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ABSTRACT

Manifold learning techniques have been widely used to pro-

duce low-dimensional representations of patient brain mag-

netic resonance (MR) images. Diagnosis classifiers trained on

these coordinates attempt to separate healthy, mild cognitive

impairment and Alzheimer’s disease patients. The perfor-

mance of such classifiers can be improved by incorporating

clinical data available in most large-scale clinical studies.

However, the standard non-linear dimensionality reduction

algorithms cannot be applied directly to imaging and clinical

data. In this paper, we introduce a novel extension of Lapla-

cian Eigenmaps that allows the computation of manifolds

while combining imaging and clinical data. This method is a

distance-based extension that suits better continuous clinical

variables than the existing graph-based extension, which is

suitable for clinical variables in finite discrete spaces. These

methods were evaluated in terms of classification accuracy

using 288 MR images and clinical data (ApoE genotypes,

Aβ42 concentrations and mini-mental state exam (MMSE)

cognitive scores) of patients enrolled in the Alzheimer’s dis-

ease neuroimaging initiative (ADNI) study.

Index Terms— Manifold learning, population analysis,

image processing, clinical data, Alzheimer’s disease

1. INTRODUCTION

Large scale population studies aim to improve the understand-

ing of the causes of diseases, define biomarkers for early di-

agnosis, and develop preventive treatments. In the context

of the Alzheimer’s disease (AD), imaging biomarkers, blood

biomarkers, cognitive tests, lifestyle and diet biomarkers are

all potential sources of information to diagnose the disease as

early as possible.

Manifold learning techniques have been used to analyse

trends in populations and describe the space of brain images

by a low-dimensional non-linear manifold [1, 2]. These stud-

ies attempt to describe the space of brain images via a low-

dimensional manifold while capturing relevant information

with regard to disease diagnosis. Diagnosis classifiers trained

on the low-dimension coordinates evaluate the ability to cap-

ture this information and separate healthy, mild cognitive im-

pairment and Alzheimer’s patients [2].

In large-scale clinical studies, an efficient representation

for imaging data that captures the population variability is

useful for comparison, data exploration and prediction. To

build more informative manifolds, the use of non-imaging in-

formation can illuminate otherwise hidden relations. How-

ever, as the imaging and clinical data are in different spaces,

the non-linear dimensionality reduction cannot be applied di-

rectly and must be adapted. We introduce a distance-based

extension and compare it theoretically to an exisiting graph-

based extension [2]. We also evaluate their numerical classi-

fication performances on a large dataset from ADNI [3].

2. METHODS

2.1. Population analysis and diagnosis classification from

manifold learning

It has been shown that the space of brain images in R
M can be

described by a non-linear manifold M of intrisic dimension

m, with m ≪ M [1]. Laplacian eigenmaps (LEM) [4] can

be used to compute the low-dimensional representation of the

data (Fig. 1). Given a matrix ∆ of pairwise distances between

n images and a number of nearest neighbours (NN) k ∈ N, an

adjacency-graph G =< V,E > is computed. Each node rep-

resents an image, and weighted edges connecting each image

to its k-NN are created. From the weight matrix W , a diag-

onal matrix D is computed with dii =
∑

j wij . The graph

Laplacian is given by L = D − W . Its eigenvectors {ej ∈
R

n}1≤j≤m associated to the m smallest non-zero eigenvalues

provide the low-dimension coordinates {yi = (ei1, . . . , e
i
m) ∈

R
m}1≤i≤n. Noting y = (y1, . . . , yn)

T , these coordinates are

the solutions of the optimization problem:

argmin
yTDy=I

∑

ij

wij ||yi − yj ||
2 (1)

To evaluate how well the representation captures the dis-

ease progression we evaluate the classification performance

of the low dimensional parameterization.



Distance matrix → k-NN graph → Laplacian → Coordinates

∆ ∈ R
n×n W∈Rn×n L∈Rn×n Y∈Rn×m

Fig. 1: Standard LEM pipeline to compute low-dimension

coordinates Y. The distance-based extension modifies ∆,

whereas the graph-based extension modifies W .

2.2. Extended LEM based on distance matrix combina-

tion

To combine imaging and clinical data in the manifold learning

process, one can define a distance on the clinical data, com-

bine linearly the image-based and clinical-based distance ma-

trices (∆ = ∆img+λ∆clinical), and apply the standard LEM

algorithm. This extension adds two constraints to the origi-

nal algorithm: 1) the need for a distance on the clinical data

and 2) the need to define a weight for the clinical data. Com-

bining the two distance matrices and applying LEM creates

a graph with the same nodes but different edges and weights

ŵij (Fig. 2a and 2b). Using this extension, the optimisation

problem becomes:

argmin
yT D̂y=I

∑

ij

ŵij ||yi − yj ||
2

2.3. Extended LEM based on adjacency graph extension

An alternative method to combine imaging and clinical data

is to extend the adjacency graph by adding extra nodes and

edges. One such technique has been presented in [2]. This

extension also adds two constraints to the original algorithm:

1) a set of rules to extend the graph (extra nodes and extra

weights), 2) the need to define a weight for the clinical data.

