S

ε
θ?
k,1,ε
)(In +S

ε
θ?
k,2,ε
)...(In +S

ε
θ?
k,p,ε
)

when the collections (θk,s,ε), s = 1, ..., p, exist and M
ε
k := In otherwise.

Then,

(3.24) In + Cθ?
k
= lim

ε→0
(In +S

ε
θ?
k
)M ε

k(In +S
ε
(θk−ε)?

)(In +S
ε
θ?
k,ε
)
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In particular, for aj,r ∈ {ω1, ω2}, the Stokes multipliers cj;•θ?
k
of f̃ satisfy

(3.25)

cj;•θ?
k
= lim

ε→0
S
ε j;1
θ?
k

if aj,r = ω1

cj;•θ?
k
= lim

ε→0
S
ε j;1
(θk−ε)?

if aj,r = ω2

Proof. ? Relations (3.25) are straightforward from relations (3.24) and
lemma 3.16.

? Prove identity (3.24). In addition to condition (C1), we can suppose,
after possibly replacing δ by a smaller value δ′ ∈]0, δ], that the two following
conditions are satisfied:

(C2) for all ε ∈]0, δ] and k = 0, ..., r − 1, the directions θk, θk − ε, θk,ε and
θk,s,ε, s = 1, ..., p, are the only anti-Stokes directions of system (3.15)
with principal determinations in [θ?k,ε, θ

?
k],

(C3) for all k = 0, ..., r−1, the direction θ?k,δ is close enough to θ?k in order that
the two sectors with vertex 0, opening π/r and respectively bisected by
θk and θk,δ overlap.

Then, according to (3.23), the sums Y ε
θ−
k,ε

and Y ε
θ+
k

are related, for all k =

0, ..., r − 1 and arg(x) ' θ?0, by the relation

(3.26) Y ε
θ−
k,ε

(ρkx) = Y ε
θ+
k

(ρkx)(In +S
ε
θ?
k
)M ε

k(In +S
ε
(θk−ε)?

)(In +S
ε
θ?
k,ε
)

Otherwise, it results from the definition of the perturbation in ε that lim
ε→0
Qε ≡

Q. Thus, lemma 3.18, point (2), below implies

lim
ε→0

Y ε
θ−
k,ε

(ρkx) = Yθ−
k
(ρkx) and lim

ε→0
Y ε
θ+
k

(ρkx) = Yθ+
k
(ρkx)

for arg(x) ' θ?0. Consequently, we deduce from (3.26) that

lim
ε→0
(In +S

ε
θ?
k
)M ε

k(In +S
ε
(θk−ε)?

)(In +S
ε
θ?
k,ε
) = lim

ε→0
Y ε
θ+
k

(ρkx)−1Y ε
θ−
k,ε

(ρkx)

= Yθ+
k
(ρkx)−1Yθ−

k
(ρkx)

= In + Cθ?
k

for all k = 0, ..., r − 1. Hence, proposition 3.17.
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Lemma 3.18 With notations as above:

1. For all u = 0, ..., r − 1 and arg(t) ' rθ?0,

lim
ε→0

s1;rθ+
0
(F̃ ε[u])(t) = s1;rθ+

0
(F̃ [u])(t)

lim
ε→0

s1;rθ−
0,ε
(F̃ ε[u])(t) = s1;rθ−

0
(F̃ [u])(t)

2. For all k = 0, ..., r − 1 and arg(x) ' θ?0,

lim
ε→0

sr;θ+
k
(F̃ ε)(ρkx) = sr;θ+

k
(F̃ )(ρkx)

lim
ε→0

sr;θ−
k,ε
(F̃ ε)(ρkx) = sr;θ−

k
(F̃ )(ρkx)

Proof. ? Point (2) is straightforward from point (1) and the two relations

sr;∗k(F̃ε)(ρ
kx) =

r−1∑

u=0

(ρkx)us1;r∗0(F̃
ε[u])(xr)

sr;θ±
k
(F̃ )(ρkx) =

r−1∑

u=0

(ρkx)us1;rθ±
0
(F̃ [u])(xr)

connecting the r-sum of F̃ ε (resp. F̃ ) in direction ∗k ∈ {θ+k , θ−k,ε} (resp. θ±k )
to the 1-sums of its r-reduced series F̃ ε[u] (resp. F̃ [u]) in direction r∗0 (resp.
rθ±0 ).

