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Abstract

In the article Matrices de Stokes-Ramis et constantes de connexion
pour les systémes différentiels linéaires de niveau unique (P. Remy),
we considered linear differential systems with a unique but arbitrary
level and we stated formulae to express all the Stokes multipliers in
terms of connection constants in the Borel plane generalizing thus the
calculations made in the article Resurgence, Stokes phenomenon and
alien derivatives for level-one linear differential systems (M. Loday-
Richaud, P. Remy). In the present paper, we provide a new proof of
these formulae. We perturb the given system in order that each Stokes
value generate its own anti-Stokes direction. We state the connection-
to-Stokes formulae for the perturbed system and we conclude by a
limit process. We believe the method could provide an efficient tool for
the numerical calculation of the Stokes multipliers. As an illustration,
we develop an example. No assumption of genericity is made.

Keywords. Linear differential system, Stokes phenomenon, summab-
ility, resurgence, Stokes multipliers, connection constants

AMS subject classification. 34MO03, 34M30, 34M35, 34M40



Introduction

All along the article, we are given a linear differential system (in short, a
differential system or a system)

r+1g

(0.1) -

—A@)Y |, A(x) € My(C{a}), A(0) #0
of dimension n > 2 with meromorphic coefficients of order r +1 > 2 at the
origin 0 in C. Such a system admits a formal fundamental solution of the

form N B
Y () = F(x)zle?®/®

where F(z) € M,(C[[z]]) is a power series in #, the matrix L € M,(C) of
exponents of formal monodromy is a constant matrix and where the irregular
part Q(1/z) = diag(q:1(1/x),...,¢,(1/x)) is a diagonal matrix with polyno-
mial entries ¢;(1/z) € 2~ Y*C[z~"], v € {1,...,n!}, in a fractional power of
1/z ([1,5]).

The finite algebraic extension z —— x* of the variable x and a suitable
meromorphic gauge transformation Y —— T'(x)Y where T'(z) has explicit

computable polynomial entries in x and 1/x allow to normalize Y (z) as
follows ([1]):

o F(x) € M,(C[[z]]) is a power series in 2 with condition F(z) = I, +
O(z"), where I, is the identity matrix of size n,

J
@ (Ajln; + Jn;) where J > 2, Re(;) € [0, 1] and where
7j=1

(0 1fnJ:1
0 1 0
o, = .
: -1
L0 -~ - 0

is an irreductible Jordan block of size n;,

e ((1/x) is a diagonal matrix with polynomial entries in 1/z of the form

o) -2



with
1 Ajr  Qjr—1 aji 1 1
=)= — ... ——==ca Clz~
9 ($) x" xr—1 x =]
Besides, we assume that

(0.2) AM=0 and ¢ =0

These conditions can always be fulfilled by means of the change of unknown
vector Y = gMet(1/2) 7.

The assumption “system (0.1) has the unique level r” is equivalent to the
conditions

1. ¢; — g, = 0 or with degree r for all j, ¢
(0.3)

2. there exists j such that a;, # 0

Note that these conditions imply
q; = qr = Qjr = Qur

The coefficients a;, of the leading terms of the ¢;’s, j = 1,..., J, are called
the Stokes values of system (0.1). Recall that the r-th roots of the points
ajr — agr # 0 define the anti-Stokes directions of system (0.1).

Under the assumption (0.3), we are interested in the formulse given the
Stokes multipliers of F (x) in terms of connection constants in the Borel plane.

When r = 1, these constants are given by the singularities of the Borel
transform F'(§) of F(x). Many proofs exist under sufficiently generic hy-
pothesis (see [7] for instance). A complete proof without assumption of
genericity was recently given by M. Loday-Richaud and the author ([6]).
In this proof, we used Ecalle’s method by regular perturbation and major-
ant series quoted in [3]. We stated the summable-resurgence of F(z) and
we displayed a precise description of the singularities of ﬁ(é) in the Borel
plane; the connection-to-Stokes formulae are performed by interpreting the
Stokes-Ramis matrices as Laplace integrals of these singularities.

Afterwards in [10], the author extended these results to the case r > 2
by using the classical method of rank reduction and by applying Ecalle’s
method to the reduced system. In this case, instead of F'(x), we considered
its sub-series F[4 (t),u=0,..,r—1and t = 2", of terms r by r, also called r-
reduced series of F (). The connection-to-Stokes formulee are performed by
connecting the Stokes-Ramis matrices of system (0.1) to those of its reduced



system (cf. [5, prop. 4.2]) and the Stokes multipliers of the reduced system
to the connection constants given by the singularities of the Borel transforms
FU(r), u=0,..,r—1.

In the present paper, we shall provide a new proof of connection-to-Stokes
formulee displayed in the case » > 2. This proof is quite different from the
one in [10] since it is based on a perturbation of system (0.1) and a limit
process.

In section 1, we recall the results from [10] on the r-reduced series of
which we need.

In section 2, we state the connection-to-Stokes formulee given in [10].
These formulze make explicit the Stokes multipliers of F(z) in any anti-
Stokes direction # of system (0.1) in terms of the connection constants given
by the singularities of the Borel transforms Fl (7)’s at the various Stokes
values generating 6.

Section 3 is devoted to the proof of the connection-to-Stokes formulae. We
first start by the generic situation where 0 is generated by just one Stokes
value (section 3.1). The case of several Stokes values is treated by means of a
regular perturbation of system (0.1). We choose the perturbation so that the
Stokes values fit the previous generic situation; then, we connect the Stokes-
Ramis matrices of system (0.1) to the perturbed Stokes-Ramis matrices by
means of a limit process (sections 3.3 and 3.4).

Throughout the article, we develop an example in order to illustrate our
different results.

Acknowledgement I would like here to thank Professor M. Loday-Richaud
for all her comments and advice which enabled me to finalize this article.

1 r-reduced series: summable-resurgence and
singularities

For the convenience of the reader, we recall in this section some results from
[10] concerning the summable-resurgence and the singularities in the Borel
plane of the r-reduced series.

Since any of the J column-blocks of F (x) associated with the Jordan
structure of L (matrix of exponents of formal monodromy) can be positionned
at the first place by means of a permutation P on the columns of Y (x), we

can restrict ourselves to the study of the column-block f(x) formed by the
first ny (= the dimension of the first Jordan block of L) columns of F(z).



Recall that, after permutation, the new formal fundamental solution }7(13)]3
reads Y (z)P = F(x)Paf 'LPeP ™ QU/DP,

Recall that the r-reduced series of f(x) € M, ,, (C[[z]]) are the the formal
series f1"(t) € M, , (C[[t]), u =0, ...,7 — 1, defined by

(1.1) f(x) = FlO (") + zf (") + ... + :cr_lf[“l](:c”)

In other words,

fM (t) = Z fu—i—mrtm when }V(x) - Z fmmm

m>0 m>0

1.1 Summable-resurgence theorem

Recall that a resurgent function is an analytic function at 0 € C which can be
analytically continued to an adequate Riemann surface R associated with
a so-called singular support 0 C C. For a more precise definition, we refer
to [11] and [6, def. 2.1 and 2.2]. Recall that the difference between Rq and
the universal cover of C\ lies in the fact that Rq has no branch point at 0
in the first sheet.

In the linear case, the singular support €2 is a finite set containing 0.
In a more general framework, convolutions of singularities may occur what
requires to consider for € a lattice, possibly dense in C (¢f. [3,8,11] for
instance).

To define the summable-resurgence, we extend the classical definition of
sectorial regions of C used in summation theory into the one of sectorial
regions of Rg. These regions are called v-sectorial regions (cf. [6, def. 2.3])
and are defined for all ¥ > 0 small enough by the data of

e an open disc D, centered at 0 € C,
e an open sector ¥, with bounded opening at infinity,

e a tubular neighborhood N, of a piecewise-C' path 7 connecting D, to
Y, after a finite number of turns around points of €2,

such that the distance of D, to Q* = Q\{0} and the distance of N, U, to



2 have to be greater than v.

Figure 1.1 - A v-sectorial region

Definition 1.1 (Summable-resurgent functions)

A resurgent function defined on Rq is said to be summable-resurgent with
singular support ) when it grows at most exponentially at infinity on any
v-sectorial region A, of Rq.

We denote by @;um the set of summable-resurgent functions with singular
support €.

Definition 1.2 (Summable-resurgent series)
A formal series is said to be a summable-resurgent series with singular sup-

— sum

port 2 when its formal Borel transform belongs to Resq

The set of summable-resurgent series with singular support €2 is denoted

Resg

Recall that the formal Borel transformation B is an isomorphism from
the C-differential algebra (C[[t]], +, -, <) to the C-differential algebra (6C &
Cl[7]], +, *,7-) that changes ordinary product - into convolution product x
and changes derivation tQ% into multiplication by 7. It also changes mul-
tiplication by % into derivation % allowing thus to extend the isomorphism

from the meromorphic series C[[t]][t™!] to C[6*), k € N] @ C[[r]].