When the clinical variable is in a discrete finite space,

such as for ApoE genotype, one node is created for each el-

ement of that space. Extra edges are created (with a weight

equal to one) between the node of each patient with a partic-

ular element to the node of that element (e.g. all the patients

with a particular genotype are connected to the node repre-

senting that genotype). When the clinical variable is in a con-

tinuous space, such as Aβ42 concentration or MMSE clinical

score, Wolz et al. proposed to partition this continuous space

and set the weights as the fuzzy probabilities of belonging to

each partition:

∀k ∈ {1, . . . , ñ}, ∀i ∈ {1, . . . , n}, cik =

1
d(zi,zk)

∑ñ
k=1

1
d(zi,zk)

where d is a distance on the space of clinical variable, the zk
are the means of the sub-intervals defined using the mininum,

maximum and several percentile values. Figure 2c represents

the extended graph, which corresponding matrix is written

W̃ =

(

I γ
2C

T

γ
2C W

)

where I is the identity matrix, W is the weight matrix of

the standard LEM on images, and C contains the weights

of the extra-edges. A parameter γ is introduced to weight

the clinical data versus the imaging data. When extend-

ing the graph by ñ nodes, we are now looking for Y =

(a) Standard LEM (b) Distance-based LEM extension (c) Graph-based LEM extension

Fig. 2: Comparison of the graphs in the standard LEM algorithm and in the two extensions. When combining distances

matrices, one gets a graph as in 2b with the same nodes as the standard LEM 2a but different edges and different weights. In

the graph-based LEM extension, the graph 2c is built from the graph of the standard LEM 2a, then extra new nodes and weights

are added.



(ỹ1, . . . , ỹñ, y1, . . . , yn), ỹk, yi ∈ R
m as a solution of the

optimisation problem:

argmin
Y TDY=I

∑

ij

wij ||yi − yj ||
2 + γ

∑

ik

cik ||yi − ỹk||
2

3. MATERIAL AND RESULTS

3.1. Data

A dataset of 288 Magnetic Resonance images from 101

patients enrolled in ADNI (http://www.loni.ucla.

edu/ADNI, [3]) has been used to compare the diagnosis

classification performances of the standard LEM algorithm

and its two extensions.

As clinical data, ADNI provides the Apolipoprotein E

(ApoE) genotype. Three ApoE alleles exist (ǫ2, ǫ3, ǫ4), and

since each individual carries two alleles, six ApoE genotypes

are possible. The ǫ4 allele has been shown to increase the risk

of developing AD, whereas ǫ2 decreases this risk [5]. More-

over an Aβ42 protein analysis of cerebrospinal fluid (CSF) is

provided. A decrease in the concentration of this protein has

been shown to be associated with a development of AD [3].

Table 1 summarises the clinical information for the various

diagnostics in the dataset.

3.2. Experiments

The 288 images were intensity normalized by histogram

equalization to the ICBM152 atlas [6] used as template. All

the images were then rigidly registered to the atlas using

[7]. The image distance matrix was computed using the

Euclidean distance on the hippocampus area. The ApoE

genotype was used considering all possible pairs of alleles

and considering ApoE carriers as in [2], respectively leading

to 6 and 3 extra nodes in the graph-based extension. For the

graph-based extension with the continuous clinical variables

(Aβ42 and MMSE), 3 extra nodes were added as in [2]. Adja-

cency graphs were 100-nearest neighbour graphs with edges

weights computed using the gaussian kernel with a kernel

width equal to the standard deviation of the distance matrix

coefficients. LEM was applied with target dimension from 2
to 100. The classifiers used were 50-nearest neighbour classi-

fiers. Training set and test sets were built using a leave 5% out

scheme. The optimal target dimension in LEM and optimal λ

(resp. γ) were automatically selected from a 20-cross valida-

tion on the training set on {1, . . . , 100}×{0.1, 1, 2, 5, 10, 25}
(resp. {1, . . . , 100} × {0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10, 25}).

3.3. Results

Table 2 presents the classification performance of the stan-

dard LEM algorithm using the imaging data, and the two ex-

tensions using the combined imaging and clinical data. Using

clinical data combined with imaging data improves classifica-

tion results for both methods compared to the standard LEM

on only imaging data. For the discrete clinical variable ApoE

genotype, the two extensions have similar performance on

this dataset. For the continuous clinical variables Aβ24 CSF

concentration and MMSE cognitive score, the distance-based

extension performs better than the graph-based extension.

4. DISCUSSION

We have presented two extensions of LEM able to perform

non-linear dimensionality reduction with data from different

spaces, such as imaging and clinical data. Both methods come

with two additional constraints. In particular, they both need

to set an extra parameter to balance how much weight is given

to the clinical information versus the weight of the imaging

information.