? Prove the first identity of point (1). Fix u ∈ {0, ..., r−1} and arg(t) ' rθ?0.
For η > 0 small enough, the sums s1;rθ+

0
(F̃ ε[u])(t) and s1;rθ+

0
(F̃ [u])(t) are

respectively given by the Borel-Laplace integrals

s1;rθ+
0
(F̃ ε[u])(t) =

∫

drθ0+η

F̂ ε[u](τ)e−τ/tdτ =

∫ +∞

0

Ĝ
ε[u]
1 (τ)dτ

where
Ĝ
ε[u]
1 (τ) := F̂ ε[u](τei(rθ0+η))e−τ exp(i(rθ0+η))/t

and

s1;rθ+
0
(F̃ [u])(t) =

∫

drθ0+η

F̂ [u](τ)e−τ/tdτ =

∫ +∞

0

Ĝ
[u]
1 (τ)dτ

where
Ĝ
[u]
1 (τ) := F̂

[u](τei(rθ0+η))e−τ exp(i(rθ0+η))/t

Apply corollary 3.14:
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− the function ε 7−→ Ĝ
ε[u]
1 (τ) is continuous on [0, δ] for all τ ≥ 0 and

lim
ε→0

Ĝ
ε[u]
1 (τ) = Ĝ

[u]
1 (τ)

− there exist an entire function Ψ[u] on all C growing at most exponen-
tially at infinity and a constant C ≥ 1 such that, for all ε ∈ [0, δ] and
τ ≥ 0,

(3.27)
∣∣∣Ĝε[u]

1 (τ)
∣∣∣ ≤ Ψ[u](Cτ)e−τ Re(exp(i(rθ0+η))/t) :=M

[u]
1 (τ)

Then, sinceM [u]
1 (τ) is integrable on [0; +∞[, we deduce from Lebesgue dom-

inated convergence theorem that the function ε 7−→ s1;rθ+
0
(F̃ ε[u])(t) is con-

tinuous on [0, δ] and

lim
ε→0

s1;rθ+
0
(F̃ ε[u])(t) =

∫ +∞

0

lim
ε→0

Ĝ
ε[u]
1 (τ)dτ =

∫ +∞

0

Ĝ
[u]
1 (τ)dτ = s1;rθ+

0
(F̃ [u])(t)

Hence, the first identity of point (1).

? The second identity of point (1) is obtained similarly. Note that, in addi-
tion to conditions (C1), (C2) and (C3) above, we can suppose, after possibly
replacing δ by a smaller value in ]0, δ], that the following condition is satisfied:

(C4) for any ε ∈]0, δ[, there is no anti-Stokes direction of system (3.15) with
a principal determination in [θ?k,δ, θ

?
k,ε[.

As before, there exists η > 0 such that the sums s1;rθ−
0,ε
(F̃ε[u])(t) and s1;rθ−

0
(F̃ [u])(t)

are respectively given by the Borel-Laplace integrals

s1;rθ−
0,ε
(F̃ ε[u])(t) =

∫

drθ0,δ−η

F̂ ε[u](τ)e−τ/tdτ =

∫ +∞

0

Ĝ
ε[u]
2 (τ)dτ

where
Ĝ
ε[u]
2 (τ) := F̂ ε[u](τei(rθ0,δ−η))e−τ exp(i(rθ0,δ−η))/t

and

s1;rθ−
0
(F̃ [u])(t) =

∫

drθ0,δ−η

F̂ [u](τ)e−τ/tdτ =

∫ +∞

0

Ĝ
[u]
2 (τ)dτ

where
Ĝ
[u]
2 (τ) := F̂

[u](τei(rθ0,δ−η))e−τ exp(i(rθ0,δ−η))/t

We conclude as above by using corollary 3.14.
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Remark 3.19 Inequality (3.27) allowing to apply Lebesgue dominated con-
vergence theorem is the key point of the proof of lemma 3.18. Recall (cf.
corollary 3.14) that such an inequality was obtained because the parameter
ε is only related to the non-zero Stokes values of Ω. Of course, for a more
general perturbation, i.e., the parameter of which is no longer related only
to Ω∗, inequality (3.27) and hence lemma 3.18 no longer hold in general.

