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Asymptotics of the solutions of the stochastic lattice wave

equation

Tomasz Komorowski∗ Stefano Olla† Lenya Ryzhik‡

May 29, 2012

Abstract

We consider the long time limit theorems for the solutions of a discrete wave equation
with a weak stochastic forcing. The multiplicative noise conserves the energy, and in the
unpinned case also conserves the momentum. We obtain a time-inhomogeneous Ornstein-
Uhlenbeck equation for the limit wave function that holds both for square integrable and
statistically homogeneous initial data. The limit is understood in the point-wise sense in
the former case, and in the weak sense in the latter. On the other hand, the weak limit
for square integrable initial data is deterministic.

1 Introduction
{intro}

Energy transport and dispersion in dynamics of oscillators in a lattice have been investigated in
many situations in order to understand macroscopic thermal conductivity properties. Typical
example is the Fermi-Pasta-Ulam chain under the Hamiltonian evolution corresponding to a
quartic interaction potential

H =

N
∑

y=−N

(

p2y

2m
+

1

2
ω2
0q

2
y

)

+

N
∑

y=−N+1

[

1

2
(qy − qy−1)

2 + γ(qy − qy−1)
4

]

(1.1){eq:fpu}

Here qy is the displacement of the y-th particle from its equilibrium position, py is its mo-
mentum and m is the mass. When ω0 6= 0, the particle is confined, this breaks translation
invariance, and correspondingly the conservation of the total momentum, and we say that the
chain is pinned.

When γ = 0 the Hamiltonian dynamics is given by the discrete in space linear wave
equation, and the energy evolution is purely ballistic and dispersive. If γ > 0 and ω0 6= 0,
we expect that wave scattering due to the presence of the non-linearity gives a finite thermal
conductivity and consequently a diffusive macroscopic evolution of the energy. If the chain is
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unpinned, ω0 = 0, and γ > 0, long waves scatter rarely, giving rise to a superdiffusive behavior
of the energy [12].

The mathematical analysis of the macroscopic behavior of the energy is difficult in the
case of deterministic nonlinear dynamics, and recently various models considering stochastic
perturbations of the dynamics have been proposed. They simulate, at least qualitatively,
the effect of the scattering by the non-linearity. Such noisy perturbations should conserve
energy and be local in space [5]. In the unpinned case it is also important that they conserve
the momentum [2, 3]. The perturbations considered in these papers are given by a random
exchange of momentum so that the total kinetic energy is constant (consequently, the total
energy is preserved as well, since the position components are untouched by the noise) and
the total momentum is also conserved. This is achieved by adding, to each triple of adjacent
particles, a diffusion on the corresponding circle of constant energy and momentum. Another
example of a noisy perturbation having similar properties appears in a discontinuous in time
model in which momenta of pairs of adjacent particles are exchanged at independent random
times that are exponentially distributed.

When the interaction is linear, the thermal diffusivity of the energy in these models can be
explicitly computed – it is finite for the pinned model but diverges with the size of the system in
the unpinned case (corresponding to superdiffusive energy transport for the unpinned model).

The limit dynamics for the spectral measure of the energy in these stochastic models is
investigated in [4], where the noise is also rescaled in such a way that there are only finitely
many wave collisions in the unit macroscopic time. In a sense, this weak noise limit is similar
to the regime where phonon-Boltzmann equation is valid in weakly nonlinear models (cf.
[16]). The dynamics is defined in the following way. Consider the infinite lattice Z with the
Hamiltonian associated to the linear evolution (1.1) (γ = 0), with N = ∞, perturbed by a
conservative noise. Formally, it is given by the solution of the stochastic differential equations:

q̇y(t) = py(t)

dpy(t) =
(

∆qy − ω2
0qy

)

dt + dηy(ǫt),
(1.2){eq:sde1}

where ∆qy = qy+1 + qy−1 − 2qy is the lattice Laplacian. The noise dηy(ǫt) will be chosen so
as to model random exchange of momenta between the adjacent sites so that the total kinetic
energy and momentum of the system are conserved (see (2.1) for the precise form of the noise).
The small parameter ǫ > 0 slow down its effect. The total Hamiltonian can be formally written
as

H(q, p) =
∑

y∈Z

p2y

2
+
∑

x,y∈Z

αx−yqxqy, (1.3){eq:2}

with α0 = 1
2ω

2
0 + 2, α−1 = α+1 = −1, and αy = 0 otherwise. The dispersion relation ω(k) for

this system is

ω(k) =
√

α̂(k) =

√

ω2
0

2
+ 4 sin2(πk), k ∈ T. (1.4){eq:dr0}

The Fourier transform α̂(k) is defined as in (2.3) below. Let us introduce the complex wave
function