Under our hypothesis of “a single level equal to r” (¢f. assumption (0.3)),
we proved the following result in [10]:



Theorem 1.3 (Summable-resurgence theorem, [10, thm. 1.2])
Let Q ={a;, , j=1,...,J} denote the set of Stokes values of system (0.1).
Then, for allu=0,...,7 — 1,

sum

Fl(t) € Res,

1.2 Singularities in the Borel plane

For the convenience of the reader, we first recall some vocabulary used in
resurgence theory (see [3,8,11] for instance).

Denote by O the space of holomorphic germs at 0 on C and O the space
of holomorphic germs at 0 on the Riemann surface C of the logarithm. One
calls singularity at 0 any element of the quotient space C := O/O !. The
canonical quotient map O — C is denoted by “can”.

A singularity is usually denoted with a nabla. A representative of the
singularity gYJ in O is called a major of Z and is often denoted by @: can(¢) =
P.

Given w # 0 in C, we denote by C, the space of the singularities at w,
i.e., the space C translated from 0 to w. Then, a function @, is a major of a
singularity at w if @, (w + 7) is a major of a singularity at 0.

1.2.1 General structure of singularities

Theorem 1.3 tells us that, for all w = 0, ..., — 1, the Borel transform f[“] (1)

of f[“] (t) is analytic on the Riemann surface Rq, its possible singular points
being the Stokes values of () including 0 out of the first sheet.
For any Stokes value w € €2, we call front of w the set

Fr(w) :={¢; such that a;, = w}

of polynomials ¢;(1/x)’s, the leading term of which is —w/z". Under our
hypothesis of a single level (¢f. assumption (0.3)), Fr(w) is a singleton:

{2 ()

where ¢, = 0 or ¢,(1/z) is a polynomial in 1/x of degree < r — 1 and with
no constant term.

I The elements of C are also called micro-functions by B. Malgrange ([8]) by analogy with
hyper- and micro-functions defined by Sato, Kawai and Kashiwara in higher dimensions.



Definition 1.4 (Singularity with monomial front)

A Stokes value w € §2 is said to be a singular point with monomial front when
Go = 0. The corresponding singularity is called singularity with monomial
front.

In the case of level-one systems (case r = 1), all singularities are with
monomial front and they are regular, i.e., in the Nilsson class ([2]). A more
precise description was displayed in [6, thm. 3.7].

For systems with single level » > 2, the situation is much more involved
since ¢, is not necessarily zero. This polynomial plays an essential role in
the structure of the singularities. Indeed, one can show that the singularity
at w € Q is irregular when ¢, # 0 and keeps being regular when ¢, = 0. For
a general description of singularities, we refer to [10, thm. 2.13].

Actually, as we shall show in sections 2 and 3, it is sufficient to know the
regular structure of the singularities with monomial front to make explicit
and to prove the connection-to-Stokes formulee in full generality. For such
singularities, a more precise description than the one of [10, thm. 2.13] is
displayed in [10, thm. 3.5]. We recall it in theorem 1.5 below.

1.2.2 Singularities with monomial front

For all u =0, ..., — 1, the behavior of the function f[“] at any Stokes value
w € €2 depends on the sheet of the Riemann surface R, where we are, i.e., it
depends on the “homotopic class of” the path 7 of analytic continuation fol-
lowed from 0 (first sheet) to a neighborhood of w. We denote by cont,, ., f*

—~ \Y%
the analytic continuation of f [ along the path v and by f&L LY the corres-
ponding singularity.

From now on, given a matrix M split into blocks fitting to the Jordan
structure of L (matrix of exponents of formal monodromy), we denote by
M the j-th row-block of M. So, M’* is a n; x p-matrix when M is a
n x p-matrix (recall that n; is the size of the j-th Jordan block of L).

Theorem 1.5 (Singularities with monomial front, [10, thm. 3.5])
Fizu € {0,...,r — 1} and w € Q\{0} a singular point of £ with monomial
front.

v
For any path v on C\Q from 0 to a neighborhood of w, the singularity f([f}7
admits a magjor flffL of the form

~ . Ai—u In . Jy .
u|j;e 9" 1 7 o "1 ulj;e
L[u]# (wH+T)=7"7 17 K% T T +rem£;,]y] (1)




forall j =1,....,J with a remainder

rem[“h’ Z ZT v ;Zlfv’wﬁ(lnr)

)\g ;a4 r =W V= 0
where

° K * denotes a constant n; X ny-matriz such that Kﬁ%” = 0 when
Qjr 7é w,

RE\UZ fv’ 2w~ (X) denotes a polynomial matriz with summable-resurgent coef-

—

ficients in Res;uz, the columns of which are of log-degree

[(ne—1) (ng=1)+1 -+ (ng=1)+(ni—1)] fAN#0

N[t] =
[’I”Lg ng—i-l ng—i—(nl—l)] if/\g:O
The constants K " [u } J* and the remainders reme, [ulgse depend on the path

of analytic Contmuatlon ~ and on the chosen determination of the argument
around w. From now on,

e we consider a path 41 going along the straight line [0,w] from 0 to a
point 7 close to w and avoiding all singular points of 2M]0,w] to the
right (see figure 1.2 below),

e we choose the principal determination of the variable 7 around w, say
arg(r) €] — 2, 0].

w

0= d

Figure 1.2

For such choices, we respectively denote fw . Ko [l V¢ and rem."] ]J »* for fgf L

K[!'5* and rem[“]j’ :
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Definition 1.6 (Principal major and connection constants)

e Given u € {0,...,r — 1} and a singular point w € O\{0} off[“] with
monomml front we call principal major of f M at w the major f

off « 1+ gwen in theorem 1.5. Recall that, for all j =1, ..., J,

(1.2) f[u]% (w+7)= Ty 7K£3L*]J+ T 7“em[uh3r (7)

o The entries of the matrices KEL*]]; when aj, = w are called the con-
nection constants of £ at w. Recall that K" [“]J + =0 when a;, # w.

Note that, in practice, the matrix K Eﬂ]j; can be determined as the coef-

ficient of the monomial 7(i—#/r=1,

Let us end this section with an example which will be resumed throughout
the article in order to illustrate our different results.

Example 1.7 We consider the system

0 0 0
(1.3) x%X:ka52 0 |Y
g 2 +2° 0 4+%

and its formal fundamental solution Y (z) = F(z)z%e@(1/2) where
Q1) = ding 0.~ ~2)
o L =diag (0,0, 3),

1 00
e F(z)=|fa(x) 1 0] isa power series such that F(z) = I3 + O(z*).
System (1.3) has the unique level 2 and the set of its Stokes values is 2 =

{0,1,2}.

Although system (1.3) may seem a little bit involved since it admits two
aligned non-zero Stokes values, the fact that its matrix is triangular makes it
simple enough to allow the ezact calculation of the connection constants and
the Stokes multipliers. For a more general system, .i.e., the matrix of which
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is no longer triangular, such exact calculations no longer hold in general.
The 2-reduced series of the first column of F(z) are of the form

1 0
FO@ = |f20)] and U = |£5(t)
3(1) 6(1)
where the fj’s are power series in t satisfying f]- (t) = O(t?) (¢f. (1.1)). Our
aim is the calculation of the connection constants of the ]?M’s, u=0,1, at

the Stokes values 7 =1 and 7 = 2.
By using rank reduction ([5]), we can check that the matrix

Foy o[£
f(t) T [f[”(t)] € Mﬁ,l((c[[t“)

is uniquely determined by the system

0 0 0 0 0 0
N 2 2 0 =2 0 0
df 2 0 44+L £ 0 0 |~
27 — B
2t dt 0 0 0 —t 0 0 f
—t2 0 0 2 2—t 0
| 0 0 0 4-1i]

jointly with the initial condition f(0) = Iy (first column of the identity
matrix I of size 6). Therefore, the formal series f ;’s are the unique solutions

of the equations

df ,

d

22__2~ — 42 22_5_ 9 7z — 42
tdt fo=1t tdt 2—1t)f5 4
df £\ ~ df £\ ~
2223 (44 = = ¢2 2226 _ (4 = 2
dt (+2)f3 dt < 2)f6

satisfying the condition fj (t) = O(t?). As a result, their Borel transforms

-~

f ;s are defined, for all |7| < 1, by

~ ~ 1 1
Fo) = =305 Folr) = 5= =2

~ / ~ /

B =-Zre-nvial  Fn=-Teonns
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In particular, fQ and f5 (resp. f3 and fﬁ) have just one singular point,
located at the Stokes value 7 = 1 (resp. 7 = 2). More precisely, their
analytic continuation f j to the right of these points are defined by

~ T+1 ~ T 1
Fil+7)=—- Fil4m)=gr2 =2
. 27/4 _ 3iw 2 . 29/4 _ biw 2
f§(2+7):—#7_3/4+§ fe@+7) :—#7_5/4—9—5

Consequently, the connection matrices K [1qu and K [QUL are given by

i 0 T 0
0 1 0 0
K[1]+ = kg[)]f =5 K[2]+ - 7/4
2 [0]3 2 —3ir/4
| 0 o =€ "
[0 ] [ 0 |
1 l 1 0
K[1]+ = kﬂf =3 K[2]+ - 9/
ms _ 2 —5im/4
0 =g

We end the study of system (1.3) with the calculation of its Stokes mul-
tipliers in section 2.2.1 (see example 2.3).