We are now able to prove theorem 2.2 in the case when the collection
(θk)k=0,...,r−1 is generated by just two Stokes values.

3.3.5 Proof of theorem 2.2

Recall that we must prove identity (2.2) when the front of ω1 (resp. ω2) is
monomial. Recall also that such a condition can always be fulfilled by means
of a change of the variable x in system (0.1) (cf. lemma 2.4).

First case: the front of ω1 is monomial. For all ε ∈]0, δ], the col-
lection (θk)k=0,...,r−1 is a collection of anti-Stokes directions of system (3.15)
associated with f̃ ε and is generated by just one Stokes value of Ωε (here,
ω1). Then, the hypothesis “ω1 is with monomial front” allows us to apply
section 3.1: the perturbed Stokes multipliers Sε j;1

θ?
k
, j such that aj,r = ω1,

of f̃ ε at ω1 are expressed in terms of the connection constants of the f̂ ε[u]’s,
u = 0, ..., r − 1, at ω1. More precisely, denoting by Kε[u]

ω?
1
,+ the connection

matrix of f̂ ε[u] at ω1 andK
ε[u]j;•
ω?
1
,+ its j-th row-block accordingly to the Jordan

structure of L (matrix of exponents of formal monodromy), we obtain

(3.28) S
ε j;1
θ?
k

=
r−1∑

u=0

ρk(uInj−Lj)I
ε[u]j;•
ω?
1

ρkJn1

for all k = 0, ..., r − 1, where

I
ε[u]j;•
ω?
1

:=

∫

γ0

τ
λj−u

r
−1τ

Jnj
r K

ε[u]j;•
ω?
1
,+ τ

−
Jn1
r e−τdτ

We refer to theorem 2.2 for the definition of path γ0.
Otherwise, proposition 3.13, point (2), implies that the principal majors

f

̂

ε[u]
ω?
1
,+ and f

̂

[u]
ω?
1
,+ of f̂

ε[u] and f̂ [u] respectively are related, for all u = 0, ..., r−1,
by the relation

lim
ε→0

f

̂

ε[u]
ω?
1
,+(τ) = f

̂

[u]
ω?
1
,+(τ) for all τ /∈

⋃

ε∈[0,δ]

Ωε
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Then, we obtain

lim
ε→0
K

ε[u]j;•
ω?
1
,+ =K

[u]j;•
ω?
1
,+

and, consequently, proposition 3.17 applied to identity (3.28) implies identity
(2.2).

Second case: the front of ω2 is monomial. Identity (2.2) is obtained
in the same way. Indeed, for all ε ∈]0, δ], the collection (θk − ε)k=0,...,r−1 still
is a collection of anti-Stokes directions of system (3.15) associated with f̃ ε

and still is generated by just one Stokes value of Ωε, here ω2e−riε, the front
of which is monomial. Therefore, we can apply again section 3.1 and we can
conclude as above by using propositions 3.13 and 3.17. �

3.4 General case

We are left to prove theorem 2.2 when the collection (θk)k=0,...,r−1 is generated
by p ≥ 3 Stokes values (ωk)k=1,...,p satisfying |ω1| < |ω2| < ... < |ωp|.
We proceed similarly as in section 3.3 by considering, for ε ≥ 0, the

regularly perturbed system

(3.29) xr+1
dY

dx
= Aε(x)Y

with

Aε(x) =
J⊕

j=1

[(
raεj,r +

r−1∑

k=1

kaj,kx
r−k

)
Inj + x

rLj

]
+B(x)

where, for all j = 1, ..., J ,

aεj,r =

{
aj,r if aj,r /∈ {ω1, ω2, ..., ωp}
ωs exp

(
−ri (s−1)ε

p−1

)
if aj,r = ωs

Doing so, we can check that the results of section 3.3 can be extended to
system (3.29). This ends the proof of theorem 2.2. �
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