ψy(t) := (ω̌ ∗ q)y(t) + ipy(t), (1.5){eq:wf0}
where ω̌y is the inverse Fourier transform of ω(k). Its Fourier transform is given by

ψ̂(t, k) := ω(k)q̂(k, t) + ip̂(t, k) (1.6){eq:fwf0}
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and satisfies the equation

dψ̂(t, k) := −iω(k)ψ̂(t, k)dt + idη̂(ǫt, k), (1.7){eq:fwf01}

where dη̂(t, k) is the Fourier transform of the noise. Due to the conservation properties of the
dynamics, if the initial configuration has finite total energy H(q(0), p(0)) < +∞, then all the
functions introduced in (1.3) and (1.5)-(1.6) are well defined and

H(q(t), p(t)) =
∑

y

|ψy(t)|2 =
∫

T

|ψ̂(t, k)|2dk

Therefore we can identify |ψ̂(t, k)|2 with the energy density in the mode space. In the zero noise
case, |ψ̂(t, k)|2 is conserved for any k ∈ T (i.e. ∂t|ψ̂(t, k)|2 = 0). The stochastic conservative
perturbation mixes the energies between different modes k, and |ψ̂(t, k)|2 becomes a random
variable. The evolution of the average energy E(t, k) := E|ψ̂(t, k)|2 was considered in [4]. Since
the stochastic perturbation is of order ǫ, to have a visible effect of mixing of different modes
we have to look at the time scale ǫ−1t. It was shown in [4] that the limit

lim
ǫ→0

E
(

t

ǫ
, k

)

= Ē (t, k) (1.8){eq:bos0}

exists in the sense of distributions, and is the solution of the linear kinetic equation

∂tĒ (t, k) =

∫

T

R(k, k′)
[

Ē
(

t, k′
)

− Ē (t, k)
]

dk′ (1.9){eq:phbolhom}

with the initial condition Ē (0, k) = |ψ̂(0, k)|2. The scattering kernel R(k, k′) is given by (3.2)
below.

The goal of the present article is to obtain a direct information on the wave function
ψ̂(t/ǫ, k), as was done in [1] for the Schrödinger equation, and not only for the average energy.
It follows from (1.7) that the unperturbed (by noise) evolution of this function is governed by
the highly oscillating factor e−iω(k)t/ε (after we rescale the time). It is therefore reasonable to
consider, in case of the perturbed system, the compensated wave function of the form

ψ̃(ǫ)(t, k) := eiω(k)t/εψ̂(t/ε, k).

We show that once we compensate for fast oscillations, the wave function converges in law to
the solution a Langevin equation driven by (1.9). More precisely, we prove in Theorem 3.1
below, existence of the limit (in law and pointwise in k):

lim
ε→0

ψ̃(ǫ)(t, k) = ψ̃(t, k). (1.10){eq:comp0}

The limit ψ̃(t, k) is a complex valued stochastic process satisfying the linear (time inhomoge-
neous) Ornstein-Uhlenbeck equation

dψ̃(t, k) = − β̂(k)
4

ψ̃(t, k)dt+
√

R(t, k)dwk(t), (1.11){eq:lan0}

with the initial condition ψ̃(0, k) = ψ̂(0, k). Here β̂(k) is given by (2.5) below,

R(t, k) =

∫

T

Ē(t, k′)R(k, k′)dk′, (1.12){eq:beta0}
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and {wk(t)} is a family of pairwise independent standard complex valued Brownian motions
parametrized by k ∈ T. That is, they are complex valued, jointly Gaussian, centered processes
satisfying

E[wk(t)wk′(s)] = 0 and E[w∗
k′(t)wk(s)] = δk,k′t ∧ s

for all t, s ≥ 0 and k, k′ ∈ T. Here δk,k′ = 0 for k 6= k′ and δk,k = 1. Equation (1.11) has the
explicit solution

ψ̃(t, k) = e−
1

4
β̂(k)tψ̂(0, k) +

∫ t

0
e−

1

4
β̂(k)(t−s)