2 Stokes-Ramis matrices and connection con-
stants

2.1 Stokes-Ramis automorphisms

Given a non anti-Stokes direction # € R/27Z of system (0.1) and a choice of
an argument of 6, say its principal determination §* €] — 2, 0] as previously?,
we consider the sum of Y in the direction # given by

Yo(x) = 80 (F) () Y00 ()

2 Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 < arg(z = 1/x) < 27 of the principal determination at infinity, we
suggest to choose —27 < arg(z) < 0 as principal determination about 0 as well as about
any w at finite distance.
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where s,,4(F)(z) is the uniquely determined r-sum of F at # and where
Yo+ () is the actual analytic function Yjg-(z) := 2%e%(/?) defined by the
choice arg(z) close to 6* (denoted below by arg(z) ~ 0*). Recall that s,.9(F)
is an analytic function defined and %—Gevrey asymptotic to F on a sector
bisected by 6 with opening larger than m/r.

When 0 € R/277Z is an anti-Stokes direction of system (0.1), we consider
the two lateral sums s,.9- (F) and sr;9+(ﬁ ) respectively obtained as analytic
continuations of Sr;g_n(ﬁ ) and sr;gﬂ(ﬁ ) to a sector with vertex 0, bisected by
0 and opening 7 /r. Notice that such analytic continuations exist without am-
biguity when 1 > 0 is small enough. We denote by Y- and Y+ the two sums
of Y respectively defined for arg(z) ~ 6* by Yp-(z) := sp.0- (F)(2)Y0 0 (2)
and Yp+ () := s,«;9+(ﬁ)(a§)Y079*(m).

The two lateral sums s,.o- (ﬁ ) and sr;9+(ﬁ ) of F are not analytic con-
tinuations from each other in general. This fact is the Stokes phenomenon
of system (0.1). It is characterized by the collection, for all anti-Stokes dir-
ections 0 € R/27Z of system (0.1), of the automorphisms

St@* . Y‘9+ — }/97
that one calls Stokes-Ramis automorphisms relative to Y.

Definition 2.1 (Stokes-Ramis matrices)

One calls Stokes-Ramis matrix associated with Y in the direction 6 the mat-
riz of Ste~ in the basis Y+ 3. We denote it by I, + Cy«.

Note that the matrix I,, + Cyp is uniquely determined by the relation

Yo-(2) = Yy () (L, + Co+) for arg(z) ~ 6*

2.2 Relations between Stokes multipliers and connec-
tion constants

Recall that the set Q2 denotes the set of Stokes values a;, of system (0.1).
Given a direction 0 € R /277, we denote by

e dy the half line issuing from 0 with argument 6,

3In the literature, a Stokes matrix has a more general meaning where one allows to
compare any two asymptotic solutions whose domains of definition overlap. According to
the custom initiated by J.-P. Ramis ([9]) in the spirit of Stokes’ work, we exclude this case
here. We consider only matrices providing the transition between the sums on each side
of a same anti-Stokes direction.
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o (= Q" Ndy with Q* = Q\{0} the set of non-zero Stokes values of
system (0.1) with argument 6.

The anti-Stokes directions of system (0.1) associated with fare the dir-
ections of maximal decay of the exponentials e% (/%) q; # 0. Therefore, to
each non-zero polynomial g; —i.e., such that a;, # 0 under our hypothesis
of a single level (cf. assumption (0.3))— correspond 7 anti-Stokes directions
6o, 01, ...,0,—1 € R/27Z regularly distributed around = = 0. They are given
by the arguments of the r-th roots of a;,; then, we say that a;, generates
the collection (0y)k=o....r—1".

Such a collection being chosen, we assume, to fix ideas, that the principal
determinations 0 satisfy

2 <O <..<07<0<0

A Stokes value w € Q* generates the collection (6x)k—o,. -1 if and only if
w € Qrgo.

Let p := e~ 2™/, For all k = 0, ...,7 — 1, the Stokes-Ramis matrix I,, +- Cp:
of Y in the direction 0y is uniquely determined by the relation

(2.1) Yy (pPx) = Ypr (p"2)(Ln + Cgy)  for arg(z) = 0

We denote by Cor the first n; columns of Cg}: and we split Ce into row-blocks
cég accordingly to the Jordan structure of L (we refer to page 8 for the
notations). The n; X n;-matrix c;g is zero for all k = 0,...,7 — 1 as soon
as aj, ¢ Q¢,. When a;, = w € $Q,q,, the entries of cég are called Stokes

multipliers of ]7 associated with w in the direction 0y.

2.2.1 Case of singularities with monomial front

Recall that
°p= 672i7r/7"
e the _?[“]’s, u=0,...,7 — 1, denote the r-reduced series of ]7 (cf. (1.1)),

e the singularities of the Borel transforms f[“]’s of the f[“]’s are located
at the Stokes values of system (0.1) (¢f. thm. 1.3).

4From now on, we say that a point w # 0 generates a collection of r directions
g, O, ..., tr—1 € R/27Z regularly distribued around 0 when w € dyq,-
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We denote moreover by L; := A;I,; + J,, the j-th Jordan block of L
(matrix of exponents of formal monodromy).

Let w € Q,4, be a non-zero Stokes value of system (0.1) generating the
collection (6)—o,.. r—1. We assume besides, in this section, that the front of
w is monomial.

Under this hypothesis, theorem 2.2 below tells us that the Stokes multipli-
ers of f associated with w are expressed in terms of the connection constants
at w of the f"'s, u=0,...,r — 1.

Theorem 2.2 (Connection-to-Stokes formulae, [10, thm. 4.4])
For all j such that a;, = w, the data 0f<cég>k:0,...,r—1 and of (Kgﬂfj:)u:owm_l
are equivalent and are related, for all k =0, ...,r — 1, by the relations

r—1
22 i = St o
u=0
where
- Aj—u Jn; eIy
(23) IE)‘L*}J’ ::/7— 7T 717’ TJ K{E)J‘?jjr’]_ rl e~ Tdr
Yo

and where o is a Hankel type path around the non-negative real axis R* with
argument from —2m to 0.

The proof given in [10, § 4.3] of theorem 2.2 is, on the one hand, based on
the relations between the Stokes-Ramis matrices of system (0.1) and those
of its reduced system ([5, prop. 4.2]) and requires, on the other hand, to
know explicitly the structure of all singularities in the Borel plane (i.e., with
monomial front or not). The proof that we shall give in section 3 is quite
different since it is based on a regular perturbation of the matrix A(z) of
system (0.1) and a limit process. As a consequence, we show in particular
that it is sufficient to know the structure of singularities with monomial front.

An expanded form providing each entry of the connection-to-Stokes for-
mulee (2.2) is given in [10, cor. 4.6]. This can be useful for effective numerical
calculations. We recall this expanded form below in the particular case where
the matrix L of exponents of formal monodromy is diagonal: L = @?:1 Aj.

In this case, the matrices Cg;{ and K B“ﬂ]j; are reduced to just one entry

which we respectively denote by Cg); and K./, .
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Since the Jordan blocks .J,; are zero for all j, identity (2.3) becomes

T

/ i AL S L )
%0 r(1- )

Therefore, the Stokes multipliers cgz are related to the connection constants

K Eﬂh + by the formulse

Ai—u

(2.4) cf,@ = QiWZpk(“_Aj)e—;Kgi]f; forall k=0,..,r—1
2 )

r

Let us end this section with a numerical application of theorem 2.2.

Example 2.3 We calculate here below the Stokes multipliers of system (1.3)
by using theorem 2.2 and formula (2.4) above.

With notations as example 1.7, the anti-Stokes directions of system (1.3)
associated with the first column f(z) of F(z) are y = 0 and 6; = —7 (the
directions of maximal decay of the exponentials e~*/** and e~%*"). Obvi-
ously, the Stokes-Ramis matrices I3 + Cy and Is + C'_, are of the form

0 00 0 00
Co= |2 0 0 and C,=|2_00
& 00 30 0

Indeed, f(a:) is the unique column of F () which is divergent.

The collection (0, —7) is generated by the two Stokes values 1 and 2
(Qo = {1,2}) which are both with monomial front. Therefore, we deduce,
from theorem 2.2, that the Stokes multipliers ¢2 and ¢* _ (resp. ¢3 and ¢ )
are expressed in terms of the connection constants at 7 =1 (resp. 7 = 2) of
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FO(7) and FU(7). Precisely, since L is diagonal, it results from (2.4) that

AT

r(3)

_am i

3 = 20k + 2im —a ki

3 €T 0B, . €T 3
Co = 2T ——5vkyy + 2im ks
r(%) r(3)
(2.5) |
o 02 or i €7
= 2irk; ) + 2ime 6 ki
s 6_%\' T e%r
A =2ires —— k3 4 9ineF 013
-7 3\ "V2,+ 5\ V2,+
(%) r(3)

(recall that p = e~ since system (1.3) has the unique level 2). Hence,

NS 4r 16 |
2= <7T—T>Z cg = 2%/ <3F(§1) +€F(%))z

NG i 16
2 _ VT 3 o3 T Opes
(” 3 ) (sr@) 5 (4))

2.2.2 General case

Let w € Q,9, be a non-zero Stokes value of system (0.1) generating the
collection (6x)r=o..r—1. Recall that the front of w reads

.....

