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Stokes-Ramis matrices and connection constants for meromorphic linear differential systems with a single level: a perturbative approach.

Introduction

All along the article, we are given a linear di¤erential system (in short, a di¤erential system or a system) (0.1)

x r+1 dY dx = A(x)Y ; A(x) 2 M n (Cfxg); A(0) 6 = 0 of dimension n 2 with meromorphic coe¢cients of order r + 1 2 at the origin 0 in C. Such a system admits a formal fundamental solution of the form e Y (x) = e F (x)x L e Q(1=x) where e

F (x) 2 M n (C[[x]]
) is a power series in x, the matrix L 2 M n (C) of exponents of formal monodromy is a constant matrix and where the irregular part Q(1=x) = diag(q 1 (1=x); :::; q n (1=x)) is a diagonal matrix with polynomial entries q j (1=x) 2 x 1= C[x 1= ], 2 f1; :::; n!g, in a fractional power of 1=x ( [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations ; Part I, formal invariants[END_REF][START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF]).

The …nite algebraic extension x 7 ! x of the variable x and a suitable meromorphic gauge transformation Y 7 ! T (x)Y where T (x) has explicit computable polynomial entries in x and 1=x allow to normalize e Y (x) as follows ( [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations ; Part I, formal invariants[END_REF]):

e F (x) 2 M n (C[[x]]
) is a power series in x with condition e F (x) = I n + O(x r ), where I n is the identity matrix of size n, L = J M j=1 ( j I n j + J n j ) where J 2, Re( j ) 2 [0; 1[ and where if n j 2 is an irreductible Jordan block of size n j , Q(1=x) is a diagonal matrix with polynomial entries in 1=x of the form

J n j = 8 > > > > > > < > > > > > > : 0 if n j = 1
Q 1 x = J M j=1
q j 1 x I n j with q j 1 x = a j;r x r a j;r 1 x r 1 :::

a j;1 x 2 x 1 C[x 1 ]
Besides, we assume that (0.2) 1 = 0 and q 1 0

These conditions can always be ful…lled by means of the change of unknown vector Y = x 1 e q 1 (1=x) Z.

The assumption "system (0.1) has the unique level r" is equivalent to the conditions (0.3) 1: q j q ` 0 or with degree r for all j; 2:

there exists j such that a j;r 6 = 0

Note that these conditions imply q j q `, a j;r = a `;r

The coe¢cients a j;r of the leading terms of the q j 's, j = 1; :::; J, are called the Stokes values of system (0.1). Recall that the r-th roots of the points a j;r a `;r 6 = 0 de…ne the anti-Stokes directions of system (0.1).

Under the assumption (0.3), we are interested in the formulae given the Stokes multipliers of e F (x) in terms of connection constants in the Borel plane. When r = 1, these constants are given by the singularities of the Borel transform b F ( ) of e F (x). Many proofs exist under su¢ciently generic hypothesis (see [START_REF] Lutz | Calculating connection coe¢cients for meromorphic di¤erential equations[END_REF] for instance). A complete proof without assumption of genericity was recently given by M. Loday-Richaud and the author ( [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF]). In this proof, we used Écalle's method by regular perturbation and majorant series quoted in [START_REF] Écalle | Les fonctions résurgentes, tome III : l'équation du pont et la classi…cation analytique des objets locaux[END_REF]. We stated the summable-resurgence of e F (x) and we displayed a precise description of the singularities of b F ( ) in the Borel plane; the connection-to-Stokes formulae are performed by interpreting the Stokes-Ramis matrices as Laplace integrals of these singularities.

Afterwards in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF], the author extended these results to the case r 2 by using the classical method of rank reduction and by applying Écalle's method to the reduced system. In this case, instead of e F (x), we considered its sub-series e F [u] (t), u = 0; :::; r 1 and t = x r , of terms r by r, also called rreduced series of e F (x). The connection-to-Stokes formulae are performed by connecting the Stokes-Ramis matrices of system (0.1) to those of its reduced system (cf. [5, prop. 4.2]) and the Stokes multipliers of the reduced system to the connection constants given by the singularities of the Borel transforms b F [u] ( ), u = 0; :::; r 1.

In the present paper, we shall provide a new proof of connection-to-Stokes formulae displayed in the case r 2. This proof is quite di¤erent from the one in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] since it is based on a perturbation of system (0.1) and a limit process.

In section 1, we recall the results from [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] on the r-reduced series of which we need.

In section 2, we state the connection-to-Stokes formulae given in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]. These formulae make explicit the Stokes multipliers of e F (x) in any anti-Stokes direction of system (0.1) in terms of the connection constants given by the singularities of the Borel transforms b F [u] ( )'s at the various Stokes values generating .

Section 3 is devoted to the proof of the connection-to-Stokes formulae. We …rst start by the generic situation where is generated by just one Stokes value (section 3.1). The case of several Stokes values is treated by means of a regular perturbation of system (0.1). We choose the perturbation so that the Stokes values …t the previous generic situation; then, we connect the Stokes-Ramis matrices of system (0.1) to the perturbed Stokes-Ramis matrices by means of a limit process (sections 3.3 and 3.4).

Throughout the article, we develop an example in order to illustrate our di¤erent results.

Acknowledgement I would like here to thank Professor M. Loday-Richaud for all her comments and advice which enabled me to …nalize this article.

1 r-reduced series: summable-resurgence and singularities

For the convenience of the reader, we recall in this section some results from [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] concerning the summable-resurgence and the singularities in the Borel plane of the r-reduced series.

Since any of the J column-blocks of e F (x) associated with the Jordan structure of L (matrix of exponents of formal monodromy) can be positionned at the …rst place by means of a permutation P on the columns of e Y (x), we can restrict ourselves to the study of the column-block e f (x) formed by the …rst n 1 (= the dimension of the …rst Jordan block of L) columns of e F (x).

Recall that, after permutation, the new formal fundamental solution e Y (x)P reads e Y (x)P = e F (x)P x P 1 LP e P 1 Q(1=x)P .

Recall that the r-reduced series of e

f (x) 2 M n;n 1 (C[[x]]) are the the formal series e f [u] (t) 2 M n;n 1 (C[[t]]
), u = 0; :::; r 1, de…ned by

(1.1) e f (x) := e f [0] (x r ) + x e
f [1] (x r ) + :::

+ x r 1 e f [r 1] (x r )
In other words,

e f [u] (t) = X m 0 f u+mr t m when e f (x) = X m 0 f m x m 1.

Summable-resurgence theorem

Recall that a resurgent function is an analytic function at 0 2 C which can be analytically continued to an adequate Riemann surface R associated with a so-called singular support C. For a more precise de…nition, we refer to [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] and [6, def. 2.1 and 2.2]. Recall that the di¤erence between R and the universal cover of Cn lies in the fact that R has no branch point at 0 in the …rst sheet.

In the linear case, the singular support is a …nite set containing 0. In a more general framework, convolutions of singularities may occur what requires to consider for a lattice, possibly dense in C (cf. [START_REF] Écalle | Les fonctions résurgentes, tome III : l'équation du pont et la classi…cation analytique des objets locaux[END_REF][START_REF] Malgrange | Introduction aux travaux de J. Écalle[END_REF][START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] for instance).

To de…ne the summable-resurgence, we extend the classical de…nition of sectorial regions of C used in summation theory into the one of sectorial regions of R . These regions are called -sectorial regions (cf. [6, def. 

[[t]][t 1 ] to C[ (k) ; k 2 N] C[[ ]].
Under our hypothesis of "a single level equal to r" (cf. assumption (0.3)), we proved the following result in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]: Theorem 1.3 (Summable-resurgence theorem, [10, thm. 1.2]) Let = fa j;r ; j = 1; :::; Jg denote the set of Stokes values of system (0.1). Then, for all u = 0; :::; r 1,

e f [u] (t) 2 g Res sum 1.

Singularities in the Borel plane

For the convenience of the reader, we …rst recall some vocabulary used in resurgence theory (see [START_REF] Écalle | Les fonctions résurgentes, tome III : l'équation du pont et la classi…cation analytique des objets locaux[END_REF][START_REF] Malgrange | Introduction aux travaux de J. Écalle[END_REF][START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] for instance).

Denote by O the space of holomorphic germs at 0 on C and e O the space of holomorphic germs at 0 on the Riemann surface e C of the logarithm. One calls singularity at 0 any element of the quotient space C := e O=O1 . The canonical quotient map e O ! C is denoted by "can". A singularity is usually denoted with a nabla. A representative of the singularity Given ! 6 = 0 in C, we denote by C ! the space of the singularities at !, i.e., the space C translated from 0 to !. Then, a function

' b ! is a major of a singularity at ! if ' b ! (! +
) is a major of a singularity at 0.

General structure of singularities

Theorem 1.3 tells us that, for all u = 0; :::; r 1, the Borel transform b f [u] ( ) of e f [u] (t) is analytic on the Riemann surface R , its possible singular points being the Stokes values of including 0 out of the …rst sheet.