√

R(s, k)dwk(s). (1.13){eq:3}

In particular, we have

E|ψ̃(t, k)|2 = e−
1

2
β̂(k)t|ψ̂(0, k)|2 +

∫ t

0
e−

1

2
β̂(k)(t−s)R(s, k)ds

which is equivalent to (1.9), since Ē(t, k) = E|ψ̃(t, k)|2 and

β̂(k) = 2

∫

T

R(k, k′)dk′, (1.14){R-B}

as can be seen by a direct calculation from (2.5) and (3.2).
Initial conditions such that

∫

T
|ψ̂(0, k)|2dk < ∞ correspond to a local perturbation of the

zero temperature equilibrium. We are also interested in the macroscopic evolution of the
equilibrium states at a positive temperature T > 0, starting with a random distribution given
by the Gibbs measure at temperature T . In the mode space this is a centered, complex valued,
Gaussian random field with distribution valued ψ̂(k). Its covariance is given by

E[ψ̂∗(k)ψ̂(k′)] = Tδ(k − k′), E[ψ̂(k)ψ̂(k′)] = 0. (1.15){eq:gibbscov}

Here δ(k − k′) is Dirac’s delta function. The distributions are invariant under the dynamics,
due to the conservation of energy. Actually, in Section 3.2 we consider more general class of
space homogeneous Gaussian, random initial conditions that are not necessarily stationary in
law in time. More precisely, we show (see Theorem 3.3) that if the law of the initial condition
is a homogeneous, centered Gaussian field with the covariance given by

E

[

ψ̂(k)∗ψ̂(k′)
]

= E0(k)δ(k − k′), E

[

ψ̂(k)ψ̂(k′)
]

= 0,

then the compensated wave function converges in law, as a continuous in time process tak-
ing values in an appropriate distribution space, to the solution of the time inhomogeneous
stochastic equation:

dψ̃(t, k) = − β̂(k)
4

ψ̃(t, k)dt +
√

R(t, k)dW (t, k). (1.16){eq:spdet1}

Here, R(t, k) is given by (1.12) and Ē(t, k) is the solution of the deterministic equation (1.9)
with the initial condition Ē(0, k) = E0(k), while dW (t, k) is a white noise on R×T, a complex
valued Gaussian process with the covariance

E[dW (t, k)dW ∗(s, k′)] = δ(k − k′)⊗ δ(t− s)dtds
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and R(t, k) is given by (1.12). The solution of (1.16) is also explicit: ψ̃(t) is the distribution

ψ̃(t) = e−β̂t/4ψ̂ +

∫ t

0
e−β̂(t−s)/4R1/2(s)dW (s).

In particular, in the case of the initial condition distributed according to a Gibbs measure, the
solution ψ̂(t, k) of (1.7) has the same law for all times, therefore Ē(t, k) = T for all t ≥ 0. In
this case, (1.14) shows that R(t, k) = β̂(k)T/2. Therefore, as a consequence of (1.16), the limit
of the compensated wave function is the solution of the linear infinite dimensional stochastic
differential equation:

dψ̃(t, k) = − β̂(k)
4

ψ̃(t, k)dt +

√

T β̂(k)

2
dW (t, k). (1.17){eq:spde0}

In the general case, when E0(k) is not constant, we have

lim
t→∞

Ē(t, k) =
∫

T

E0(k′)dk′ = T,

hence, equation (1.17) describes the asymptotic stationary regime of (1.16) where the tem-
perature is given by the average of the initial energy over all the modes k. Recall that the
microscopic noise conserves the total energy and that the resulting temperature T depends
only on the law of the initial condition.

Let us also comment on the difference between the square integrable and distribution-
valued initial data. While the Ornstein-Uhlenbeck equations (1.11) and (1.16) are essentially
identical, the limits hold in a different sense. For the square integrable data, the limit equation
holds point-wise in k. If you consider the limit in the sense of distributions (that is, integrated
against a test function) for such initial data, it is described simply by attenuation of the initial
condition by an exponential factor e−β(k)t/4 (see part (ii) of Theorem 3.1) – that is, by (1.11)
with no stochastic forcing. This result stands in sharp contrast with the case of spatially
homogeneous initial data (note that then the energy has to be infinite) when the respective
limit in the sense of distributions is stochastic, see (1.16), and fluctuations can not be averaged
out by integration.