- (o) o ()]

where ¢, = 0 or ¢,(1/z) is a polynomial in 1/ of degree < r — 1 and with
no constant term (c¢f. section 1.2.1).

When w is with monomial front (i.e., ¢, = 0), theorem 2.2 above allows us
to express the Stokes multipliers of fvassociated with w in terms of connection
constants in the Borel plane.

When w is with non-monomial front (i.e., ¢, # 0), a result of the same
type exists but requires to reduce w into a Stokes value with monomial front

by means of lemma 2.4 below.

Lemma 2.4 (M. Loday-Richaud, [4])
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1. There exists, in the x-plane (Laplace plane), a change of the variable
of the form

y
2.7 xr = a1, ..., 1 € C
(27) 14y + ...+ apqy1 ! !

such that the polar part p,(1/y) of q.(1/x(y)) reads

()

pol|-)=—=

) Y

2. The Stokes-Ramis matrices of system (0.1) are preserved by the change
of variable (2.7).

Indeed, lemma 2.4 allows us to construct a new system (S) such that

e (5) has the unique level r and satisfies normalizations as system (0.1)
(cf- page 2),

e w is a Stokes value of (5) and is with monomial front,
e systems (5) and (0.1) have the same Stokes-Ramis matrices.

Hence, applying theorem 2.2 to (S), we can again express the Stokes multi-
pliers of f associated with w in terms of connection constants in the Borel
plane. Note however that these constants are calculated from system (5) and

not from system (0.1). A numerical example was treated in detail in [10, §
5.3].

3 Proof of theorem 2.2

3.1 Case of a unique Stokes value

In this section, we assume that

(A1) the collection (0y)x is generated by a unique Stokes value w # 0 of
system (0.1): Q,.9, = {w},

(A2) the front of w is monomial.

Recall that condition (A2) can always be fulfilled by means of a change of
the variable x (cf. lemma 2.4).
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Given k € {0,...,r — 1}, identity (2.1) reads
0 (F)(02) = 5.1 (F)(02) = 5,92 (F) (0"2) Yooy (0"2)Cop Yok (62)

for arg(z) =~ 0. Recall that Y{ - (X) is the actual analytic function Yg ¢+ (X) :=
XEeQU/X) defined by the choice of arg(X) ~ 6%.

Since the matrices cég are zero as soon as a;, 7 w, we obtain, in restriction
to the first n; columns,

Sro (N (PF2) = 8,05 ()(0"2) = 5,95 (F) (p2) My e (w)e7/
(3.1) for arg(z) ~ 6}

T

where

Onjxny if a;, #w

(3.2) M, =

(pFa)bcyf (pFa) = if aj, = w

for all j = 1,...,J. Recall that n; is the size of the j-th Jordan block L; =
Ajln; + I, of L. The matrix On;xn, denotes the n; x ni-null matrix.

By definition (¢f. (1.1)), the series f is related to its r-reduced series fl*s
by the formula

fla) =Y a"ft(")

Therefore, the r-sum ST;Q(f~) of f in a direction 6 is related to the 1-sums

(or Borel-Laplace sums) $1,¢ (f ™Y of the f™’s in the direction 7. More
precisely,

seo(D) = 3 e s1,0(FH) )

Consequently, the left hand side of (3.1) reads, for arg(x) ~ 6§,
(33) 5,0 (D) — 5,01 (D(6"2) =
r—1

>0 w) (100, (F (@) = 1,05 (FED(a"))

u=0
Recall that, when 6 is not an anti-Stokes direction for f[“} (i.e., Qy = ),
the 1-sum Sl;g(f[u])(t) is given by the Borel-Laplace integral / Fl(r)e=/tdr

de
in the direction # (cf. thm. 1.3 for instance).
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When 6 is an anti-Stokes direction for £, the 1-sums S1.0+ (F (1) to
the left and right of 0 are defined as the analytic continuations to a germ of
half-plane bisected by 0 of sy.9.+,(F)(t) as 7 tends to 0.

Thus, for n > 0 small enough, each term of the right hand side of (3.3)
can be seen as the Laplace integral

(3.4) S1irts (f[u])(xr) — Syt (;]‘v'[“})(xr) _ / ]:\[u] (T)e*T/ITdT

Trég

where 7,9, is the path going along the straight line d,g,, from infinity to 0
and going back to infinity along the straight line d,g,_,.

Due to the summable-resurgence of the f[)’s (¢f. thm. 1.3) and hypo-
thesis (A1), the value of integral (3.4) is preserved by deforming the path
Yro, into a Hankel type path ’y:éo (w) with asymptotic direction 76, around w
as shown on figure 3.1 below®.

Hence, by means of a translation 7" from w to 0 and using the fact that
holomorphic functions at w contributes 0 to the integral around w, we can
replace f[“} by its principal major }'/‘[f*] (w+ 7) at w obtaining so, for all
u=0,....r—1,

35) s1ya (F@) = sy PN @) = [ FU (o m)e ™/ ar

’YT‘GO

where, as shown on figure 3.2 below, 7, = T'(7,, (w)) is the image of 7, (w)
by T'. Recall that, since the front of w is monomial (c¢f. assumption (A2)),
the major fL"JHr(w + 7) is given by (1.2).

V) .
d’f’ao 7‘90
(L) d'yﬂ[)
0 0

Figure 3.1 Figure 3.2

Then, we deduce from (3.1), (3.3) and (3.5) the new i Figure 3.1dentity

®Contrarily to formula (3.4) which only requires the 1-summability of the series f[“] ’s,
the individual resurgence and 1-summability are not sufficient here. We do need summable-
resurgence.
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r—1
k w v[u} _T/xr — fn k *
o) | 2 / T eI dr = sy (F)04) M (2)
u= rog
for arg(z) ~ 6

Lemma 3.1 ([6, prop. 4.1 and thm. 4.3])

Let = t'/" be the r-th root of t corresponding to the choice arg(z = t'/") ~
65 .

Then, for allu=0,....,71 =1 and j =1, ..., J such that a;, = w,

—Uu J7l' ...
f[u]j’ (w+T)e” S I
77‘00
20 11 py[ulj;
> SrTRRL. an
/\g,ag r=w V= 0

where

o I s the integral given in (2.3),

° P;Z]]U’ - (Int) is a polynomial in Int, the coefficients of which are 1-

sums of L-summable series in direction 10y + € (¢ > 0 small enough,).

Consequently, identity (3.6) becomes, for all j =1, ..., J such that a;, = w
and arg(z) ~ 6,

r—1

Z pkqugI[w, ~Iny 4 Z me UHQ[AU/J (Inz) | =

u=0 Agsap, r=wv=0

$r0p (F) (0" 2) My ()

where Q/\ *(Inz) is a polynomial in In z, the coefficients of which are r-sums
of r-summable series in direction 6,". Then, equating the dominant terms,
we obtain

ZpkuI[U]L _ CJ P —kJn,

for all j such that a;, = w. This ends the proof of theorem 2.2 in the case
of a unique Stokes value. W
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3.2 An example

Before to start the calculations in the case when the collection (6y) is gener-
ated by p > 2 Stokes values, let us study again the system

0 0 0
Y
x30;— = Alz)Y , Alz) = |z* =2 2 0
x

x4+ 2® 0 4—1—%

(1.3)

together with its formal fundamental solution Y (z) = F(z)z*e?(/2) in an-
other way. We refer to examples 1.7 and 2.3 for the notations.
Recall that

e the set of Stokes values of system (1.3) is Q@ = {0, 1,2},

e the non-zero Stokes values 1 and 2 generate the collection (fy = 0,6, =

—) of the anti-Stokes directions associated with the first column f(x)
of F(x).

Recall also that the corresponding Stokes multipliers are given by (2.6)
and have been calculated by means of theorem 2.2 (c¢f. example 2.3).

The method of calculation which we shall present below is based on a
regular perturbation of system (1.3) and on the result of section 3.1. This
method will be generalized in sections 3.3 and 3.4 in order to end the proof
of theorem 2.2.

3.2.1 A perturbed system

We consider, for all € > 0, the regularly perturbed system

i 0 0 0
(3.7) ?P—— = A% (2)Y |, A%(x) = |z —2® 2 0

dz x4+ 2® 0 de %4 ‘%2

together with its formal fundamental solution Y *(z) = F*(z)zLe@ W/ at 0
where

—2ie

e Q°(1) = diag(0, — %, —25—) (hence, system (3.7) has the unique level
2 and the set of its Stokes values is Q° := {0, 1, 2e7%*¢}),

o L= diag(0,0, 1),

o = O

1 0
o Fe(z) = Z;(:E) 0| is a power series in z verifying f;e(x) € 21C|[z]].
fa(x) 01

Note that, for e = 0, we get A=A, YO =Y and Q° = Q.
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3.2.2 Action of the perturbation

The perturbation in € acts on the anti-Stokes directions of system (1.3) as
follows: for € > 0 small enough, the collection (g, 6;) splits into the distinct
three collections (0, —7), (—¢,—¢ — 7) and (a., . := a. — 7) respectively
generated by the Stokes values 1, 2¢ 72 and 2e~%¢ — 1 so that

0>—--e>af and —7>——c—71>[3

Note that the first two collections are the anti-Stokes directions associated
with the first column f® of F'* and are generated by just one Stokes value of
system (3.7).