For any Stokes value ! 2 , we call front of ! the set F r(!) := fq j such that a j;r = !g of polynomials q j (1=x)'s, the leading term of which is !=x r . Under our hypothesis of a single level (cf. assumption (0.3)), F r(!) is a singleton:

F r(!) = ! x r + _ q ! 1 x
where _ q ! 0 or _ q ! (1=x) is a polynomial in 1=x of degree r 1 and with no constant term.

De…nition 1.4 (Singularity with monomial front)

A Stokes value ! 2 is said to be a singular point with monomial front when _ q ! 0. The corresponding singularity is called singularity with monomial front.

In the case of level-one systems (case r = 1), all singularities are with monomial front and they are regular, i.e., in the Nilsson class ( [START_REF] Balser | On the reduction of connection problems for di¤erential equations with an irregular singular point to ones with only regular singularities I[END_REF]). A more precise description was displayed in [6, thm. 3.7].

For systems with single level r 2, the situation is much more involved since _ q ! is not necessarily zero. This polynomial plays an essential role in the structure of the singularities. Indeed, one can show that the singularity at ! 2 is irregular when _ q ! 6 0 and keeps being regular when _ q ! 0. For a general description of singularities, we refer to [10, thm. 2.13].

Actually, as we shall show in sections 2 and 3, it is su¢cient to know the regular structure of the singularities with monomial front to make explicit and to prove the connection-to-Stokes formulae in full generality. For such singularities, a more precise description than the one of [10, thm. 2.13] is displayed in [10, thm. 3.5]. We recall it in theorem 1.5 below.

Singularities with monomial front

For all u = 0; :::; r 1, the behavior of the function b f [u] at any Stokes value ! 2 depends on the sheet of the Riemann surface R where we are, i.e., it depends on the "homotopic class of" the path of analytic continuation followed from 0 (…rst sheet) to a neighborhood of !. We denote by cont !; b f [u] the analytic continuation of b f [u] along the path and by !; the corresponding singularity.

From now on, given a matrix M split into blocks …tting to the Jordan structure of L (matrix of exponents of formal monodromy), we denote by M j; the j-th row-block of M . So, M j; is a n j p-matrix when M is a n p-matrix (recall that n j is the size of the j-th Jordan block of L). f [u] with monomial front.

For any path on Cn from 0 to a neighborhood of !, the singularity 

(! + ) = j u r 1 Jn j r K [u]j; !; Jn 1 r + rem [u]j; !;
( ) for all j = 1; :::; J with a remainder

rem [u]j; !; ( ) = X `;a `;r =! r 1 X v=0 ` v r R [u]j; `;v;!; (ln )
where

K [u]j; !;
denotes a constant n j n 1 -matrix such that K [u]j;

!;

= 0 when a j;r 6 = !, R [u]j; `;v;!; (X) denotes a polynomial matrix with summable-resurgent coef-…cients in d Res sum ! , the columns of which are of log-degree

N [`] = 8 < : (n ` 1) (n ` 1) + 1 (n ` 1) + (n 1 1) if `6 = 0 n `n`+ 1 n `+ (n 1 1) if `= 0 The constants K [u]j; !;
and the remainders rem ! ? ;+ given in theorem 1.5. Recall that, for all j = 1; :::; J,

(1.2) f b [u]j; ! ? ;+ (! + ) = j u r 1 Jn j r K [u]j; ! ? ;+ Jn 1 r
+ rem

[u]j;

! ? ;+ ( )
The entries of the matrices K

[u]j;

! ? ;+ when a j;r = ! are called the connection constants of b f [u] at !. Recall that K

[u]j;

! ? ;+ = 0 when a j;r 6 = !.

Note that, in practice, the matrix K

[u]j;

! ? ;+ can be determined as the coef-…cient of the monomial ( j u)=r 1 .

Let us end this section with an example which will be resumed throughout the article in order to illustrate our di¤erent results. (1=x) where

Q 1 x = diag 0; 1 x 2 ; 2 x 2 , L = diag 0; 0; 1 2 , e F (x) = 2 4 1 0 0 e f 2 (x) 1 0 e f 3 (x) 0 1 3 5 is a power series such that e F (x) = I 3 + O(x 4 ).
System (1.3) has the unique level 2 and the set of its Stokes values is = f0; 1; 2g.

Although system (1.3) may seem a little bit involved since it admits two aligned non-zero Stokes values, the fact that its matrix is triangular makes it simple enough to allow the exact calculation of the connection constants and the Stokes multipliers. For a more general system, .i.e., the matrix of which is no longer triangular, such exact calculations no longer hold in general.

The 2-reduced series of the …rst column of e F (x) are of the form

e f [0] (t) = 2 4 1 e f 2 (t) e f 3 (t) 3 
5 and e f [1] (t) = where the e f j 's are power series in t satisfying e f j (t) = O(t 2 ) (cf. (1.1)). Our aim is the calculation of the connection constants of the b f [u] 's, u = 0; 1, at the Stokes values = 1 and = 2.

By using rank reduction ( [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF]), we can check that the matrix

e f (t) := " e f [0] (t) e f [1] (t) # 2 M 6;1 (C[[t]])
is uniquely determined by the system satisfying the condition e f j (t) = O(t 2 ). As a result, their Borel transforms b f j 's are de…ned, for all j j < 1, by

2t 2 d e f dt = 2 
b f 2 ( ) = 2(1 ) b f 5 ( ) = 1 3 (1 ) 3=2 1 3 b f 3 ( ) = 2 7=4 3 (2 ) 3=4 + 2 3 b f 6 ( ) = 2 9=4 5 (2 ) 5=4 + 2 5
In particular, b f 2 and b f 5 (resp. b f 3 and b f 6 ) have just one singular point, located at the Stokes value = 1 (resp. = 2). More precisely, their analytic continuation b f + j to the right of these points are de…ned by

b f + 2 (1 + ) = + 1 2 b f + 5 (1 + ) = i 3 3=2 1 3 b f + 3 (2 + ) = 2 7=4 e 3i 4 3 3=4 + 2 3 b f + 6 (2 + ) = 2 9=4 e 5i 4 5 5=4 + 2 5
Consequently, the connection matrices

K [u] 1;+ and K [u]
2;+ are given by

K [0] 1;+ = 2 6 4 0 k [0]2 1;+ = 1 2 0 3 7 5 K [0] 2;+ = 2 6 6 4 
0 0 k [0]3 2;+ = 2 7=4 3 e 3i =4 3 7 7 5 K [1] 1;+ = 2 6 4 0 k [1]2 1;+ = i 3 0 3 7 5 K [1] 2;+ = 2 6 6 4 
0 0 k [1]3 2;+ = 2 9=4 5 e 5i =4 3 7 7 5
We end the study of system (1.3) with the calculation of its Stokes multipliers in section 2.2.1 (see example 2.3).

Stokes-Ramis matrices and connection constants 2.1 Stokes-Ramis automorphisms

Given a non anti-Stokes direction 2 R=2 Z of system (0.1) and a choice of an argument of , say its principal determination ? 2] 2 ; 0] as previously 2 , we consider the sum of e Y in the direction given by

Y (x) = s r; ( e F )(x)Y 0; ? (x)
where s r; ( e F )(x) is the uniquely determined r-sum of e F at and where Y 0; ? (x) is the actual analytic function Y 0; ? (x) := x L e Q(1=x) de…ned by the choice arg(x) close to ? (denoted below by arg(x) ' ? ). Recall that s r; ( e F ) is an analytic function de…ned and 1 r -Gevrey asymptotic to e F on a sector bisected by with opening larger than =r.

When 2 R=2 Z is an anti-Stokes direction of system (0.1), we consider the two lateral sums s r; ( e F ) and s r; + ( e F ) respectively obtained as analytic continuations of s r; ( e F ) and s r; + ( e F ) to a sector with vertex 0, bisected by and opening =r. Notice that such analytic continuations exist without ambiguity when > 0 is small enough. We denote by Y and Y + the two sums of e Y respectively de…ned for arg(x) ' ? by Y (x) := s r; ( e F )(x)Y 0; ? (x) and Y + (x) := s r; + ( e F )(x)Y 0; ? (x). The two lateral sums s r; ( e F ) and s r; + ( e F ) of e F are not analytic continuations from each other in general. This fact is the Stokes phenomenon of system (0.1). It is characterized by the collection, for all anti-Stokes directions 2 R=2 Z of system (0.1), of the automorphisms

St ? : Y + 7 ! Y that one calls Stokes-Ramis automorphisms relative to e Y .

De…nition 2.1 (Stokes-Ramis matrices)

One calls Stokes-Ramis matrix associated with e Y in the direction the matrix of St ? in the basis Y +3 . We denote it by I n + C ? .

Note that the matrix I n + C ? is uniquely determined by the relation

Y (x) = Y + (x)(I n + C ? )
for arg(x) ' ?

Relations between Stokes multipliers and connection constants

Recall that the set denotes the set of Stokes values a j;r of system (0.1). Given a direction 2 R=2 Z, we denote by d the half line issuing from 0 with argument , := \ d with = nf0g the set of non-zero Stokes values of system (0.1) with argument .