The results of [4] also concern the Wigner transform, which is the spatially localized energy
spectrum. The spatially inhomogeneous version of (1.9) is (after a simultaneous rescaling of
space-time by (ǫ−1x, ǫ−1t))

∂tĒ (t, x, k) + ω′(k)∂xĒ (t, x, k) =

∫

T

R(k, k′)
[

Ē
(

t, x, k′
)

− Ē (t, x, k)
]

dk′. (1.18){eq:inophbol}

This gives the probability distribution at time t of the phonons in the (x, k) space. The
behavior at small k of the velocity ω′(k) is responsible for the superdiffusive behavior of the
energy for the unpinned chain (cf. [2, 3, 10, 11]). It would be interesting to understand the
relation of an inhomogeneous version of the result of the present paper to this superdiffusive
phenomenon.

The organization of the paper is as follows. In Section 2 we introduce the basic notions
that shall be used throughout the article. We formulate rigorously the stochastic differential
equation for the Fourier transform of the wave function, see (2.8). The equation for the
compensated wave function is formulated in (2.13).
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The paper is organized as follows. Section 2 contains the precise mathematical formulation
of the problem and necessary definitions. We formulate the results for the convergence of
compensated wave function in in Section 3, see Theorem 3.1 for square integrable initial data,
and Theorem 3.3 for spatially homogeneous, Gaussian initial distributions. The proofs of these
results are presented in Sections 4 and 5, respectively.

Acknowledgement. T.K. acknowledges the support of Polish Ministry of Higher Educa-
tion grant NN201419139, S.O. acknowledges the support by the ERC AdG 246953 (MALADY)
and by ANR-10-BLAN 0108 (SHEPI), L.R. acknowledges the support by NSF grant DMS-
0908507. This work was also supported by NSSEFF fellowship by AFOSR.

2 Preliminaries
{prelim}

2.1 Infinite system of interacting harmonic oscillators

The dynamics of the system of oscillators can be written formally as a system of Itô stochastic
differential equations indexed by y ∈ Z

dqy(t) = py(t)dt (2.1){eq:bas}

dpy(t) = −(α ∗ q(t))y dt−
ǫ

2
(β ∗ p(t))y dt+

√
ǫ
∑

k=−1,0,1

(Yy+kpy(t))dwy+k(t).

Here
Yx := (px − px+1)∂px−1

+ (px+1 − px−1)∂px + (px−1 − px)∂px+1
(2.2){011210}

and {wy(t), t ≥ 0}, y ∈ Z is a family of i.i.d. one dimensional, real valued, standard Brownian
motions, that are non-anticipative over the filtered probability space (Ω,F , {Ft, t ≥ 0},P). In
addition,

βy = ∆β(0)y := β
(0)
y+1 + β

(0)
y−1 − 2β(0)y

with

β(0)y =







−4, y = 0
−1, y = ±1
0, if otherwise.

Recall that the lattice Laplacian of g : Z → C is given by ∆gy := gy+1 + gy−1 − 2gy .
The Fourier transform of a square integrable sequence of complex numbers {γy, y ∈ Z} is

defined as
γ̂(k) =

∑

y∈Z

γyey(k), k ∈ T. (2.3){fourier}

The one dimensional torus T considered in this article is understood as the interval [−1/2, 1/2]
with identified endpoints. The inverse transform is given by

f̌y =

∫

T

f(k)e∗y(k)dk, y ∈ Z (2.4){inv-fourier}

for any f belonging to L2(T) - the space of complex valued, square integrable functions. Here

ey(k) := exp{−i2πyk}, y ∈ Z
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is the standard orthonormal base in L2(T). A simple calculation shows that

β̂(k) = 8 sin2(πk)
[

1 + 2 cos2(πk)
]

. (2.5){beta}

We assume also (cf [4]) that

a1) {αy, y ∈ Z} is real valued and there exists C > 0 such that |αy| ≤ Ce−|y|/C for all y ∈ Z,

a2) α̂(k) is also real valued and α̂(k) > 0 for k 6= 0 and in case α̂(0) = 0 we have α̂′′(0) > 0.

The above conditions imply that both functions y 7→ αy and k 7→ α̂(k) are even. In addition,
α̂ ∈ C∞(T) and in case α̂(0) = 0 we have α̂(k) = k2φ(k2) for some strictly positive φ ∈ C∞(T).
Recall that the function ω(k) :=

√

α̂(k) is the dispersion relation.

2.2 Evolution of the wave function

For a given m ∈ R we define the space Hm(T) as the completion of C∞(T) under the norm

‖f‖2m :=
∑

y∈Z

(1 + y2)m|f̃y|2.

We shall denote by 〈·, ·〉 the scalar product on L2(T). By continuity it extends in an obvious
way to Hm(T)×H−m(T) for an arbitrary m ∈ R.