For any previous six directions *, we denote by I3+ &¢%. the corresponding
Stokes-Ramis matrix associated with Y. Clearly,

000 0 00
5= |05 0 0 & =05, 00

0 00 0 00

0 00 0 00
&.=|0 00 6. =0 00

0. 0 0 .00
G =0 =0

Indeed, f° (x) is the unique column of F ¢(x) which is divergent.

Proposition 3.2 The Stokes-Ramis matrices I3+ Cy and I3+ C_; of system
(1.3) are related to the perturbed Stokes-Ramis matrices above by the formule

Ig + C[) = llH(l]([g + 68)([3 + 66_8)([3 + 63;)

(3.8)
[3 + C,ﬂ. = lln(l)([gg + Giﬂ.>([3 + 66,5,77)([3 + 665»)

In particular,

limo§ = ¢ limo® = c%_
e—0 e—0

(3.9)
li e _ .3 li € _ .3
imo®, = ¢ imos,__ =c
e—0 e—0

Proof. Fix § > 0 small enough such that
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1. for all € €]0, 4], the directions 0, —e and «. (resp. —m, —¢ — 7 and
f:) are the only anti-Stokes directions of system (3.7) with principal
determinations in [aZ, 0] (resp. [5Z, —7]),

2. the direction o (resp. (5) is close enough to 0 (resp. —) in order that
the two sectors with vertex 0, opening 7/2 and respectively bisected
by 0 and as (resp. —m and [5) overlap.

Then, the sums Y°_ and Y%, on the one hand, and the sums Y°_ and Y°__,
ac 0 Be u

on the other hand, are related, for arg(z) ~ 0, by the formulse

Ve (2) = Y5 (2)(Is + &5)(Is + 6. )(Is + &5,
(3.10)

™

Y;E_(—:c) =Ye  (—2)(l3+62,) (I3 +65,._,)(I3 + &5)

Otherwise, let us denote by f<(t), u = 0,1, the 2-reduced series of f¢(z).
Similar calculations to those of example 1.7 show that their Borel transforms
Fel(7)’s are defined, for all |7| < 1, by

0
e
Fr) = 21—
27/4 ) . 2
_Te—3za/2<2e—215 _ 7_>—3/4 + §
and 3 )
0
1 1
€ —(1 =3/2 _
FeU(r) g0 =7) 3
29/4 ) ‘ 2
-_T€—515/2(2e—2w _ 7_)—5/4 + g-

In particular,

lig f<4(7) = F ()

e—0

for all u = 0,1 and 7 & [J.cg5 2. Recall that the f Vs denote the Borel

transforms of the 2-reduced series of the first column f(z) of F(z) (cf. ex-
ample 1.7 for more precisions). The last two columns of F'¢(z) and F(x)
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being trivial, we can then check, by using Lebesgue dominated convergence
theorem, that, for arg(x) ~ 0,

tims, o (F)(@) = s (F)a)  limsy o (F9) (=) = sy, (F) (-2)
lims, oo (F) (@) = so- (F)(&) s,y (F)(=2) = o (F)(—)

obtaining so, for arg(z) ~ 0,

lmYE, (z) = Yoo () imVe  (=2) = Yore (—2)
limY? (x) = Yo-(x) limY?> (=) = Yoo (—2)
Indeed, lir%as = 0 and lir%ﬁs = —m. Therefore, when e goes to 0, identities

(3.10) become, for arg(z) ~ 0,

llr%(fg + 66)(]3 + Ga_g)<]3 + 62;) = }:III(I) OE+ ([L’)_lyoi_ (l‘)
= Yo+ ()" Yo- ()
=13+ Co
and
‘111%([3 + GE_F)(Ig + 65—5—71')([3 + 6%2) = lll’r(l) Y_EW+(—$)71Y;€7(—I')
=Y_ i (—2) 'Y (—2)
=L+C_;

Hence the result. m

3.2.3 Perturbed Stokes multipliers vs Stokes multipliers

We are left to calculate the perturbed Stokes multipliers defined in (3.9). As
we previously said, for € > 0 small enough, the two collections of anti-Stokes
directions (0, —7) and (—e, —e — m) associated with f< are generated by
just one Stokes value of system (3.7), respectively 1 and 2¢~%*. Since these
two points are both with monomial front, section 3.1 applies: the perturbed
Stokes multipliers o and o  (resp. 0°_ and o°___) are expressed in terms

of the connection constants at 7 = 1 (resp. 7 = 2e~2€) of the f <¥(7)’s,
u = 0,1. Similar calculations to those detailed in examples 1.7 and 2.3 give
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us
. [0]2 . 6% el1]2
o5 = 227rki+ + 20T ok
r(3)
e 03 e 13
o, = ZWF ) k;L,]ng + 227TF ) k;g,]QJr
4 4
(3.11)
o°, = 2i7rk‘i[i]2 + 2ime™" e(é) ki[]f
2
o° = 2ime? S0, + 2ire 2 03
—e—m 3\ V2e—2ie, 5) '2e—2ie,
) r(3) i r(3) i
where
214 .
ki[ip _ = k;L()J?;zs L= _Te—3zs/2€—3m‘/4
(3.12)
: 9/4
ez _ ° w277 sics i
ki,+ = g k;672i57+ = —?6 pie/2g=bim/4
We obtain
47N\ dre=3E/2 16 & .
i (W B > b= 2 < sry Pl e )
4/ 4re3E/2 16 4
e _ : 5 — _23/4 - T 3\ ,—bic/2
o° <7T + - ) ) o (—31“(%) E (1)e

Note that, letting € tend to 0, these relations reduce to relations (3.9).

Remark 3.3 When ¢ goes to 0, identities (3.12) become

limky P = k1%

e—0
(3.13)
. e[1]2 4 [1]2

. e[0]3
l%k26—27;57+

. e[1]3
ll_{%k%*mf#

0]3
— @L

1]3
— @L

where kﬁ“]f and k:gu]f, u = 0, 1, respectively denote the connection constants

of the s at 7 =1 and 7 = 2 (cf.

example 1.7).
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Remark 3.4 Obviously, identities (3.9), (3.11) and (3.13) imply identities
(2.5), i.e., theorem 2.2 in restriction to system (1.3). Actually, as we shall
show below, this kind of identities is the core of the proof of theorem 2.2
when the collection (6y) is generated by p > 2 Stokes values.

3.3 Case of two Stokes values

We assume in this section that the collection (6), of anti-Stokes directions
associated with f(x) is generated by just two Stokes values w; and wy satis-
fying |wi| < [wsl.

Recall that we must prove identity (2.2) when the front of w; (resp. ws)
is monomial. We proceed similarly as in section 3.2 by considering a regular

perturbation of system (0.1).

3.3.1 A perturbed system

According to the normalization of Y (z) (¢f. page 2), the matrix A(z) of
system (0.1) reads

J r
Az) = @ [(Zkamxr—k> L, +2"L;

where L; := Ajl,, + J,, denotes the j-th Jordan block of the matrix L
of exponents of formal monodromy and where B(z) is analytic at the origin
0 € C. More precisely, split B(z) = [B’(x)] into blocks fitting to the Jordan
structure of L. Then,

(3.14) Bj;é(x) _ { O(z") if a;, # ag,

O(x?") if a;, = ag,

+ B(x)

For all £ > 0, we define the regularly perturbed system

dY
r+1 — A€
(3.15) . A% (2)Y

with

+ B(x)

r—1
Af(x) = EB [(mjr + Zkaj,ka:’”k> Ly, +2"L;
k=1

1

J
where, for all j =1, ..., J,
e { Qjr if Qjr #WQ

if a;, = ws
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For all ¢ > 0, system (3.15) has for formal fundamental solution the

matrix Y¢(z) = F¢(2)zLe? /") where

)
o F<(x) € M,(C[[z]]) is a power series in x verifying same normalization

as F(z): F*(z) = I, + O(2"),
e [ is the matrix of exponents of formal monodromy of system (0.1),

e )°(1/x) = @;.]:1 ¢;(1/)1,, is the diagonal matrix, the polynomial
entries ¢; of which are defined, for all j, by

QJ = qj if a/j,r # o))

1 wee e (1 _
q; (;) En—— + qj (E) if aj, = ws

Note that the following condition holds for € > 0 small enough:

(C1) System (3.15) has the unique level r and satisfies normalizations as
system (0.1); the set Q° of its Stokes values is deduced from the set €
of Stokes values of system (0.1) by replacing wo by wqe ",

Note also that, for £ = 0, we get A=A, Y° =Y and Q° = Q.

Let us now fix 4 > 0 such that condition (C1) above be verified for all
e €1]0,0].

For all € € [0, 4], we denote as previously by
e f%(x) the first ny columns of F¢(z),
o £e(t), u=0,...,r — 1, the r-reduced series of f<(z) (cf. (1.1)).