The anti-Stokes directions of system (0.1) associated with e f are the directions of maximal decay of the exponentials e q j (1=x) , q j 6 0. Therefore, to each non-zero polynomial q j i.e., such that a j;r 6 = 0 under our hypothesis of a single level (cf. assumption (0.3)) correspond r anti-Stokes directions 0 ; 1 ; :::; r 1 2 R=2 Z regularly distributed around x = 0. They are given by the arguments of the r-th roots of a j;r ; then, we say that a j;r generates the collection ( k ) k=0;:::;r 1 4 . Such a collection being chosen, we assume, to …x ideas, that the principal determinations ? k satisfy

2 < ? r 1 < ::: < ? 1 < ? 0 0 A Stokes value ! 2
generates the collection ( k ) k=0;:::;r 1 if and only if ! 2 r 0 .

Let := e 2i =r . For all k = 0; :::; r 1, the Stokes-Ramis matrix

I n + C ? k of e
Y in the direction k is uniquely determined by the relation

(2.1) Y k ( k x) = Y + k ( k x)(I n + C ? k ) for arg(x) ' ? 0 
We denote by c ? k the …rst n 1 columns of C ? k and we split c ? k into row-blocks c j; ? k accordingly to the Jordan structure of L (we refer to page 8 for the notations). The n j n 1 -matrix c j; ? k is zero for all k = 0; :::; r 1 as soon as a j;r = 2 r 0 . When a j;r = ! 2 r 0 , the entries of c j;

? k are called Stokes multipliers of e f associated with ! in the direction k .

Case of singularities with monomial front

Recall that = e 2i =r , the e f [u] 's, u = 0; :::; r 1, denote the r-reduced series of e f (cf. (1.1)), the singularities of the Borel transforms b f [u] 's of the e f [u] 's are located at the Stokes values of system (0.1) (cf. thm. 1.3). 4 From now on, we say that a point ! 6 = 0 generates a collection of r directions 0 ; 1 ; :::; r 1 2 R=2 Z regularly distribued around 0 when ! 2 d r 0 .

We denote moreover by L j := j I n j + J n j the j-th Jordan block of L (matrix of exponents of formal monodromy).

Let ! 2 r 0 be a non-zero Stokes value of system (0.1) generating the collection ( k ) k=0;:::;r 1 . We assume besides, in this section, that the front of ! is monomial.

Under this hypothesis, theorem 2.2 below tells us that the Stokes multipliers of e f associated with ! are expressed in terms of the connection constants at ! of the b f [u] 's, u = 0; :::; r 1.

Theorem 2.2 (Connection-to-Stokes formulae, [10, thm. 4.4]) For all j such that a j;r = !, the data of (c j;

? k

) k=0;:::;r 1 and of (K

[u]j;

! ? ;+ ) u=0;:::;r 1 are equivalent and are related, for all k = 0; :::; r 1, by the relations

(2.2) c j; ? k = r 1 X u=0 k(uIn j L j ) I [u]j; ! ? kJn 1
where

(2.3) I [u]j; ! ? := Z 0 j u r 1 Jn j r K [u]j; ! ? ;+ Jn 1 r e d
and where 0 is a Hankel type path around the non-negative real axis R + with argument from 2 to 0.

The proof given in [10, § 4.3] of theorem 2.2 is, on the one hand, based on the relations between the Stokes-Ramis matrices of system (0.1) and those of its reduced system ([5, prop. 4.2]) and requires, on the other hand, to know explicitly the structure of all singularities in the Borel plane (i.e., with monomial front or not). The proof that we shall give in section 3 is quite di¤erent since it is based on a regular perturbation of the matrix A(x) of system (0.1) and a limit process. As a consequence, we show in particular that it is su¢cient to know the structure of singularities with monomial front.

An expanded form providing each entry of the connection-to-Stokes formulae (2.2) is given in [10, cor. 4.6]. This can be useful for e¤ective numerical calculations. We recall this expanded form below in the particular case where the matrix L of exponents of formal monodromy is diagonal: L = L n j=1 j . In this case, the matrices c j; Since the Jordan blocks J n j are zero for all j, identity (2.3) becomes

Z 0 j u r 1 K [u]j ! ? ;+ e d = 2i e i j u r 1 j u r K [u]j ! ? ;+
Therefore, the Stokes multipliers c j ? k are related to the connection constants

K [u]j ! ? ;+ by the formulae (2.4) c j ? k = 2i r 1 X u=0 k(u j ) e i j u r 1 j u r K [u]j ! ? ;+
for all k = 0; :::; r 1

Let us end this section with a numerical application of theorem 2.2.

Example 2.3

We calculate here below the Stokes multipliers of system (1.3) by using theorem 2.2 and formula (2.4) above.

With notations as example 1.7, the anti-Stokes directions of system (1. ) is generated by the two Stokes values 1 and 2 ( 0 = f1; 2g) which are both with monomial front. Therefore, we deduce, from theorem 2.2, that the Stokes multipliers c 2 0 and c 2 (resp. c 3 0 and c 3 ) are expressed in terms of the connection constants at = 1 andb f [1] ( ). Precisely, since L is diagonal, it results from (2.4) that (2.5)

(resp. = 2) of b f [0] ( )
c 2 0 = 2i k [0]2 1;+ + 2i e i 2 3 2 k [1]2 1;+ c 3 0 = 2i e i 4 3 4 k [0]3 2;+ + 2i e i 4 5 4 k [1]3 2;+ c 2 = 2i k [0]2 1;+ + 2i e i e i 2 3 2 k [1]2 1;+ c 3 = 2i e i 2 e i 4 3 4 k [0]3 2;+ + 2i e i 2 e i 4 5 4
k

[1]3 2;+ (recall that = e i since system (1.3) has the unique level 2). Hence, (

c 2 0 = 4 p 3 i c 3 0 = 2 3=4 4 3 ( 3 4 ) + 16 5 ( 2.6) 
4 ) i c 2 = + 4 p 3 i c 3 = 2 3=4 4 3 ( 3 4 ) 16 5 ( 3 
)

General case

Let ! 2 r 0 be a non-zero Stokes value of system (0.1) generating the collection ( k ) k=0;:::;r 1 . Recall that the front of ! reads

F r(!) = q ! 1 x = ! x r + _ q ! 1 x
where _ q ! 0 or _ q ! (1=x) is a polynomial in 1=x of degree r 1 and with no constant term (cf. section 1.2.1).

When ! is with monomial front (i.e., _ q ! 0), theorem 2.2 above allows us to express the Stokes multipliers of e f associated with ! in terms of connection constants in the Borel plane.

When ! is with non-monomial front (i.e., _ q ! 6 0), a result of the same type exists but requires to reduce ! into a Stokes value with monomial front by means of lemma 2.4 below.

Lemma 2.4 (M. Loday-Richaud, [4])

1. There exists, in the x-plane (Laplace plane), a change of the variable x of the form (2.7) x = y 1 + 1 y + ::: + r 1 y r 1

; 1 ; :::; r 1 2 C such that the polar part p ! (1=y) of q ! (1=x(y)) reads

p ! 1 y = ! y r
2. The Stokes-Ramis matrices of system (0.1) are preserved by the change of variable (2.7).

Indeed, lemma 2.4 allows us to construct a new system (S) such that (S) has the unique level r and satis…es normalizations as system (0.1) (cf. page 2),

! is a Stokes value of (S) and is with monomial front, systems (S) and (0.1) have the same Stokes-Ramis matrices.

Hence, applying theorem 2.2 to (S), we can again express the Stokes multipliers of e f associated with ! in terms of connection constants in the Borel plane. Note however that these constants are calculated from system (S) and not from system (0.1). A numerical example was treated in detail in [10, § 5.3].

3 Proof of theorem 2.2

Case of a unique Stokes value

In this section, we assume that (A1) the collection ( k ) k is generated by a unique Stokes value ! 6 = 0 of system (0.1):

r 0 = f!g, (A2) the front of ! is monomial.
Recall that condition (A2) can always be ful…lled by means of a change of the variable x (cf. lemma 2.4).

Given k 2 f0; :::; r 1g, identity (2.1) reads

s r; k ( e F )( k x) s r; + k ( e F )( k x) = s r; + k ( e F )( k x)Y 0; ? k ( k x)C ? k Y 1 0; ? k ( k x)
for arg(x) ' ? 0 . Recall that Y 0; ? k (X) is the actual analytic function Y 0; ? k (X) := X L e Q(1=X) de…ned by the choice of arg(X) ' ? k . Since the matrices c j; ? k are zero as soon as a j;r 6 = !, we obtain, in restriction to the …rst n 1 columns,

(3.1) s r; k ( e f )( k x) s r; + k ( e f )( k x) = s r; + k ( e F )( k x)M k;! ? (x)e !=x r for arg(x) ' ? 0 where (3.2) M j; k;! ? = 8 < 
:

0 n j n 1 if a j;r 6 = ! ( k x) L j c j; ? k ( k x) Jn 1 if a j;r = !
for all j = 1; :::; J. Recall that n j is the size of the j-th Jordan block L j = j I n j + J n j of L. The matrix 0 n j n 1 denotes the n j n 1 -null matrix.