It is convenient to introduce the wave function that, adjusted to the macroscopic time, is
given by

ψ(ǫ)(t) := ω̃ ∗ q
(

t

ǫ

)

+ ip

(

t

ǫ

)

. (2.6){011307}

Here {ω̃y, y ∈ Z} is the inverse Fourier transform of ω(k) :=
√

α̂(k). We shall consider the
Fourier transform of the wave function

ψ̂(ǫ)(t, k) := ω(k)q̂

(

t

ǫ
, k

)

+ ip̂

(

t

ǫ
, k

)

. (2.7){011307a}

Using (2.1) as a motivation, we obtain formally, by considering the Fourier transform of (2.1),
that

dψ̂(ǫ)(t) = A[ψ̂(ǫ)(t)]dt+Q[ψ̂(ǫ)(t)]dW (t), (2.8){basic:sde:2}
ψ̂(ǫ)(0) = ψ̂,

where ψ̂ ∈ L2(T), and mapping A : L2(T) → L2(T) is defined by

A[f ](k) := − i
ǫ
ω(k)f(k)− β̂(k)

4
[f1(k)− f−1(k)], ∀ f ∈ L2(T). (2.9){040607}

Here
f1(k) := f(k) and f−1(k) := f∗(−k). (2.10){020906}

In addition, Q[g] : L2(T) → L2(T) is a linear mapping that for any g ∈ L2(T) is given by

Q[g](f)(k) := i

∫

T

r(k, k′)[g1(k − k′)− g−1(k − k′)]f(k′)dk′, ∀ f ∈ L2(T), (2.11){053009}
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where

r(k, k′) := sin(2πk) + sin[2π(k − k′)] + sin[2π(k′ − 2k)]

= 4 sin(πk) sin[π(k − k′)] sin
[

(2k − k′)π
]

, k, k′ ∈ T.

The cylindrical Wiener process on L2(T) appearing in (2.8) is dW (t) :=
∑

y∈Z eydwy(t).

It can be easily checked that
∑

y∈Z ‖Q[g](ey)‖2L2 ≤ C‖g‖2L2 for some C > 0 and all g ∈
L2(T) so Q[g] is Hilbert-Schmidt, which ensures that

Q[ψ̂(ǫ)(t)]dW (t) :=
∑

y∈Z

Q[ψ̂(ǫ)(t)](ey)dwy(t)

is summable in L2(T), both in the L2 and a.s. sense. It is also obvious that the mapping A
is Lipschitz. Using Theorem 7.4, p. 186, of [6] one concludes therefore that there exists an
L2(T)-valued, adapted process {ψ̂(ǫ)(t), t ≥ 0} that is a unique solution to (2.8), understood
in the mild sense. In addition, see Section 2 of [4], the total energy is conserved:

‖ψ̂(ǫ)(t)‖L2 = const, ∀ t ≥ 0 (2.12){conservation}

for a.s. realization of Brownian motions and an initial condition from L2(T).

2.3 Compensated wave function
pseudo-wigner}

Let us define the compensated wave function

ψ̃(ǫ)(t, k) := ψ̂(ǫ)(t, k) exp

{

it
ω(k)

ǫ

}

.

From (2.8) we obtain the following equation

dψ̃(ǫ)(t, k) = A
[

t

ǫ
, ψ̃(ǫ)(t)

]

(k)dt + dM̃(ǫ)
t (k),

ψ̃(ǫ)(0) = ψ̂, (2.13)mollified-eqt}

where ψ̂ ∈ L2(T), A[t, ·] : L2(T) → L2(T) is Lipschitz

A[t, f ](k) := − β̂(k)
4

[f(k)− exp {2iω(k)t} f∗(−k)] . (2.14){012808}

The martingale term is

dM̃(ǫ)
t := Q̃

[

t

ǫ
, ψ̃(ǫ)(t)

]

dW (t), (2.15){060410}

where for any g ∈ L2(T) and t ≥ 0, the operator Q̃[t, g] : L2(T) → L2(T), given by

Q̃[t, g](f)(k) := i
∑

σ=±1

σ

∫

T

r(k, k′)gσ(k − k′)f(k′) exp
{

i[ω(k)− σω(k − k′)]t
}

dk′, (2.16){022808}

is Hilbert-Schmidt. Its Hilbert-Schmidt norm satisfies

‖Q̃[t, g1]− Q̃[t, g2]‖(HS) ≤ C‖g1 − g2‖L2(T), ∀ t ≥ 0, g1, g2 ∈ L2(T),

for some constant C > 0. In addition, it can be verified by a direct computation that t 7→ Ã[t, ·]
is Lipschitz, uniformly in t. The solution of (2.13) exists in the mild sense, see [6], Theorem 7.4,
p. 186, and is unique. Moreover, if the initial condition belongs to C(T) so does ψ̃(ǫ)(t) for
any t ≥ 0 and a.s. realization of the Wiener process.