Proposition 3.5 Let Q)¢ denote the set of Stokes values of system (3.15).
Then, for all € € [0,0] and u =0, ....,7 — 1,

um

Fel(t) € Resg.

v
Moreover, the singularity fﬂfﬁ ] + at any Stokes value w € Q°\{0} with monomial
front is given by (1.2).

Proposition 3.5 is straightforward from condition (C1) and theorem 1.3.
However, in view to study the dependence of the Borel transforms J?a[“] (1)
of fg[“] () in the parameter €, we need to give again a complete proof of the
S}lmmable—resurgence of the fvg[u] (t)’s. We proceed as in [10] by following
Ecalle’s method by regular perturbation and majorant series quoted in [3].
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3.3.2 Proof of the summable-resurgence for the perturbed system

Fix € € [0, §]. By definition of rank reduction, the vector

Fee)
For=| i | € Mun(Cl)
Frie

is a column-block of a formal fundamental solution of the reduced system of
(3.15) ([5]). Hence, its homological system provides a system characterizing
the f el (¢)’s.

Denote respectively by A% (t) and B(t) the r-reduced series of A¢(x)
and B(z). Then ([5]), f(t) is uniquely determined by the system

df

1 2
(3.16) r o

=A()f —tf Jn,

jointly with the initial condition fE(O) = Lpn, (the first ny columns of the
identity matrix of size rn). The matrix A°(¢) is the matrix of size rn x rn
defined by

[ A0 AUy tASH (1) 7
Acl] (t) Aclo ) - : .

A= S < Y

: o ATy AT

A=) s Ay AT ]

where

J
A1) = @ (ra,1n, +tL;) + B (t)
j=1

and, forallu=1,....,r — 1,

J
At = P (r — waj, Ty, + BM(2)

J=1

Moreover, according to (3.14), the series B“(t) = [BM5(1)] € M, (C{t})
satisfy, for all u = 0, ..., — 1, the condition

ity _ J O(t) if aj, # ag,
(3.17) ) { o)

it aj, = ap,
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Note that the definition of the matrix A®(x) of system (3.15) implies that
only the matrix A°%(t) depends on the parameter «.

Following J. Ecalle ([3]), we consider, instead of system (3.16), the regu-
larly perturbed system

(3.18) rtz% = A°(t,Q)f —tf J,

obtained by substituting aB!™ for B for all w = 0,...,7 — 1 in the matrix
AF(t) of system (3.16).

An identification of equal powers in a allows us to state that system (3.18)
admits a unique formal solution of the form

Felta) =Y fi(ta”

m>0
satisfying f5(t) = Lnn, and £ (t) € My, (C[[t]]) for all m > 1. More
precisely, split f < () = [~f,£0] ), ..., forH (t)] into r blocks of size n x ny
like £<(¢) and denote by
(1)
co(t) = : forall j=1,...,J

m,]
~$’[lr—1]j;o (t)

the matrix of size rn; x ny formed by the j-th row-blocks of the £ o (t)’s (we
refer to page 8 for the notations).
Lemma 3.6 For all m > 1, the components ffnj(t) € My, n, (C[[t]]) of

ffn(t) are uniquely determined, for all j = 1,...,J, as formal solutions of
systems

2d}:fn,j epe re re re
where
B B[O]j”(t) tB[T_l]j;'(t) thj;'(t) 7]

B[l]jw(t) B[O]j;'(t)
: B[O]jw(t) tB [T—llj;-(t)
B[r—l]j;'(t) . e B[l]jw(t) B[O]j;'(t)

is a matriz of size rn; x rn with analytic entries at 0 € C and where the
matrices A5 and A; are the constant rn; X rnj-matrices defined by
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[ ra, 0 0
e | D o
: 0
i aj1 (r—1)aj,—1 ras,
[0 ajq (r—1aj,—
- . . r—1
° Aj = ' ) ’ ’ (%) ]nj — @(LJ — ’U,In])
. ‘. CLj,l u=0
10 0

Remark 3.7 When a5, # 0, the matrix Aj is invertible. Moreover, since
system (3.15) has the umque level r, assumptlon (0.3) implies that A5 = 0

and B
Aj = @ (LJ
u=0

as soon as a;, = 0. Note also that only the matrix A} depends on e.

Relations (3.19) and normalizations (3.17) show in particular that

Fana =00 and Fi,0={ OGl e )

for al m > 1 and j = 1,...,J. As a result, the series :fg(t «) can be
rewritten as a series in ¢ Wlth polynomial coefficients in «. Consequently,

f (t) = Fe(t, 1) (by unicity of f(t ) and f°(¢,1)) and, for all «, the series
f<(t,a) admits a formal Borel transform ¢°(7, o) with respect to ¢ of the

form
P (1,0) = 0Lynm, + Z‘Piﬂ(T)Oé

m>1

where @2 (7) denotes, for all m > 1, the Borel transform of f £ (¢). In
particular, for a =_1, lemma 3.8 below tells us that the Borel transform
f (1) = @°(1,1) of f 5( ) can be interpreting as a series of resurgent functions
on RQE.

As previously, we split ¢ (1) = [cpﬁ[f”( ), - Lo (7')] into r blocks of
size n X n; and we denote by
om"(7)
P j(T) = : forall j=1,..,J
o (1)
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the matrix of size rn; x n; formed by the j-th row-blocks of the Trs (1)’s.

Since 5, ;(7) is the Borel transform of ]?in ;(t), identities (3.19) provide iden-
tities satisfied by the ¢, ;(7)’s. More precisely, we can check the following
result:

Lemma 3.8 (Decomposition of the Borel transform ]?5(7'))
The Borel transform f () of f<(t) reads in the form

= 3" (7) with @5, (7) € My, (C[[7]]) for allm > 1

m>1

Moreover, for all m > 1, the components @5, ;(T) € My, n, (C[[T]]) of ¢5,(7)
are iteratively determined, for all j =1,...,J, as solutions of systems

dr

det, ; d (=
(320) R; ) — Sj(mej + E (B] * Soin—l> - Sofn,jjnl

where @§ = 01pn, and where

r(r—as,) O e 0
. ‘. ‘. O
aj1 e (r=1)aj—1 r(T— air)
0 a1 - (r—1)aj,—1
. . . . r—1
o Sj=| : ® L, —EP(L; - (u+ 1))
. ‘. Cljjl u=0
0 -ov ... 0

In particular, the ¢5,(1), m > 1, are resurgent functions defined on Rqe.

The resurgence of the 7 ’s is due to the fact that the only singularities
of systems (3.20) are the Stokes values a5, € Q°. Indeed, the homogeneous
equation associated with (3.20) is smgular at aj,. Moreover, since Bj(t)
is analytic at 0, its Borel transform B J( ) is an entire function on C and,
consequently, the singularities of the convolution product é\] *x@° _ are those
of o7, 1

We are left to prove (c¢f. def 1.2) that

(a) fa(T> is analytic at 0 and can be analytically continued to Rq- (we
keep denoting by f¢(7) the analytic continuation),
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(b) fE(T) grows at most exponentially on any v-sectorial region AS of Rg-.

These properties are proved below by using a technique of majorant series
satisfying a convenient system. There exists, of course, many possible ma-
jorant system. Here, we make explicit a possible one.

Let g = [g[o}, e g[r_lq be a matrix of size rn X n; split as previously into
r blocks of size n x ny and, for all j =1, ..., J, let
g[U]j§.
g; = :
g[rfl]jw

be the matrix of size rn; x n; formed by the j-th row-blocks of the gl’s.
When g = I, n,, we denote by I}, . the matrix g;.

Fix v > 0 and consider, for j =1, ..., J, the perturbed linear system
(3.21)

( Cla— T ) — (I o B, (%)
Cj(gj I )_(T®Jnj)gj+gj‘]n1 2L, Iy ; g

™M,y

3 3] —
ifa, =0

(R; —15;)9; = tg;Jn, + B, (1)g
0 if a5, #0

where

e |B;| (t) denotes the series B,(t) in which the coeflicients of the powers
of t are replaced by their module,

e (; is an invertible constant rn; x rn;-diagonal matrix with positive
entries,

e R; and S; are the constant rn; x rn;-matrices defined by

Rj — _|Clj,r—1| T . : ®Inj
—laji| - —lajea| v
and
0 laji| -+ laj,—1]
- .. : LI w
: e agal w—o T T

0 v .- 0
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Note that, for now, the constants C; are just arbitrary. They are to be
adequatly chosen below (cf. lemma 3.8).

Note also that system (3.21) does not depend on the parameter . Ac-
tually, system (3.21) is the majorant system that we used in [10] to prove
summable-resurgent theorem for f () (thm. 1.3). In particular, we showed
that the Borel transformed system of system (3.21) admits, for & = 1, a
solution of the form

9(1) = 0L + Y Bin(7) € My (ClI7]))

m>1

which is entire on all C with exponential growth at infinity. Moreover, for
all m > 1, the ®,,(7)’s are also entire functions on all C with exponential
growth at infinity. More precisely, using notations as above, the components
®,, (1) of ®,,(7), m > 1 and j = 1,..., J, are iteratively determined from
®, = 01,,,, as solutions of the following systems:

e Case a5, = 0:
d —_—
Ci®unj = (L © Ju, ) B+ By + == (Bl @)

e Case a5, # 0:

d®,,
dr

Rj d — Sj(I)m,j + (I)m,jJnl + % (|BJ| * (I)m_1>

In particular, the series ®,,(7) have non-negative coefficients.