By de…nition (cf. (1.1)), the series e f is related to its r-reduced series e f [u] 's by the formula

e f (x) = r 1 X u=0 x u e f [u] (x r )
Therefore, the r-sum s r; ( e f ) of e f in a direction is related to the 1-sums (or Borel-Laplace sums) s 1;r ( e f [u] )'s of the e f [u] 's in the direction r . More precisely,

s r; ( e f )(x) = r 1 X u=0 x u s 1;r ( e f [u] )(x r )
Consequently, the left hand side of (3.1) reads, for arg(x) ' ? 0 ,

(3.3) s r; k ( e f )( k x) s r; + k ( e f )( k x) = r 1 X u=0 ( k x) u s 1;r 0 ( e f [u] )(x r ) s 1;r + 0 ( e f [u] )(x r )
Recall that, when is not an anti-Stokes direction for e f [u] (i.e., = ?), the 1-sum s 1; ( e f [u] )(t) is given by the Borel-Laplace integral

Z d b f [u] ( )e =t d
in the direction (cf. thm. 1.3 for instance).

When is an anti-Stokes direction for e f [u] , the 1-sums s 1; ( e f [u] )(t) to the left and right of are de…ned as the analytic continuations to a germ of half-plane bisected by of s 1; ( e f [u] )(t) as tends to 0.

Thus, for > 0 small enough, each term of the right hand side of (3.3) can be seen as the Laplace integral (3.4)

s 1;r 0 ( e f [u] )(x r ) s 1;r + 0 ( e f [u] )(x r ) = Z r 0 b f [u] ( )e =x r d
where r 0 is the path going along the straight line d r 0 + from in…nity to 0 and going back to in…nity along the straight line d r 0 . Due to the summable-resurgence of the e f [u] 's (cf. thm. 1.3) and hypothesis (A1), the value of integral (3.4) is preserved by deforming the path r 0 into a Hankel type path + r 0 (!) with asymptotic direction r 0 around ! as shown on …gure 3.1 below 5 .

Hence, by means of a translation T from ! to 0 and using the fact that holomorphic functions at ! contributes 0 to the integral around !, we can replace b f [u] by its principal major f b

! ? ;+ (! + ) at ! obtaining so, for all u = 0; :::; r 1, Then, for all u = 0; :::; r 1 and j = 1; :::; J such that a j;r = !,

Z + r 0 f b [u]j; ! ? ;+ (! + )e =t d = t j u r t Jn j
r I

[u]j;

! ? t Jn 1 r + X `;a `;r =! r 1 X v=0 t ` v r +1 P [u]j;
`;v;! ? ;+ (ln t)

where

I [u]j; ! ?
is the integral given in (2.3),

P

[u]j;

`;v;! ? ;+ (ln t) is a polynomial in ln t, the coe¢cients of which are 1sums of 1-summable series in direction r 0 + " (" > 0 small enough).

Consequently, identity (3.6) becomes, for all j = 1; :::; J such that a j;r = ! and arg(x) ' ? 0 , r 1

X u=0 0 @ ku x L j I [u]j; ! ? x Jn 1 + X `;a `;r =! r 1 X v=0 x ` v+r Q [u]j; `;v (ln x) 1 A = s r; + k ( e F )( k x)M k;! ? (x)
where Q

[u]j;

`;v (ln x) is a polynomial in ln x, the coe¢cients of which are r-sums of r-summable series in direction + k . Then, equating the dominant terms, we obtain

r 1 X u=0 ku I [u]j; ! ? = kL j c j; ? k kJn 1
for all j such that a j;r = !. This ends the proof of theorem 2.2 in the case of a unique Stokes value.

An example

Before to start the calculations in the case when the collection ( k ) is generated by p 2 Stokes values, let us study again the system (1.3) Recall also that the corresponding Stokes multipliers are given by (2.6) and have been calculated by means of theorem 2.2 (cf. example 2.3).

x 3 dY dx = A(x)Y ; A(x) = 2 4 0 0 0 x 4 x 5 2 0 x 4 + x 5 0 4 + x 2
The method of calculation which we shall present below is based on a regular perturbation of system (1.3) and on the result of section 3.1. This method will be generalized in sections 3.3 and 3.4 in order to end the proof of theorem 2.2.

A perturbed system

We consider, for all " 0, the regularly perturbed system (3.7)

x 3 dY dx = A " (x)Y ; A " (x) = 2 4 0 0 0 x 4 x 5 2 0 x 4 + x 5 0 4e 2i" + x 2 2 3 5
together with its formal fundamental solution e Y " (x) = e F " (x)x L e Q " (1=x) at 0 where

Q " ( 1 x ) = diag(0; 1 x 2 ; 2e 2i"
x 2 ) (hence, system (3.7) has the unique level 2 and the set of its Stokes values is " := f0; 1; 2e 2i" g);

L = diag(0; 0; 1 2 ); e F " (x) = 2 4 1 0 0 e f " 2 (x) 1 0 e f " 3 (x) 0 1 3 5 is a power series in x verifying e f " j (x) 2 x 4 C[[x]].
Note that, for " = 0, we get A 0 A, e Y 0 e Y and 0 .

Action of the perturbation

The perturbation in " acts on the anti-Stokes directions of system (1.3) as follows: for " > 0 small enough, the collection ( 0 ; 1 ) splits into the distinct three collections (0; ), ( "; " ) and ( " ; " := " ) respectively generated by the Stokes values 1, 2e 2i" and 2e 2i" 1 so that 0 > " > ? " and > " > ? "

Note that the …rst two collections are the anti-Stokes directions associated with the …rst column e f " of e F " and are generated by just one Stokes value of system (3.7).

For any previous six directions , we denote by I 3 +S " ? the corresponding Stokes-Ramis matrix associated with e Y " . Clearly, 

S " 0 = 2 
I 3 + C 0 = lim "!0 (I 3 + S " 0 )(I 3 + S " " )(I 3 + S " ? " ) I 3 + C = lim "!0 (I 3 + S " )(I 3 + S " " )(I 3 + S " ? " )
In particular, (3.9)

lim "!0 " 0 = c 2 0 lim "!0 " = c 2 lim "!0 " " = c 3 0 lim "!0 " " = c 3
Proof. Fix > 0 small enough such that 1. for all " 2]0; ], the directions 0, " and " (resp. , " and " ) are the only anti-Stokes directions of system (3.7) with principal determinations in [ ? " ; 0] (resp. [ ? " ; ]), 2. the direction ? (resp. ? ) is close enough to 0 (resp. ) in order that the two sectors with vertex 0, opening =2 and respectively bisected by 0 and (resp. and ) overlap.

Then, the sums Y " " and Y " 0 + , on the one hand, and the sums Y " " and Y " + , on the other hand, are related, for arg(x) ' 0, by the formulae

(3.10) Y " " (x) = Y " 0 + (x)(I 3 + S " 0 )(I 3 + S " " )(I 3 + S " ? " ) Y " " ( x) = Y " + ( x)(I 3 + S " )(I 3 + S " " )(I 3 + S " ? " )
Otherwise, let us denote by e f "[u] (t), u = 0; 1, the 2-reduced series of e f " (x). Similar calculations to those of example 1.7 show that their Borel transforms b f "[u] ( )'s are de…ned, for all j j < 1, by b f "[0] ( ) = In particular, lim

"!0 b f "[u] ( ) = b f [u] ( )
for all u = 0; 1 and = 2 S "2[0; ] " . Recall that the b f [u] 's denote the Borel transforms of the 2-reduced series of the …rst column e f (x) of e F (x) (cf. example 1.7 for more precisions). The last two columns of e F " (x) and e F (x)

being trivial, we can then check, by using Lebesgue dominated convergence theorem, that, for arg(x) ' 0, lim

"!0 s r;0 + ( e F " )(x) = s r;0 + ( e F )(x) lim "!0 s r; + ( e F " )( x) = s r; + ( e F )( x) lim "!0 s r; " ( e F " )(x) = s r;0 ( e F )(x) lim "!0 s r; " ( e F " )( x) = s r; ( e F )( x)
obtaining so, for arg(x) ' 0, lim

"!0 Y " 0 + (x) = Y 0 + (x) lim "!0 Y " + ( x) = Y + ( x) lim "!0 Y " " (x) = Y 0 (x) lim "!0 Y " " ( x) = Y ( x)
Indeed, lim "!0 " = 0 and lim "!0 " = . Therefore, when " goes to 0, identities (3.10) become, for arg(x) ' 0, lim "!0

(I 3 + S " 0 )(I 3 + S " " )(I 3 + S " ? " ) = lim "!0 Y " 0 + (x) 1 Y " " (x) = Y 0 + (x) 1 Y 0 (x) = I 3 + C 0 and lim "!0 (I 3 + S " )(I 3 + S " " )(I 3 + S " ? " ) = lim "!0 Y " + ( x) 1 Y " " ( x) = Y + ( x) 1 Y ( x) = I 3 + C
Hence the result.