From a theoretical point of view, the graph-based exten-

sion seems more natural when the clinical variable is in a

finite discrete space, whereas the distance based extension

seems more natural when the clinical data lives in a con-

tinuous space. First, when the clinical variable’s space is

a finite discrete space, it is easy to add one node per pos-

sible value and edges with weights equal to one for class

memberships. However, using the distance-based extension

when the clinical variable is in a discrete space requires to

define a distance on that space. Depending on the problem,

this can raise difficult questions. In the case of the ApoE

genotype, we can for example wonder if creating a distance

being equal to one between all pairs of different genotypes

is really optimal. Having d((ǫ2, ǫ2), (ǫ4, ǫ4)) higher than

d((ǫ2, ǫ2), (ǫ2, ǫ3)) would not be absurd given the known

biological impact of the ApoE alleles [5]. This example illus-

trates that the distance-based extension is not necessarily well

suited for discrete clinical variables. On the other hand, when

the clinical variable lives in a continuous space such as R
n,

many distances are commonly associated (e.g. distances from

lp norms ‖x‖p = (
∑

i xi
p)

1/p
). However, if one wants to

use the graph extension technique, it is obviously impossible

to add an infinite number of nodes. So the continous space

has to be discretized into a finite number of subparts. At this

point, using memberships to these subparts would mean that

each z value would be considered as being one of the zk. To

avoid this huge loss of information, Wolz et al. introduced

fuzzy memberships. Nonetheless, there is no natural way to

select the number of elements of the partition. In their paper,

Wolz et al. have a clinical variable in z ∈ R, they add ñ = 3
extra nodes, and the weights were defined by the minimum of

z, its 33% and 67% percentiles and its maximum value, but

this choice is rather arbitrary.

From a numerical point of view, when the graph-based

LEM extension is used with a continuous clinical variable, the

divisions in the cik can be sources of numerical instability.



Table 1: Number of patients, ApoE genotypes, mean and standard deviation of Aβ42 concentration in CSF and mini-mental

state exam (MMSE) cognitive scores are shown for the normal controls (NC), mild cognitive impairment (MCI) and Alzheimer’s

disease (AD) patients.

Diagnosis N
ApoE genotype

Aβ42
MMSE

(ǫ2, ǫ2) (ǫ2, ǫ3) (ǫ2, ǫ4) (ǫ3, ǫ3) (ǫ3, ǫ4) (ǫ4, ǫ4) cognitive score

NC 94 0 12 0 65 17 0 210.15± 58.15 29.28± 1.02
MCI 114 0 2 0 58 46 8 160.48± 43.50 26.62± 1.92
AD 80 0 0 3 26 37 14 137.53± 24.54 21.53± 4.74

Table 2: Performance (%) of the standard LEM algorithm and its two extensions in diagnosis classification.

Data Algorithm NC vs MCI NC vs AD MCI vs AD

Imaging LEM 65.6 63.3 61.9

Imaging & ApoE carriers Distance-based LEM extension 66.7 71.8 66.1

Imaging & ApoE carriers Graph-based LEM extension 65.8 73.0 64.8

Imaging & ApoE pairs Distance-based LEM extension 62.3 62.5 66.0

Imaging & ApoE pairs Graph-based LEM extension 63.8 65.8 65.3

Imaging & Aβ42 Distance-based LEM extension 70.7 75.5 67.1

Imaging & Aβ42 Graph-based LEM extension 65.2 70.7 65.5

Imaging & MMSE Distance-based LEM extension 83.2 93.1 67.1

Imaging & MMSE Graph-based LEM extension 65.8 75.3 68.8

5. CONCLUSION AND PERSPECTIVES

We have introduced a novel extension of LEM able to per-

form non linear dimensionality reduction while combining

imaging data and clinical data which are in different spaces.

This distance-based extension leads to a graph with the same

nodes as from the standard LEM but with different edges and

weights, whereas the previously existing graph-based exten-

sion leads to a graph where all the nodes and edges from the

standard LEM are kept and extra ones are created. This new

distance-based extension is better suited for a continuous clin-

ical data than the graph-based which is well-suited when the

clinical variable lives in a finite discrete space.

We have shown that both extensions improve the nu-

merical classification performance compared to the original

LEM on a large dataset from ADNI. Performances of both

extensions are similar with the discrete ApoE genotype clini-

cal value, and our new distance-based extension have higher

classification accuracy with the continuous clinical variables

Aβ42 CSF concentrations and MMSE clinical scores. This

performance increase indicates a better representation of the

data with regard to disease progression.

In terms of generalization of the two extensions to other

dimensionality reduction algorithms, the existing graph-

based extension can potentially be adapted only if the di-

mensionality reduction process is based on a graph. Our new

distance-based extension is more general and can be directly

used in any dimensionality reduction algorithm that requires

a distance of pairwise distances between all objects as input.
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