Since only the Stokes values a5, € ° depend on the parameter ¢ in
system (3.15), the calculations detailed in [10, § 3.2.2] apply allowing us to
make explicit a convenient majorant series of f(7) (c¢f. lemma 3.9 below).

Recall that, according to the definition of A% (c¢f. page 5), there exists
a constant K > 0 so that, for all 7 € AS, there is a piecewise-Cl-path ~,
contained in A{ and parametrized by arc length from 0 to 7 such that the
arc length s, of all n € v, satisfies |n| <'s, < K'|n|; |n| denotes the modulus
of the projection of 7 in C ([6, lem. 2.4]). Besides, since points in A? have
bounded arguments, there also exists a constant a > 0 such that |arg(7)| < a
for all 7 € AS.
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Lemma 3.9 (Majorant series, [10])
Let K and a be two constants as above.

Let 1
1 T Aju
J Kmaxexp(2a|lm)\j|)@( e(r 7")) ’
1<5<J

u=0

forallj=1,...,J.
Then, for allm > 1, 7 € A;, and j =1, ..., J, the following inequalities hold:

(3.22) |65 ()] < Punj(57) < B (K |7)

In particular, the series g(K |7|) = Z@m(K |7]) is a majorant series of
m>1
fe(r).

Recall that the second inequality of (3.22) is due to the fact that the
series ®,,(7) has non-negative coefficients; the first inequality is proved by
using Gronwall lemma.

Since g is well defined on A¢, with exponential growth at infinity, the same
property holds for £¢(7) which achieves the proof of the summable-resurgence

of £<(7).

Remark 3.10 Although this proof is similar to the one in [10], it has its
own interest. Indeed, it allows to deal with a particular case of regularly
perturbed systems with a single level.

Remark 3.11 The majorant series g(K|7|) does not depend on the para-
meter €. This point, which is crucial in the proof of the connection-to-Stokes
formulee that we present in this article, was obtained because the parameter
e 1s only related to the Stokes values of Q2°. Of course, for a more general
perturbation, this fact no longer holds in general.

3.3.3 Dependence of the Borel transforms }’\SM (1) in €

Let Wy := .c(p, ©° denote the set of Stokes values of systems (3.15) for all
e € [0,6]. By definition, W is the union of the set Q\{wsy} of Stokes values
a;, # we and the circle arc A(ws,d) := {wse " | € € [0, 0]} of length §. Note
that, according to condition (C'1), the sets Q\{ws} and A(ws, ¢) are disjoints.

Definition 3.12 (v-generalized sectors of C)

Let v > 0 be a positive number smaller than half the minimal distance between
the elements of Q\{w2} and smaller than the distance between the closed sets
O\{w2} and A(wq, ). We call v-generalized sectors of C associated with W
any open domain ¥, C C satisfying
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1. ¥, is of the form
{reC; a<arg(z) < f and |x —w| > v for allw € Ws\{0}}
with o, €] — 2w, 0],
2. X, 18 simply connected.
We are now able to state the result in view in this section.

Proposition 3.13 (Dependence of the Borel transforms f el (1))
Fiz u € {0,..,r — 1}.

1. Given v > 0 as in definition 3.12, there exists an entire function !
on all C growing at most exponentially at infinity such that, for any
v-generalized sectors ¥, of C associated with Ws, there is a constant
c > 1 such that

7| < pllelr)) forall 7 € T, and e € [0,4]

2. For all T ¢ W;, the function e — F (1) is continuous on [0, ].
In particular,

lim £ <1(r) = F1")(r)

e—0

Recall that the fa[“] (1)’s, u=0,...,7—1, are the components of the Borel
transform f°(7) of f(¢):

Fr)
Fe(r) = o
feri(r)

Proof. The proof of proposition 3.13 is derived from the proof of summable-
resurgence of the f°[(t)’s given above.

Point (1) is straightforward from lemma 3.9. Indeed, ¥, can be seen as a
v-sectorial region A of Rq- for any ¢ € [0,0] and the majorant series of
F¢(r) does not depend on ¢.

Otherwise, lemma 3.8 shows that fE(T) reads as a series }\6(7’) => 1P (7)
where, for all m > 1, the terms ¢, (7) are analytic functions on all Rq- and
are solutions of systems (3.20) which continuously depend on ¢. In particular,
for all 7 ¢ W5 and m > 1, the function ¢ —— ¢, (7) is continuous on
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[0,6]. Thus, by applying again lemma 3.9, the series > -, ¢5,(7) is, for all
T ¢ W;, a series of continuous functions in ¢ which normally converges on
[0,0]. Hence, point (2) and proposition 3.13. =

Note that the fact that the majorant series given in lemma 3.9 does not
depend on the parameter ¢ is crucial.

Proposition 3.13 above can be extended to the other columns of Fe. Let
us denote by

° IN?E[“], u=0,...,7 — 1, the r-reduced series of ﬁs,

o O° :={a— 0, a,f € Q°} the set of Stokes values of the homological
system associated with (3.15),

o W; = Use[o, 6] Q° the set of Stokes values of the homological systems
of (3.15) for all € € [0, J].

Since W is, like Wy, the union of a finite set of points and a finite number
of circle arcs of length 6 ¢, we can extend definition 3.12 into the one of v-
generalized sectors of C associated with W s allowing so to state the following
result:

Corollary 3.14 (Dependence of the Borel transforms F<"(r))
Fizu=0,...,r—1.

1. Given v > 0 small enough, there exists an entire function Tl op
all C growing at most exponentially at infinity such that, for any v-
generalized sectors X, of C associated with W, there is a constant
C > 1 such that

‘f\s[u](T)‘ < 11;[“](0 |7])  for all T € X, and e € [0, 9]

2. For all T ¢ Wy, the function ¢ — Fe(7) is continuous on [0,4]. In
particular,

lim F el (1) = Fl (1)

e—0

6More precisely, W is the union of the set of Stokes values a;, — ag,, With @, # wo
and the circle arcs {£(w2e™""¢ —ay,) , € € [0,d] and ap,, # wa}.
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3.3.4 Perturbed Stokes-Ramis matrices vs Stokes-Ramis matrices

Recall that
e () denotes the set of Stokes values of system (0.1),

o O, := Q* N d,y, denotes the set of non-zero Stokes values of system
(0.1) generating the collection (6 )r—o, ,—1 of anti-Stokes direction as-

sociated with f(x).

Recall also that we suppose in section 3.3 that €9, = {w1,ws} with |w;| <
|wa-
In addition to these notations, we denote by

e Q:={a—-p; «a,f € Q} the set of Stokes values of the homological
system of (0.1),

o O, = Q" Ndy, the set of non-zero Stokes values of the homological
system of (0.1) generating the collection (0y)x—o,  ,—1-

Note that the Stokes values of 2,4, are the three Stokes values w;, ws and
wy — wy and possibly the Stokes values of the form

o w; —ay, with j =1,2 and arg(ay,) = 76y — m,

e a— [ with o, 8 ¢ Q. = {w1,ws}.

We can now study the action of the perturbation in € on the collection

(Or)-

Lemma 3.15 (Action of the perturbation on (6;))
For ¢ > 0 small enough, the collection (0)k—o....r—1 splits into the following
collections of anti-Stokes directions of system (3.15):

1. the three collections (0k)k=o,.. r—1, (O — €)k=o,..r—1 and (Ok)r=o,..r—1
respectively generated by the Stokes values wy 7, wy and wye™ %% — wy,
2. the possibly collections which are generated by the Stokes values of the

orm wee %€ — ay, . with arg(ay.,) = 10y — 7.
b g 7

"Note the collection (fx)k—o, . r—1 can be also generated by the Stokes values of the
form wy — ag» with arg(ay,,) = rfo —m or of the form o — § with «, 8 ¢ Q,¢, if they exist.
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When they exist, we denote the collections of (2) by (fksc)k—o,..r—1, S =
1,...,p, so that

(3.23) O > 051> ...>0;

k,p,e

> (0 —e)" > 05 <

for all £ = 0,...,7 — 1. Note that only (fx) and (6, — ) are collections of
anti-Stokes directions associated with f&(z).

For any directions * above, we denote by I, + G%. the corresponding
Stokes-Ramis matrix associated with Y (the formal fundamental solution of
system (3.15) given page 28). As usually, we split &2, := [&5.77] into blocks
S5 of size n; X ny fitting to the Jordan structure of L (matrix of exponents
of formal monodromy). Recall that n; is the size of the j-th Jordan block
Lj = Njln, + Jy,; of L.

Lemma 3.16 (Perturbed Stokes-Ramis matrices)
Forallk=0,....,m—1,

o the block 66 5L s zero as soon as ajr # wi,

o the (-th column-block 65 ot of 622 is zero as soon as ag, = wa,
e the block G‘EeZi)* iS Z€T0 as S00M as aj, 7# wo or { # 1,

e the block 6‘;5:6 iS Z€T0 AS SO00M AS Gj, F Wa OT Gy, F Wi

e when the direction Oy s . exists, the (-th column-block 65 ot f(‘SEI: s

zero as soon as { =1 or a;, = ws.