8



3 Convergence of the compensated process
{sec3}

3.1 Square integrable initial data
{sec3.1}

Before formulating the result we introduce some auxiliaries. First, for any k01 , k
0
2 ∈ T, σ1, σ2 ∈

{−1, 1} let us denote

Kσ1,σ2(k01 , k
0
2) := [k : ω(k01)− ω(k01 − k) = σ1[ω(k

0
2)− σ2ω(k

0
2 − k)]]

and
K0(k

0
1 , k

0
2) := [k : ω(k01) + ω(k01 − k) = ω(k02) + ω(k02 − k)].

Let also
K(k01 , k

0
2) =

⋃

σ1,σ2=±1

Kσ1,σ2(k01 , k
0
2) ∪K0(k

0
1 , k

0
2).

We shall require that:

Condition ω) for any k01 6= k02 the one dimensional Lebesgue measure m1(K(k01 , k
0
2)) = 0.

Define the scattering operator L : L1(T) → L1(T) by

Lf(k) :=
∫

T

R(k, k′)[f(k′)− f(k)]dk′, f ∈ L1(T), (3.1){L}

where the scattering kernel is given by

R(k, k′) := r2(k, k − k′) + r2(k, k + k′) (3.2){kernel}
= 16 sin2(πk) sin2(πk′)

{

sin2
[

π(k + k′)
]

+ sin2
[

π(k − k′)
]}

.

Suppose that ψ̂ ∈ L2(T). Let

R(t, k) :=

∫

T

R(k, k′)Ē(t, k′)dk′, (3.3){010810}

where Ē(t, k) is the solution of an equation

Ē(t, k) = |ψ̂(k)|2 +
∫ t

0
LĒ(s, k)ds. (3.4){100510}

Assume also that {wk(t), t ≥ 0} is a family of pairwise independent standard, one dimensional,
complex valued Brownian motions indexed by k ∈ T. Our first principal result can be stated
as follows.

{main-thm1}
Theorem 3.1 (i) Suppose that ψ̂ ∈ C(T) and k1, . . . , kn ∈ T for a given integer n ≥ 1.
Then {(ψ̃(ǫ)(t, k1), . . . , ψ̃

(ǫ)(t, kn)), t ≥ 0} converge in law over C([0,+∞);Cn), as ǫ→ 0+, to
{(ψ̃(t, k1), . . . , ψ̃(t, kn)), t ≥ 0}, where {ψ̃(t, k), t ≥ 0} is a complex valued, non-homogeneous
in time Ornstein-Uhlenbeck process that is the solution of the equation

dψ̃(t, k) = − β̂(k)
4

ψ̃(t, k)dt+R1/2(t, k)dwk(t),

ψ̃(0, k) = ψ̂(k). (3.5){limit-eqt1}
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(ii) If ψ̂ ∈ L2(T) then for any f ∈ L2(T) and t∗ > 0 we have

lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣
〈ψ̃(ǫ)(t)− ψ̄(t), f〉

∣

∣

∣
= 0 (3.6){040510}

in probability. Here ψ̄(t) is given by

ψ̄(t, k) := ψ̂0(k) exp

{

− tβ̂(k)
4

}

. (3.7){012909}

Remark. Note that L1 = 0 and

〈Lf, f〉 = −1

2

∫

T2

R(k, k′)[f(k′)− f(k)]2dkdk′ ≤ 0, ∀ f ∈ L2(T).