Perturbed Stokes multipliers vs Stokes multipliers

We are left to calculate the perturbed Stokes multipliers de…ned in (3.9). As we previously said, for " > 0 small enough, the two collections of anti-Stokes directions (0;

) and ( "; " ) associated with e f " are generated by just one Stokes value of system (3.7), respectively 1 and 2e 2i" . Since these two points are both with monomial front, section 3.1 applies: the perturbed Stokes multipliers " 0 and " (resp. k

"[0]2 1;+ = 1 2 k "[0]3 2e 2i" ;+ = 2 7=4 3 e 3i"=2 e 3i =4 k "[1]2 1;+ = i 3 k "[1]3 2e 2i" ;+ = 2 9=4 5 e 5i"=2 e 5i =4
We obtain

" 0 = 4 p 3 i " " = 2 3=4 4 e 3i"=2 3 ( 3 4 ) + 16 5 ( 3 
4 )e 5i"=2 i

" = + 4 p 3 i " " = 2 3=4 4 e 3i"=2 3 ( 3 4 ) 16 5 ( 3 4 )e 5i"=2
Note that, letting " tend to 0, these relations reduce to relations (3.9).

Remark 3.3

When " goes to 0, identities (3.12) become (3.13)

lim "!0 k "[0]2 1;+ = k [0]2 1;+ lim "!0 k "[0]3 2e 2i" ;+ = k [0]3 2;+ lim "!0 k "[1]2 1;+ = k [1]2 1;+ lim "!0 k "[1]3 2e 2i" ;+ = k [1]3 2;+
where k

[u]2

1;+ and k

[u]3 2;+ , u = 0; 1, respectively denote the connection constants of the b f [u] 's at = 1 and = 2 (cf. example 1.7).

Remark 3.4 Obviously, identities (3.9), (3.11) and (3.13) imply identities (2.5), i.e., theorem 2.2 in restriction to system (1.3). Actually, as we shall show below, this kind of identities is the core of the proof of theorem 2.2 when the collection ( k ) is generated by p 2 Stokes values.

Case of two Stokes values

We assume in this section that the collection ( k ) k of anti-Stokes directions associated with e f (x) is generated by just two Stokes values ! 1 and ! 2 satisfying j! 1 j < j! 2 j.

Recall that we must prove identity (2.2) when the front of ! 1 (resp. ! 2 ) is monomial. We proceed similarly as in section 3.2 by considering a regular perturbation of system (0.1).

A perturbed system

According to the normalization of e Y (x) (cf. page 2), the matrix A(x) of system (0.1) reads

A(x) = J M j=1 " r X k=1 ka j;k x r k ! I n j + x r L j # + B(x)
where L j := j I n j + J n j denotes the j-th Jordan block of the matrix L of exponents of formal monodromy and where B(x) is analytic at the origin 0 2 C. More precisely, split B(x) = [B j;`( x)] into blocks …tting to the Jordan structure of L. Then,

(3.14) B j;`( x) = O(x r ) if a j;r 6 = a `;r O(x 2r ) if a j;r = a `;r
For all " 0, we de…ne the regularly perturbed system (3.15)

x r+1 dY dx = A " (x)Y with A " (x) = J M j=1 " ra " j;r + r 1 X k=1 ka j;k x r k ! I n j + x r L j # + B(x)
where, for all j = 1; :::; J, a " j;r =

a j;r if a j;r 6 = ! 2 ! 2 e ri" if a j;r = ! 2
For all " 0, system (3.15) has for formal fundamental solution the matrix e Y " (x) = e F " (x)x L e Q " (1=x) where

e F " (x) 2 M n (C[[x]]
) is a power series in x verifying same normalization as e F (x): e

F " (x) = I n + O(x r ),
L is the matrix of exponents of formal monodromy of system (0.1),

Q " (1=x) = L J j=1 q " j (1=x)I n j is the diagonal matrix, the polynomial entries q " j of which are de…ned, for all j, by 8 > > < > > :

q " j q j if a j;r 6 = ! 2 q " j 1 x = ! 2 e ri" x r + _ q j 1 x if a j;r = ! 2
Note that the following condition holds for " > 0 small enough:

(C1) System (3.15) has the unique level r and satis…es normalizations as system (0.1); the set " of its Stokes values is deduced from the set of Stokes values of system (0.1) by replacing ! 2 by ! 2 e ri" .

Note also that, for " = 0, we get A 0 A, e Y 0 e Y and 0 .

Let us now …x > 0 such that condition (C1) above be veri…ed for all " 2 [0; ].

For all " 2 [0; ], we denote as previously by e f " (x) the …rst n 1 columns of e F " (x), e f "[u] (t), u = 0; :::; r 1, the r-reduced series of e f " (x) (cf. (1.1)).

Proposition 3.5 Let " denote the set of Stokes values of system (3.15). Then, for all " 2 [0; ] and u = 0; :::; r 1,

e f "[u] (t) 2 g Res sum "
Moreover, the singularity

r f "[u]
! ? ;+ at any Stokes value ! 2 " nf0g with monomial front is given by (1.2). Proposition 3.5 is straightforward from condition (C1) and theorem 1.3. However, in view to study the dependence of the Borel transforms b

f "[u] ( ) of e

f "[u] (t) in the parameter ", we need to give again a complete proof of the summable-resurgence of the e f "[u] (t)'s. We proceed as in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] by following Écalle's method by regular perturbation and majorant series quoted in [START_REF] Écalle | Les fonctions résurgentes, tome III : l'équation du pont et la classi…cation analytique des objets locaux[END_REF].

Proof of the summable-resurgence for the perturbed system

Fix " 2 [0; ]. By de…nition of rank reduction, the vector

e f " (t) := 2 6 4 e f "[0] (t) . . . e f "[r 1] (t) 3 7 5 2 M rn;n 1 (C[[t]])
is a column-block of a formal fundamental solution of the reduced system of (3.15) ( [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF]). Hence, its homological system provides a system characterizing the e f "[u] (t)'s.

Denote respectively by A "[u] (t) and B [u] (t) the r-reduced series of A " (x) and B(x). Then ( [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF]), e f " (t) is uniquely determined by the system

(3.16) rt 2 df dt = A " (t)f tf J n 1
jointly with the initial condition e f " (0) = I rn;n 1 (the …rst n 1 columns of the identity matrix of size rn). The matrix A " (t) is the matrix of size rn rn de…ned by A "[0] (t) tA "[r 1] (t)

A " (t) =
tA " [1] (t)

A " [1] (t)

A A "[r 1] (t)

A " [1] (t) A "[0] (t) where

A "[0] (t) = J M j=1 ra " j;r I n j + tL j + B [0] (t)
and, for all u = 1; :::; r 1,

A "[u] (t) = J M j=1 (r u)a j;r u I n j + B [u] (t)
Moreover, according to (3.14), the series

B [u] (t) = [B [u]j;`( t)] 2 M n (Cftg)
satisfy, for all u = 0; :::; r 1, the condition (3.17)

B [u]j;`( t) = O(t) if a j;r 6 = a `;r O(t 2 ) if a j;r = a `;r
Note that the de…nition of the matrix A " (x) of system (3.15) implies that only the matrix A "[0] (t) depends on the parameter ".

Following J. Écalle ([3]), we consider, instead of system (3.16), the regularly perturbed system

(3.18) rt 2 df dt = A " (t; )f tf J n 1
obtained by substituting B [u] for B [u] for all u = 0; :::; r 1 in the matrix A " (t) of system (3.16).

An identi…cation of equal powers in allows us to state that system (3.18) admits a unique formal solution of the form

e f " (t; ) = X m 0 e f " m (t) m satisfying e f " 0 (t) = I rn;n 1 and e f " m (t) 2 M rn;n 1 (C[[t]]) for all m 1. More precisely, split e f " m (t) = h e f "[0] m (t); :::; e f "[ r 1] m (t) 
i into r blocks of size n n 1 like e f " (t) and denote by e f " m;j (t) := m (t)'s (we refer to page 8 for the notations).

Lemma 3.6 For all m 1, the components e f " m;j (t) 2 M rn j ;n 1 (C[[t]]
) of e f " m (t) are uniquely determined, for all j = 1; :::; J, as formal solutions of systems

(3.19) rt 2 d e f " m;j dt A " j e f " m;j tA j e f " m;j = B j (t) e f " m 1 t e f " m;j J n 1
where

B j (t) := 2 6 6 6 6 6 6 4 
B [0]j; (t) tB [r 1]j; (t) tB [1]j; (t) B [1]j; (t) B [0]j; (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . B [0]j; (t) tB [r 1]j; (t) B [r 1]j; (t) B [1]j; (t) B [0]j; (t) 3 7 7 7 7 7 7 5
is a matrix of size rn j rn with analytic entries at 0 2 C and where the matrices A " j and A j are the constant rn j rn j -matrices de…ned by A " j := Remark 3.7 When a " j;r 6 = 0, the matrix A " j is invertible. Moreover, since system (3.15) has the unique level r, assumption (0.3) implies that A " j = 0 and

A j = r 1 M u=0 L j uI n j
as soon as a " j;r = 0. Note also that only the matrix A " j depends on ".

