
HAL Id: hal-00701620
https://hal.science/hal-00701620

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heat equation from microscopic dynamics: a weak
coupling approach

Liverani Carlangelo, Stefano Olla

To cite this version:
Liverani Carlangelo, Stefano Olla. Heat equation from microscopic dynamics: a weak coupling ap-
proach. ICMP’09 : XVIth International Congress on Mathematical Physics, Aug 2009, Prague, Czech
Republic. pp.397-400, �10.1142/9789814304634_0029�. �hal-00701620�

https://hal.science/hal-00701620
https://hal.archives-ouvertes.fr


November 16, 2009 10:4 WSPC - Proceedings Trim Size: 9.75in x 6.5in ICMP09proc

394

HEAT EQUATION FROM MICROSCOPIC DYNAMICS:

A WEAK COUPLING APPROACH

C. LIVERANI

Dipartimento di Mathematica, II Università di Roma,

Roma, 00133, Italy

E-mail: liverani@mat.uniroma2.it

www.university name.edu

S. OLLA

CEREMADE, UMR CNRS 7534

Université Paris Dauphine

Paris Cedex, 75775 France

E-mail: olla@ceremade.dauphine.fr

We consider the dynamics of weakly coupled anharmonic oscillators, perturbed by a
energy conserving noise. The noise considered exchange independently the components
of the momentum of each oscillator. We prove that in the weak-coupling/long time limit
energies of oscillators evolve following stochastic autonomous system of equations. Under
a further diffusive space-time scaling of this system, the energy evolves following a non-
linear heat equation.
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1. The quest for Heat equation, from the microscopic dynamics

The mathematical rigorous deduction, from microscopic molecular dynamics, of

heat equation, or of its stationary version called Fourier’s law, is one of the main

open problem in non equilibrium statistical mechanics [1].

To state the problem we can consider a chain of coupled anharmonic oscillators.

This is described by the Hamiltonian

HΛ =
∑

i∈Λ


 |pi|

2

2
+

1

2

∑

j:|i−j|=1

V (qi − qj) + U(qi)




=
∑

i∈Λ

ei

(1)

where Λ ⊂ Z
d, qi is the displacement of the oscillator i from its equilibrium position,

and pi its momentum (we fix masses equal to 1), U is the anharmonic potential,

and V is the coupling potential. The Hamiltonian deterministic dynamics is as usual
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defined by the solution of

q̇i = pi, ṗi = −∂qi
HΛ (2)

Then the mathematical problem can be stated, in a bit imprecise way, for the

macroscopic evolution of the energy in a diffusive space-time scale (for simplicity of

notation we consider here the case d = 1):

Find a class of initial conditions such that, as |Λ| = N → ∞, we have, for any

continuous test function G with compact support,

lim
N→∞

1

N

∑

i

G(i/N)ei(N
2t) =

∫
G(y)T (y, t)dy, (3)

where T (y, t) is the solution of the nonlinear heat equation

∂tT = ∇κ(T )∇T (4)

The thermal conductivity κ(T ) is defined by the Green-Kubo formula, i.e. can

be obtained by the limit

κ(T ) = lim
t→∞

1

2T 2t

∑

i

i2
(
< ei(t)e0(0) >T −ē2

)
(5)

where < · >T stands here for the expectation of the infinite system in equilibrium at

temperature T (i.e. starting with the corresponding Gibbs measure). By using space

and time translation invariance of < · >T , thermal conductivity can be rewritten

as

κ(T ) =
1

2T 2

∫ ∞

0

∑

i

〈ji,i+1(t)j0,1(0)〉
β

dt (6)

Here ji,i+1 are the energy currents defined by

ėi(t) = (ji−1,i(t) − ji,i+1(t)) (7)

and explicitly given by

ji,i+1 = −
1

2
(pi+1 + pi) · ∇V (qi+1 − qi). (8)

At the moment this problem is completely open, and it is not even clear what could

be the class of initial conditions under which it holds. Even the definition of the

thermal conductivity κ(T ) is a challenging problem, since it requires information

on the decay of correlations for an (infinite) deterministic system.