Since the operator L is symmetric and compact on L2(T), and 0 is its simple eigenvalue we
conclude that R(t, k) → (β̂(k)/2)T , where T = ‖ψ̂0‖L2(T), as t → +∞, uniformly on T. As a
result we obtain that

lim
t→+∞

E

∣

∣

∣
ψ̃(t, k)− ψ̃s(t, k)

∣

∣

∣

2
= 0, (3.8){040510a}

where ψ̃s(t, k) is a time homogeneous Ornstein-Uhlenbeck process given by

dψ̃s(t, k) = − β̂(k)
4

ψ̃s(t, k)dt+

√

β̂(k)T

2
dwk(t),

ψ̃s(0, k) = ψ̂(k). (3.9){limit-eqt1a}

Let us also comment briefly on condition ω). An important fact used in the proof of part (i)
of Theorem 3.1, is that the energy |ψ̃(ǫ)(t)|2 converges in probability, weakly to Ē(t), as ǫ→ 0+.
The fact that the mean E〈|ψ̃(ǫ)(t)|2, f〉 converges to 〈Ē(t), f〉 has already been shown in [4]. It
is clear from (2.13) that 〈|ψ̃(ǫ)(t)|2, f〉 is a semimartingale, for any test function f . Condition
ω) is used to prove that the martingale part of the semimartingale vanishes, see Lemma 4.6
below. This, in turn implies convergence in probability. The following simple criterion is useful
for verification of condition ω), e.g. for dispersion relation ω(k) of the form (1.4).

{lmK}
Lemma 3.2 Suppose that the dispersion relation satisfies the following condition: the equation

ω′′(k) = 0 (3.10){sec-der}

has no solution in T\{0}. Then, for any (k01 , k
0
2) such that k01 6= k02 we have m1(K(k01 , k

0
2)) = 0.

In consequence the hypothesis ω) holds.

Proof. From the assumptions made we know that ω ∈ C∞(T \ {0}). Fix (k01 , k
0
2) such that

k01 6= k02 . We only prove that the corresponding section of K1:

K1,1(k01 , k
0
2) := [k : ω(k01)− ω(k02 − k) = ω(k02)− ω(k01 − k)]

is of null Lebesgue measure. To simplify our considerations we assume that σ1 = σ2 = 1.
The remaining cases can be dealt with similarly. Suppose on the contrary that the Lebesgue

10



measure of the set is positive. We can find an increasing sequence of {ℓn, n ≥ 1} ⊂ K1,1(k01 , k
0
2)

so that the signs of {k02 − ℓn, n ≥ 1} and {k01 − ℓn, n ≥ 1} are definite. In consequence, we get

ω(k02 − ℓn)− ω(k02 − ℓn+1) = ω(k01 − ℓn)− ω(k01 − ℓn+1).

Since k01 6= k02 and {ℓn, n ≥ 1} is converging we conclude the existence of ℓ′ 6= ℓ′′ such that

ω′(ℓ′) = ω′(ℓ′′).

When the signs of the arguments are the same we conclude easily the contradiction with (3.10).
Assume therefore that they are opposite and ℓ′ < ℓ′′. Since ω′(k) (understood as a function
on R) is 1-periodic and differentiable except at integer lattice points, the above implies that

ω′(1 + ℓ′) = ω′(ℓ′′)

and 0 < ℓ′′ < 1 + ℓ′ < 1. Hence, we conclude the existence of a point k ∈ T \ {0} where (3.10)
holds. This is also a contradiction. Therefore, m1(K1,1(k01 , k

0
2)) = 0 for all k01 6= k02 . �

3.2 Statistically homogeneous initial data
{sec2.3.2}

For a given non-negative m ≥ 0, we assume that the initial data ψ̂ is an H−m(T) valued
Gaussian random element. More precisely, suppose that E0(·) is a non-negative function from
C(T), {ξy, y ∈ Z} are i.i.d. complex Gaussian random variables such that Eξ0 = 0 and
E|ξ0|2 = 1, and

ψ̂(k) =
∑

y∈Z

ξyE1/2
0 (k)ey(k). (3.11){053110}

It is supported in H−m(T), provided that m > 1/2. Observe that the covariance form equals

C(J1, J2) := E

[

〈J1, ψ̂〉〈J2, ψ̂〉∗
]

=

∫

T

E0(k)J1(k)J∗
2 (k)dk (3.12){021310aa}

for any J1, J2 ∈ C∞(T). The Gibbs equilibrium states described in the introduction correspond
to E0(k) ≡ const.

Suppose that ω(·) ∈ C∞
b (T \ {0}) is bounded with all derivatives on T \ {0} and such that

ω′(0−) and ω′(0+) are defined. Then, for any m < 3/2 and t∗ > 0 there exists C > 0 such
that operators A[t, ·], given by (2.14), satisfy

‖A[t, g1]−A[t, g2]‖H−m(T) ≤ C‖g1 − g2‖H−m(T), ∀ t ∈ [0, t∗].