Relations (3.19) and normalizations (3.17) show in particular that e f " 2m 1;j (t) = O(t m ) and e f " 2m;j (t) =

O(t m ) if a j;r = 0 O(t m+1 ) if a j;r 6 = 0
for all m 1 and j = 1; :::; J. As a result, the series e f " (t; ) can be rewritten as a series in t with polynomial coe¢cients in . Consequently, e f " (t) = e f " (t; 1) (by unicity of e f " (t) and e f " (t; 1)) and, for all , the series e f " (t; ) admits a formal Borel transform ' " ( ; ) with respect to t of the form ' " ( ;

) = I rn;n 1 + X m 1 ' " m ( ) m
where ' " m ( ) denotes, for all m 1, the Borel transform of e f " m (t). In particular, for = 1, lemma 3.8 below tells us that the Borel transform b f " ( ) = ' " ( ; 1) of e f " (t) can be interpreting as a series of resurgent functions on R " .

As previously, we split

' " m ( ) = h ' "[0]
m ( ); :::; '

"[r 1] m ( )
i into r blocks of size n n 1 and we denote by

' " m;j ( ) := 2 6 4 
'

"[0]j; m ( ) . . . ' "[r 1]j; m ( ) 3 
the matrix of size rn j n 1 formed by the j-th row-blocks of the '

"[u]
m ( )'s. Since ' " m;j ( ) is the Borel transform of e f " m;j (t), identities (3.19) provide identities satis…ed by the ' " m;j ( )'s. More precisely, we can check the following result:

Lemma 3.8 (Decomposition of the Borel transform b f " ( )) The Borel transform b f " ( ) of e f " (t) reads in the form b f " ( ) = X m 1 ' " m ( ) with ' " m ( ) 2 M rn;n 1 (C[[ ]]) for all m 1
Moreover, for all m 1, the components ' " m;j ( ) 2 M rn j ;n 1 (C[[ ]]) of ' " m ( ) are iteratively determined, for all j = 1; :::; J, as solutions of systems

(3.20) R " j d' " m;j d = S j ' " m;j + d d c B j ' " m 1 ' " m;j J n 1
where ' " 0 = I rn;n 1 and where In particular, the ' " m ( ), m 1, are resurgent functions de…ned on R " .

R " j = 2 6 6 6 4 r( a " j;r ) 0 0 (r 1 
The resurgence of the ' " m 's is due to the fact that the only singularities of systems (3.20) are the Stokes values a " j;r 2 " . Indeed, the homogeneous equation associated with (3.20) is singular at a " j;r . Moreover, since B j (t) is analytic at 0, its Borel transform c B j ( ) is an entire function on C and, consequently, the singularities of the convolution product c B j ' " m 1 are those of ' " m 1 .

We are left to prove (cf. def 1.2) that (a) b f " ( ) is analytic at 0 and can be analytically continued to R " (we keep denoting by b f " ( ) the analytic continuation), (b) b f " ( ) grows at most exponentially on any -sectorial region " of R " . These properties are proved below by using a technique of majorant series satisfying a convenient system. There exists, of course, many possible majorant system. Here, we make explicit a possible one.

Let g = g [0] ; :::; g [r 1] be a matrix of size rn n 1 split as previously into r blocks of size n n 1 and, for all j = 1; :::; J, let

g j := 2 6 4 g [0]j;
. . .

g [r 1]j; 3 7 5
be the matrix of size rn j n 1 formed by the j-th row-blocks of the g [u] 's. When g = I rn;n 1 , we denote by I j rn;n 1 the matrix g j . Fix > 0 and consider, for j = 1; :::; J, the perturbed linear system (3.21)

8 > > > > > < > > > > > : C j (g j I j rn;n 1 ) = (I r J n j )g j + g j J n 1 2I j rn;n 1 J n 1 + jB j j (t) t g if a "
j;r = 0 (R j tS j )g j = tg j J n 1 + jB j j (t)g if a " j;r 6 = 0 where jB j j (t) denotes the series B j (t) in which the coe¢cients of the powers of t are replaced by their module, C j is an invertible constant rn j rn j -diagonal matrix with positive entries, R j and S j are the constant rn j rn j -matrices de…ned by R j := Note that, for now, the constants C j are just arbitrary. They are to be adequatly chosen below (cf. lemma 3.8).

Note also that system (3.21) does not depend on the parameter ". Actually, system (3.21) is the majorant system that we used in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] to prove summable-resurgent theorem for e f (t) (thm. 1.3). In particular, we showed that the Borel transformed system of system (3.21) admits, for = 1, a solution of the form

b g( ) = I rn;n 1 + X m 1 m ( ) 2 M rn;n 1 (C[[ ]])
which is entire on all C with exponential growth at in…nity. Moreover, for all m 1, the m ( )'s are also entire functions on all C with exponential growth at in…nity. More precisely, using notations as above, the components m;j ( ) of m ( ), m 1 and j = 1; :::; J, are iteratively determined from 0 = I rn;n 1 as solutions of the following systems: Case a " j;r = 0:

C j m;j = (I r J n j ) m;j + m;j J n 1 + d d d jB j j m 1
Case a " j;r 6 = 0:

R j d m;j d = S j m;j + m;j J n 1 + d d d jB j j m 1
In particular, the series m ( ) have non-negative coe¢cients.

Since only the Stokes values a " j;r 2 " depend on the parameter " in system (3.15), the calculations detailed in [10, § 3.2.2] apply allowing us to make explicit a convenient majorant series of b f " ( ) (cf. lemma 3.9 below).

Recall that, according to the de…nition of " (cf. page 5), there exists a constant K > 0 so that, for all 2 " , there is a piecewise-C 1 -path contained in " and parametrized by arc length from 0 to such that the arc length s of all 2 satis…es j j s K j j; j j denotes the modulus of the projection of in C ([6, lem. 2.4]). Besides, since points in " have bounded arguments, there also exists a constant a > 0 such that jarg( )j a for all 2 " . Lemma 3.9 (Majorant series, [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]) Let K and a be two constants as above. Let

C j = 1 K max 1 j J exp(2a jIm j j) r 1 M u=0 1 Re j r u r I n j
for all j = 1; :::; J.

Then, for all m 1, 2 " and j = 1; :::; J, the following inequalities hold:

(3.22) ' " m;j ( ) m;j (s ) m;j (K j j)
In particular, the series b

g(K j j) = X m 1 m (K j j) is a majorant series of b f " ( ).
Recall that the second inequality of (3.22) is due to the fact that the series m ( ) has non-negative coe¢cients; the …rst inequality is proved by using Grönwall lemma.

Since b g is well de…ned on " with exponential growth at in…nity, the same property holds for b f " ( ) which achieves the proof of the summable-resurgence of b f " ( ).

Remark 3.10 Although this proof is similar to the one in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF], it has its own interest. Indeed, it allows to deal with a particular case of regularly perturbed systems with a single level.

Remark 3.11

The majorant series b g(Kj j) does not depend on the parameter ". This point, which is crucial in the proof of the connection-to-Stokes formulae that we present in this article, was obtained because the parameter " is only related to the Stokes values of " . Of course, for a more general perturbation, this fact no longer holds in general.

Dependence of the Borel transforms b

f "[u] ( ) in "

Let W := S "2[0; ]
" denote the set of Stokes values of systems (3.15) for all " 2 [0; ]. By de…nition, W is the union of the set nf! 2 g of Stokes values a j;r 6 = ! 2 and the circle arc A(! 2 ; ) := f! 2 e ri" ; " 2 [0; ]g of length . Note that, according to condition (C1), the sets nf! 2 g and A(! 2 ; ) are disjoints. De…nition 3.12 ( -generalized sectors of C) Let > 0 be a positive number smaller than half the minimal distance between the elements of nf! 2 g and smaller than the distance between the closed sets nf! 2 g and A(! We are now able to state the result in view in this section. 1. Given > 0 as in de…nition 3.12, there exists an entire function [u] on all C growing at most exponentially at in…nity such that, for any -generalized sectors of C associated with W , there is a constant c 1 such that b f "[u] ( ) [u] (c j j) for all 2 and " 2 [0; ]

2. For all = 2 W , the function " 7 ! b f "[u] ( ) is continuous on [0; ]. In particular, lim "!0 b f "[u] ( ) = b f [u] ( )
Recall that the b f "[u] ( )'s, u = 0; :::; r 1, are the components of the Borel transform b f " ( ) of e f " (t):

b f " ( ) = 2 6 4 b f "[0] ( ) . . . b f "[r 1] ( ) 3 7 5 
Proof. The proof of proposition 3.13 is derived from the proof of summableresurgence of the e f "[u] (t)'s given above. Point (1) is straightforward from lemma 3.9. Indeed, can be seen as a -sectorial region " of R " for any " 2 [0; ] and the majorant series of b f " ( ) does not depend on ". Otherwise, lemma 3.8 shows that b f " ( ) reads as a series b f " ( ) = P m 1 ' " m ( ) where, for all m 1, the terms ' " m ( ) are analytic functions on all R " and are solutions of systems (3.20) which continuously depend on ". In particular, for all = 2 W and m 1, the function " 7 ! ' " m ( ) is continuous on [0; ]. Thus, by applying again lemma 3.9, the series P m 1 ' " m ( ) is, for all = 2 W , a series of continuous functions in " which normally converges on [0; ]. Hence, point (2) and proposition 3.13.