2. Energy Conserving Noise

It is clear that adding some noise to the dynamics should help. The nature of the

noise should be such that it conserves energy, is local, and should give enough mixing

properties to the dynamics to guarantee the convergence of the integrals in (6). We

choose the noise as random forces that conserve the kinetic energy of each atom,

given by independent diffusions on the spheres ‖pi‖
2 = cost). We consider the case
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where oscillators have two degree of freedom. In order to define such diffusions,

consider the vector fields

Xi := p1
i ∂p2

i
− p2

i ∂p1

i
=: Jpi · ∂pi

,

and the second order operator

S =
∑

i∈Λ

X2
i

The generator of the process we are interested in is then given by

LΛ =: A + σ2S

where A = {HΛ, ·}, the usual Hamiltonian operator. Notice that the effect of this

random perturbation does not change the energy currents between oscillators.

Even with such noise the above mathematical problem is open and very chal-

lenging. What is clear in this case is that initial conditions will matter little, and

the theorem should be valid for a large class of initial conditions.

3. The weak coupling limit

One way to attach the problem is to perform first a weak-coupling/large times limit

of the system. Multiplying the coupling interaction V by a small parameter ε, we

obtain energy current of size ǫ, and looking at time of order ε−2t we have for the

evolution of the energies:

ei(ε
−2t) − ei(0) =

∑

|k−i|=1

ε

∫ ε−2t

0

ji,k(s) ds (9)

So it is clear that it is involved a central limit theorem problem for these very

degenerate Markov processes. Here is our result:

Theorem 3.1. In the limit ε → 0, the process {ei(ε
−2t)}i∈Λ converges, in law, to

the stochastic process {Ei}i∈Λ determined by the stochastic differential equations

dEi =
∑

|i−k|=1

α(Ei, Ek)dt +
∑

|i−k|=1

γ(Ei, Ek)dB{i,k} (10)

where B{i,k} = −B{k,i} are independent standard Brownian motions.

The coefficients α and γ are related by

α(a1, a2) = −α(a2, a1) = Γ(a)−1(∂a1
− ∂a2

)
[
Γ(a)γ(a1, a2)

2
]
,

with

Γ(a) =
∏

j

Z(aj)

and Z(a) is a explicit function depending of U .
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We have that the generator of this dynamics can be written as

L̃ =
1

2Γ(a)

∑

i,j:|i−j|=1

(∂ai
− ∂aj

)
[
Γ(a)γ(ai, aj)

2(∂ai
− ∂aj

)
]

In order to understand how closer we are now to heat equation, consider the

harmonic case (U and V quadratic). In this case these coefficient can be explicitly

computed

γ(ai, aj)
2 = aiaj , α(ai, aj) = −(ai − aj)

and the corresponding stochastic differential equations became

dEi(t) =
∑

|i−j|=1

−(Ei(t) − Ej(t)) dt +
∑

|i−j|=1

√
Ei(t)Ej(t) dwi,j(t)

= ∆Ei(t) dt +
∑

|i−j|=1

√
Ei(t)Ej(t) dwi,j(t)

i.e. we have already heat equation in this time-scale, plus a diffusive term. In the

non-linear case, α(ai, aj) is not a difference, and this dynamics falls in the class of

conservative stochastic dynamics called non-gradient Ginszburg-Landau models.

4. The hydrodynamic limit

The process (10) is close the the one studied by Varadhan in [2]. In this paper

Varadhan proves an hydrodynamic limit, i. e. that under certain condition on the

initial distribution, for any test function G on R we have the convergence

lim
N→∞

1

N

∑

i

G(i/N)Ei(N
2t) =

∫
G(y)u(y, t)dy (11)

where u(y, t) is the solution of a nonlinear heat equation

∂tu = ∇D(u)∇u (12)

Yet our case it is not covered by such result (due to the degeneracy at zero of the

diffusion coefficients and the non strict convexity of the potential of the invariant

measure). In any case the extension of Varadhan’s work to the present case would

allow to obtain the heat equation in the present setting via a diffusive limit. We plan

to work on such an extension in the future.
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