Proposition 3.17 below makes explicit the Stokes-Ramis matrices I, + Cpx
of system (0.1) in terms of the perturbed Stokes-Ramis matrices above.

Proposition 3.17 (Perturbed vs initial Stokes-Ramis matrices)
Fix k€ {0,...,r — 1}.
Let M; be the matriz defined by

M]i = (]’I’L + 68271’5)(171 + 652’27€>...(]n + Gaz’p,s)

when the collections (Oy ), s =1,...,p, exist and M; = I,, otherwise.
Then,
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In particular, for a;, € {wi,ws}, the Stokes multipliers C‘éi{ of f satisfy

i = lim&S,.7H ifa;, =w
oy — MO0 f ajr 1
(3.25)
;& __1: e g;1 A
cél,; = lli%6(9k—€)* if aj, = wo

Proof.  Relations (3.25) are straightforward from relations (3.24) and
lemma 3.16.

* Prove identity (3.24). In addition to condition (C'1), we can suppose,
after possibly replacing § by a smaller value ¢’ €]0, ¢], that the two following
conditions are satisfied:

(C2) for all € €]0,0] and k = 0, ...,m — 1, the directions 6y, 0 — ¢, 0. and
Okse, s = 1,...,p, are the only anti-Stokes directions of system (3.15)
with principal determinations in [0} _, 6],

(C3) forallk =0,...,r—1, the direction 0% 5 is close enough to 6 in order that
the two sectors with vertex 0, opening 7 /7 and respectively bisected by
05 and 0y s overlap.
Then, according to (3.23), the sums Y7 and Y, are related, for all k =
ke k
0,...,7 — 1 and arg(z) ~ 65, by the relation

(3.26) | Yo (p'2) = Yo (p2) (L + &5 )M (L + &Fy, oy ) (I + &5; )

Otherwise, it results from the definition of the perturbation in ¢ that liI%QE =
E—

@. Thus, lemma 3.18, point (2), below implies

lim Y (pz) =Y, (p"z) and lim Y7 (p'x) = Vi (')
E— k

e—0 0k,5 k

for arg(z) ~ 5. Consequently, we deduce from (3.26) that
lim (I, + &5, ) Mi (1 + &g, o) (I + &, ) = km Vi (p*2) 'Yy (o)

= Yy (p"2) 7Y (p*2)
= I, + Cy;

for all £k =0,...,7 — 1. Hence, proposition 3.17. m
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Lemma 3.18 With notations as above:

1. For allu=0,....,7 — 1 and arg(t) ~ rof,

i s, (F ) () = 800 (F ) (1)

70

im 105, (F) (1) = 31005 (F )0

2. For allk =0,...,r —1 and arg(x) ~ 60§,

lim s, 51 (F) (p"2) = 5,5+ (F) (")

e—0 . _

lim s,.5- (F°)(p"x) = 5,4 (F)(p"x)

e—0 k

Proof. x Point (2) is straightforward from point (1) and the two relations

r—1

e (F)(02) = 3(042) 10 (B9 (27)
5 (F) (0 2) = 3 (0h2) 51, (F 1) (27)

connecting the r-sum of F¢ (resp. F) in direction #, € {05,0,.} (resp. o)

to the 1-sums of its r-reduced series F<¥ (resp. f‘[“]) in direction 7%q (resp.
r0F).

* Prove the first identity of point (1). Fix u € {0,...,7— 1} and arg(t) ~ r6}.

For 77 > 0 small enough, the sums s, ,+(F () and Sp;r01 (F° ) (¢) are
respectively given by the Borel-Laplace integrals

sty BN = [ F@e = [ G i

d’r90+”7
where
ai[U] (1) == Fell (Tei(reoJrn))e—T exp(i(rfo+n))/t
and N ~ foo
g B0 = [ By tar = [ & ar
T00+n
where

Gl (7) = Bl (7o) o= explitrdotn) 1

Apply corollary 3.14:
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— the function ¢ — G5 (7) is continuous on [0, 4] for all T > 0 and

lim G;"() = GI"(7)

e—0

— there exist an entire function Tl on all C growing at most exponen-
tially at infinity and a constant C' > 1 such that, for all € € [0, §] and
T >0,

(3:271) | |Gi(r)| < Wh(Cr)eTRete i/ — M ()

Then, since M [lu] (7) is integrable on [0; +00[, we deduce from Lebesgue dom-
inated convergence theorem that the function ¢ — 31;7~90+(F6[u])(t) is con-
tinuous on [0, 0] and

e—0

- +oo - +oo -
lim ., (F<) (1) = / lim G} (r)dr = / Gy (T)dT = 51,00 (F)(1)
e=0 & 0 0 ’
Hence, the first identity of point (1).

* The second identity of point (1) is obtained similarly. Note that, in addi-
tion to conditions (C'1), (C2) and (C'3) above, we can suppose, after possibly
replacing d by a smaller value in |0, d], that the following condition is satisfied:

(C4) for any ¢ €]0, d[, there is no anti-Stokes direction of system (3.15) with
a principal determination in [0} 5, 05 _[.

As before, there exists 77 > 0 such that the sums s, - (F<l))(¢) and S14r0- (Fb) (1)
are respectively given by the Borel-Laplace integrals

1y, (F(0) = [

+oo
Fell(r)e /tdr = / G (r)dr
d 0

7'90,577]
where
G (7) 1= Felul (ilrbo.5—m) =7 exp(iCrdo s —m)/t
and N ~ oo
S0 (FH (1) = / F(r)e /tdr = / G (r)dr
ne drgg 5 0
where

Gl (7) = ) (reir0.5-m)) o= exp(itrio s —n) 1

We conclude as above by using corollary 3.14. =
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Remark 3.19 Inequality (3.27) allowing to apply Lebesgue dominated con-
vergence theorem is the key point of the proof of lemma 3.18. Recall (cf.
corollary 3.14) that such an inequality was obtained because the parameter
€ 1s only related to the non-zero Stokes values of ). Of course, for a more
general perturbation, i.e., the parameter of which is no longer related only
to ©*, inequality (3.27) and hence lemma 3.18 no longer hold in general.

We are now able to prove theorem 2.2 in the case when the collection
(Ok)k=o0... r—1 is generated by just two Stokes values.

3.3.5 Proof of theorem 2.2

Recall that we must prove identity (2.2) when the front of w; (resp. ws) is
monomial. Recall also that such a condition can always be fulfilled by means
of a change of the variable = in system (0.1) (c¢f. lemma 2.4).

First case: the front of w; is monomial. For all € €]0,0], the col-
lection (0y)k—o.. r—1 is a collection of anti-Stokes directions of system (3.15)

associated with f¢ and is generated by just one Stokes value of Q° (here,
wi). Then, the hypothesis “w, is with monomial front” allows us to apply
section 3.1: the perturbed Stokes multipliers 622] " j such that aj, = w,
of fe at wl are expressed in terms of the connection constants of the }'\5[“} 'S
w=0,..,r — 1, at w;. More precisely, denoting by K E[f ! the connection
matrix of f Felul at w; and K. SMJ * its j-th row-block accordmgly to the Jordan
structure of L (matrix of exponents of formal monodromy), we obtain

(328) 8 ] 1 Z k uj“ —Lj) u]j’.pk‘]m

for all £k =0, ..., — 1, where

. Ai—u JIn ; . J
eluljse . _ I — -1, —L greulje 1
Iwi( — / T T T r KWIF‘F T (&

Yo

We refer to theorem 2.2 for the definition of path ~q.
Otherwise, proposition 3.13, point (2), implies that the principal majors

\{fy Jlrl amdl }/‘[ZJ , of }'\E[u] and f[“} respectively are related, for allu = 0,...,7—1,
v the relation

lim f (1) =L () forallrg | o

€€[0,0]
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Then, we obtain

imK = K

J;e
*
e—0 Wi,

and, consequently, proposition 3.17 applied to identity (3.28) implies identity
(2.2).

Second case: the front of w, is monomial. Identity (2.2) is obtained
is a collection of anti-Stokes directions of system (3.15) associated with f¢©
and still is generated by just one Stokes value of QF, here wye ", the front
of which is monomial. Therefore, we can apply again section 3.1 and we can
conclude as above by using propositions 3.13 and 3.17. W

3.4 General case

-----

.....

We proceed similarly as in section 3.3 by considering, for ¢ > 0, the
regularly perturbed system

dY
2 T = A*(2)Y
(3.29) R (x)
with 1
As(x) = GB [(mjr + Zkaj7er_k> I, +a"L;| + B(x)
j=1 k=1
where, for all j =1, ..., J,
aj, if aj, ¢ {wi,ws,...,wp}

€
Qa . = . —1 .
Jr { W €XP (—m—(‘;%lk) if a;, = w,

Doing so, we can check that the results of section 3.3 can be extended to
system (3.29). This ends the proof of theorem 2.2. W
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