Note that the fact that the majorant series given in lemma 3.9 does not depend on the parameter " is crucial. Since W is, like W , the union of a …nite set of points and a …nite number of circle arcs of length 6 , we can extend de…nition 3.12 into the one ofgeneralized sectors of C associated with W allowing so to state the following result: 

Given

> 0 small enough, there exists an entire function [u] on all C growing at most exponentially at in…nity such that, for anygeneralized sectors of C associated with W , there is a constant C 1 such that b F "[u] ( ) [u] (C j j) for all 2 and " 2 [0; ] Recall also that we suppose in section 3.3 that r 0 = f! 1 ; ! 2 g with j! 1 j < j! 2 j.

2. For all = 2 W , the function " 7 ! b F "[u] ( ) is continuous on [0; ]. In particular, lim "!0 b F "[u] ( ) = b F [u] ( ) 3 
In addition to these notations, we denote by := f ; ; 2 g the set of Stokes values of the homological system of (0.1), We can now study the action of the perturbation in " on the collection ( k ).

Lemma 3.15 (Action of the perturbation on ( k ))

For " > 0 small enough, the collection ( k ) k=0;:::;r 1 splits into the following collections of anti-Stokes directions of system (3.15):

1. the three collections ( k ) k=0;:::;r 1 , ( k ") k=0;:::;r 1 and ( k;" ) k=0;:::;r 1 respectively generated by the Stokes values ! 17 , ! 2 and ! 2 e 2i" ! 1 , 2. the possibly collections which are generated by the Stokes values of the form ! 2 e 2i" a k;r with arg(a k;r ) = r 0 .

In particular, for a j;r 2 f! 1 ; ! 2 g, the Stokes multipliers c j;

? k of e f satisfy (3.25)

c j; ? k = lim "!0 S " j;1 ? k if a j;r = ! 1 c j; ? k = lim "!0 S " j;1 ( k ") ? if a j;r = ! 2
Proof. ? Relations (3.25) are straightforward from relations (3.24) and lemma 3.16.

? Prove identity (3.24). In addition to condition (C1), we can suppose, after possibly replacing by a smaller value 0 2]0; ], that the two following conditions are satis…ed:

(C2) for all " 2]0; ] and k = 0; :::; r 1, the directions k , k ", k;" and k;s;" , s = 1; :::; p, are the only anti-Stokes directions of system (3.15) with principal determinations in [ ? k;" ; ? k ],

(C3) for all k = 0; :::; r 1, the direction ? k; is close enough to ? k in order that the two sectors with vertex 0, opening =r and respectively bisected by 

( k x) = Y " + k ( k x)(I n + S " ? k )M " k (I n + S " ( k ") ? )(I n + S " ? k;" )
Otherwise, it results from the de…nition of the perturbation in " that lim

"!0 Q " Q. Thus, lemma 3.18, point (2), below implies lim "!0 Y " k;" ( k x) = Y k ( k x) and lim "!0 Y " + k ( k x) = Y + k ( k x)
for arg(x) ' ? 0 . Consequently, we deduce from (3.26) that lim "!0

(I n + S " ? k )M " k (I n + S " ( k ") ? )(I n + S " ? k;" ) = lim "!0 Y " + k ( k x) 1 Y " k;" ( k x) = Y + k ( k x) 1 Y k ( k x) = I n + C ? k
for all k = 0; :::; r 1. Hence, proposition 3.17.

Lemma 3.18 With notations as above:

1. For all u = 0; :::; r 1 and arg(t) ' r ? 0 , lim "!0

s 1;r + 0 ( e F "[u] )(t) = s 1;r + 0 ( e F [u] )(t) lim "!0 s 1;r 0;" ( e F "[u] )(t) = s 1;r 0 ( e F [u] )(t)
2. For all k = 0; :::; r 1 and arg(x) ' ? 0 , lim

"!0 s r; + k ( e F " )( k x) = s r; + k ( e F )( k x) lim "!0 s r; k;" ( e F " )( k x) = s r; k ( e F )( k x)
Proof. ? Point (2) is straightforward from point (1) and the two relations

s r; k ( e F " )( k x) = r 1 X u=0 ( k x) u s 1;r 0 ( e F "[u] )(x r ) s r; k ( e F )( k x) = r 1 X u=0 ( k x) u s 1;r 0 ( e F [u] )(x r )
connecting the r-sum of e F " (resp. e F ) in direction k 2 f + k ; k;" g (resp. k ) to the 1-sums of its r-reduced series e F "[u] (resp. e F [u] ) in direction r 0 (resp. r 0 ).

? Prove the …rst identity of point [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations ; Part I, formal invariants[END_REF]. Fix u 2 f0; :::; r 1g and arg(t) ' r ? 0 . For > 0 small enough, the sums s 1;r + 0 ( e F "[u] )(t) and s 1;r + 0 ( e F [u] )(t) are respectively given by the Borel-Laplace integrals there exist an entire function [u] on all C growing at most exponentially at in…nity and a constant C 1 such that, for all " 2 [0; ] and 0,

(3.27) b G "[u]
1 ( ) [u] (C )e Re(exp(i(r 0 + ))=t) := M Hence, the …rst identity of point [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations ; Part I, formal invariants[END_REF].

? The second identity of point ( 1) is obtained similarly. Note that, in addition to conditions (C1), (C2) and (C3) above, we can suppose, after possibly replacing by a smaller value in ]0; ], that the following condition is satis…ed:

(C4) for any " 2]0; [, there is no anti-Stokes direction of system (3.15) with a principal determination in [ ? k; ; ? k;" [. As before, there exists > 0 such that the sums s 1;r 0;" ( e F "[u] )(t) and s 1;r 0 ( e F [u] )(t) are respectively given by the Borel-Laplace integrals ) )e exp(i(r 0; ))=t and s 1;r 0 ( e F ) )e exp(i(r 0; ))=t We conclude as above by using corollary 3.14. Remark 3.19 Inequality (3.27) allowing to apply Lebesgue dominated convergence theorem is the key point of the proof of lemma 3.18. Recall (cf. corollary 3.14) that such an inequality was obtained because the parameter " is only related to the non-zero Stokes values of . Of course, for a more general perturbation, i.e., the parameter of which is no longer related only to , inequality (3.27) and hence lemma 3.18 no longer hold in general.

We are now able to prove theorem 2.2 in the case when the collection ( k ) k=0;:::;r 1 is generated by just two Stokes values.

Proof of theorem 2.2

Recall that we must prove identity (2.2) when the front of ! 1 (resp. ! 2 ) is monomial. Recall also that such a condition can always be ful…lled by means of a change of the variable x in system (0.1) (cf. lemma 2.4).

First case: the front of ! 1 is monomial. For all " 2]0; ], the collection ( k ) k=0;:::;r 1 is a collection of anti-Stokes directions of system (3.15) associated with e f " and is generated by just one Stokes value of " (here, ! 1 ). Then, the hypothesis "! 1 is with monomial front" allows us to apply section 3.1: the perturbed Stokes multipliers S " j;1 and, consequently, proposition 3.17 applied to identity (3.28) implies identity (2.2).

Second case: the front of ! 2 is monomial. Identity (2.2) is obtained in the same way. Indeed, for all " 2]0; ], the collection ( k ") k=0;:::;r 1 still is a collection of anti-Stokes directions of system (3.15) associated with e f " and still is generated by just one Stokes value of " , here ! 2 e ri" , the front of which is monomial. Therefore, we can apply again section 3.1 and we can conclude as above by using propositions 3.13 and 3.17.

General case

We are left to prove theorem 2.2 when the collection ( k ) k=0;:::;r 1 is generated by p 3 Stokes values k ) k=1;:::;p satisfying j! 1 j < j! 2 j < ::: < j! p j.

We proceed similarly as in section 3.3 by considering, for " 0, the regularly perturbed system where, for all j = 1; :::; J, a " j;r = ( a j;r if a j;r = 2 f! 1 ; ! 2 ; :::; ! p g ! s exp ri (s 1)" p 1 if a j;r = ! s Doing so, we can check that the results of section 3.3 can be extended to system (3.29). This ends the proof of theorem 2.2.

  2.3]) and are de…ned for all > 0 small enough by the data of an open disc D centered at 0 2 C, an open sector with bounded opening at in…nity, a tubular neighborhood N of a piecewise-C 1 path connecting D to after a …nite number of turns around points of , such that the distance of D to = nf0g and the distance of N [ to have to be greater than .
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 15 Singularities with monomial front, [10, thm. 3.5]) Fix u 2 f0; :::; r 1g and ! 2 nf0g a singular point of b

  path of analytic continuation and on the chosen determination of the argument around !. From now on, we consider a path + going along the straight line [0; !] from 0 to a point close to ! and avoiding all singular points of \]0; !] to the right (see …gure 1.2 below), we choose the principal determination of the variable around !, say arg( ) 2] 2 ; 0].
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  j; ! ? ;+ are reduced to just one entry which we respectively denote by c j ? k and K [u]j ! ? ;+ .
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 3 3) associated with the …rst column e f (x) of e F (x) are 0 = 0 and 1 = (the directions of maximal decay of the exponentials e 1=x 2 and e 2=x 2 ). Obviously, the Stokes-Ramis matrices I 3 + C 0 and I 3 + C are of the form Indeed, e f (x) is the unique column of e F (x) which is divergent. The collection (0;
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 35 s 1;r 0 ( e f[u] )(x r ) s 1;r + 0 ( e f[u] )(x r ) = e !=x r ? ;+ (! + )e =x r d where, as shown on …gure 3.2 below, + r 0 := T ( + r 0 (!)) is the image of + r 0 (!) by T . Recall that, since the front of ! is monomial (cf. assumption (A2)), the major f b[u]! ? ;+ (! + ) is given by (1.2).
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 23 together with its formal fundamental solution eY (x) = e F (x)x L e Q(1=x) in another way. We refer to examples 1.7 and 2.3 for the notations. Recall that the set of Stokes values of system (1.3) is = f0; 1; 2g, the non-zero Stokes values 1 and 2 generate the collection ( 0 = 0; 1 = ) of the anti-Stokes directions associated with the …rst column e f (x) of e F (x).

  f " (x) is the unique column of e F " (x) which is divergent. Proposition 3.2 The Stokes-Ramis matrices I 3 +C 0 and I 3 +C of system (1.3) are related to the perturbed Stokes-Ramis matrices above by the formulae (3.8)

  in terms of the connection constants at = 1 (resp. = 2e 2i" ) of the b f "[u] ( )'s, u = 0; 1. Similar calculations to those detailed in examples 1.7 and 2

  A "[0] (t) tA "[r 1] (t)

  j = 1; :::; J the matrix of size rn j n 1 formed by the j-th row-blocks of the e f "[u]

  uI n j )

(

  L j (u + r)I n j ).

1 I

 1 n j + J n j

Proposition 3 .

 3 13 (Dependence of the Borel transforms b f "[u] ( )) Fix u 2 f0; ::; r 1g.

Proposition 3 .

 3 13 above can be extended to the other columns of e F " . Let us denote by e F "[u] , u = 0; :::; r 1, the r-reduced series of e F " , " := f ; ; 2 " g the set of Stokes values of the homological system associated with (3.15), W := S "2[0; ] " the set of Stokes values of the homological systems of (3.15) for all " 2 [0; ].

Corollary 3 .

 3 14 (Dependence of the Borel transforms b F "[u] ( )) Fix u = 0; :::; r 1.
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 34 Perturbed Stokes-Ramis matrices vs Stokes-Ramis matrices Recall that denotes the set of Stokes values of system (0.1), r 0 := \ d r 0 denotes the set of non-zero Stokes values of system (0.1) generating the collection ( k ) k=0;:::;r 1 of anti-Stokes direction associated with e f (x).

  r 0 := \ d r 0 the set of non-zero Stokes values of the homological system of (0.1) generating the collection ( k ) k=0;:::;r 1 . Note that the Stokes values of r 0 are the three Stokes values ! 1 , ! 2 and ! 2 ! 1 and possibly the Stokes values of the form ! j a k;r with j = 1; 2 and arg(a k;r ) = r 0 , with ; = 2 r 0 = f! 1 ; ! 2 g.

k

  and k; overlap. Then, according to (3.23), the sums Y " k;" and Y " + k are related, for all k = 0; :::; r 1 and arg(x) ' ?

1

 1 b F "[u] ( e i(r 0 + ) )e exp(i(r 0 + ))=t and s b F[u] ( e i(r 0 + ) )e exp(i(r 0 + ))=t Apply corollary 3.14:the function " 7 ! b G "[u]1 ( ) is continuous on [0; ]

  is integrable on [0; +1[, we deduce from Lebesgue dominated convergence theorem that the function " 7 ! s 1;r + 0 ( e F "[u] )(t) is continuous on [0; ] and lim d = s 1;r + 0 ( e F[u] )(t)

s 1 ;

 1 r 0;" ( eF "[u] )(t) = Z d r 0; b F "[u] ( )e =t d = b F "[u] ( e i(r 0;

  b F[u] ( e i(r 0;

, 3 1 ;

 31 j such that a j;r = ! 1 , of e f " at ! 1 are expressed in terms of the connection constants of the b f "[u] 's, u = 0; :::; r 1, at ! 1 . More precisely, denoting by K"[u] ! ? 1 ;+ the connection matrix of b f "[u] at ! 1 and K "[u]j; !?1 ;+ its j-th row-block accordingly to the Jordan structure of L (matrix of exponents of formal monodromy), we obtain (We refer to theorem 2.2 for the de…nition of path 0 .Otherwise, proposition 3.13, point[START_REF] Balser | On the reduction of connection problems for di¤erential equations with an irregular singular point to ones with only regular singularities I[END_REF], implies that the principal majors + of b f "[u] and b f[u] respectively are related, for all u = 0; :::; r 1,

!I

  n j + x r L j # + B(x)

  2 ; ). We call -generalized sectors of C associated with W

	1.	is of the form
		fx 2 C ; < arg(x) < and jx wj	for all w 2 W nf0gg
		with ; 2] 2 ; 0],
	2.	is simply connected.
	any open domain	C satisfying

The elements of C are also called micro-functions by B.Malgrange ([8]) by analogy with hyper-and micro-functions de…ned by Sato, Kawai and Kashiwara in higher dimensions.

Any choice is convenient. However, to be compatible, on the Riemann sphere, with the usual choice 0 arg(z = 1=x) < 2 of the principal determination at in…nity, we suggest to choose 2 < arg(x) 0 as principal determination about 0 as well as about any ! at …nite distance.

In the literature, a Stokes matrix has a more general meaning where one allows to compare any two asymptotic solutions whose domains of de…nition overlap. According to the custom initiated by J.-P. Ramis([9]) in the spirit of Stokes' work, we exclude this case here. We consider only matrices providing the transition between the sums on each side of a same anti-Stokes direction.

Contrarily to formula (3.4) which only requires the 1-summability of the series e f[u] 's, the individual resurgence and 1-summability are not su¢cient here. We do need summableresurgence.

for all j = 1; :::; J

More precisely, W is the union of the set of Stokes values a j;r a `;r with a ;r 6 = ! 2 and the circle arcs f (! 2 e ri" a `;r ) ; " 2 [0; ] and a `;r 6 = ! 2 g.

Note the collection ( k ) k=0;:::;r 1 can be also generated by the Stokes values of the form ! 1 a k;r with arg(a k;r ) = r 0 or of the form with ; = 2 r 0 if they exist.

When they exist, we denote the collections of (2) by ( k;s;" ) k=0;:::;r 1 , s = 1; :::; p, so that (3.23) ? k > ? k;1;" > ::: > ? k;p;" > ( k ") ? > ? k;" for all k = 0; :::; r 1. Note that only ( k ) and ( k ") are collections of anti-Stokes directions associated with e f " (x). For any directions above, we denote by I n + S "

? the corresponding Stokes-Ramis matrix associated with e Y " (the formal fundamental solution of system (3.15) given page 28). As usually, we split S " ? := [S " j;` ? ] into blocks S " j;` ? of size n j n `…tting to the Jordan structure of L (matrix of exponents of formal monodromy). Recall that n j is the size of the j-th Jordan block L j = j I n j + J n j of L.

Lemma 3.16 (Perturbed Stokes-Ramis matrices)

For all k = 0; :::; r 1, the block S " j;1 ? k is zero as soon as a j;r 6 = ! 1 , the `-th column-block S " ;` ? k of S " ? k is zero as soon as a `;r = ! 2 , the block S " j;( k ") ? is zero as soon as a j;r 6 = ! 2 or `6 = 1, the block S " j;` ? k;" is zero as soon as a j;r 6 = ! 2 or a `;r 6 = ! 1 when the direction k;s;" exists, the `-th column-block S " ;` ? k;s;" of S " ? k;s;" is zero as soon as `= 1 or a `;r = ! 2 . Proposition 3.17 below makes explicit the Stokes-Ramis matrices I n + C ? k of system (0.1) in terms of the perturbed Stokes-Ramis matrices above.