Likewise, the Hilbert-Schmidt norm of Q̃[t, g] : L2(T) → H−m(T) satisfies

‖Q̃[t, g1]− Q̃[t, g2]‖(HS) ≤ C‖g1 − g2‖H−m(T), ∀ g1, g2 ∈ H−m(T)

for t ∈ [0, t∗]. Using again the results of [6], it is easy to conclude that equation (2.13) has a
unique mild solution {ψ̃(ǫ)(t), t ≥ 0} whose realizations belong to C([0,+∞);H−m(T)).

Let R(t, k) be given by (3.3) with Ē(t, k) the solution of (3.4) satisfying Ē(0, k) = E0(k).
Since the operator f(k) 7→ R1/2(t, k)f(k) is Hilbert-Schmidt, when considered from L2(T) to
H−m(T), and f(k) 7→ −(β̂(k)/4)f(k) is bounded on H−m(T), the equation

dψ̄∗(t, k) = − β̂(k)
4

ψ̄∗(t, k)dt +R1/2(t, k)dW (t, k),

ψ̄∗(0, k) = ψ̂(k) (3.13){limit-eqt}
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has a unique H−m(T)-valued mild solution, see Theorem 7.4, p. 186 of [6]. It is given by the
formula

ψ̄∗(t, k) = e−β̂(k)t/4ψ̂ +

∫ t

0
e−β̂(k)(t−s)/4R1/2(s, k)dW (s, k).

We denote by H−m
w (T) the Hilbert space equipped with the weak topology. Our main result

is as follows.
{main-thm2}

Theorem 3.3 Suppose that m ∈ (1/2, 3/2) and condition ω) holds. Then, under the above
assumptions, the processes {ψ̃(ǫ)(t), t ≥ 0} converge in law over C([0,+∞),H−m

w (T)), as
ǫ→ 0+, to {ψ̄∗(t), t ≥ 0}.

Remark. As in the remark made after Theorem 3.1 we can also conclude that

lim
t→+∞

E
∣

∣〈ψ̄∗(t)− ψ̄s(t), f〉
∣

∣

2
= 0, (3.14){040510b}

where ψ̄s(t) is a time homogeneous, distribution valued Ornstein-Uhlenbeck process given by

dψ̄s(t, k) = − β̂(k)
4

ψ̄s(t, k)dt +

√

β̂(k)T

2
dW (t, k),

ψ̄s(0, k) = ψ̂(k), (3.15){limit-eqt1b}

where T = ‖E0‖L1(T).

4 Proof of Theorem 3.1
{sec4}

We explain the idea of the proof in the case n = 1 (that is, the process ψ̂(t, k) for a fixed
k), the independence of the compensated wave function for various k is handled in the same
manner. Since the coefficients appearing in the stochastic differential equation describing the
evolution of ψ̃(ǫ)(t) (see (2.13)) are of the order O(1), it is easy to conclude that for each k
the laws of processes {ψ̃(ǫ)(t, k), t ≥ 0} are tight over C([0,+∞);C), as ǫ → 0+. In order to
identify the weak limit, thus proving part i) of the theorem, we have to deal with the rapidly
oscillating terms. First, we show that the rapidly oscillating part of the bounded variation
term in (2.13) (with the factor exp{2iω(k)t/ǫ} in (2.14)) vanishes in the limit, because of the
following result.

{cormar82}
Proposition 4.1 For given t∗ > 0, a ≥ 0, k, k′ ∈ T, k 6= 0 and function f ∈ C1[0, t∗] we have

lim
ǫ→0+

E

∣

∣

∣

∣

∣

sup
t∈[0,t∗]

∫ t

0
exp

{

−ias
ǫ

}

f(s)ψ̂ǫ(s, k)ds

∣

∣

∣

∣

∣

= 0. (4.1){070410-mar8}

This result is a part of Corollary 4.5 below.

Next, we show that the limit of the martingale part M̃(ǫ)
t (k) in (2.13) is a complex Gaussian

martingale with the quadratic variation equal to
∫ t
0 R(s, k)ds. To this purpose we prove the

following convergence of the quadratic variation:

lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣

∣

〈M̃(ǫ)(k)〉t −
∫ t

0
R(s, k)ds

∣

∣

∣

∣

= 0 (4.2){mar0802}
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in probability, for any t∗ > 0. This is done in Proposition 4.2. The method of proof of (4.2) is

as follows. The terms of the following form appear in the quadratic variation of M̃(ǫ)
t (k):

V(0)
ǫ (t) :=

∫ t

0
〈|ψ̂(ǫ)(s)|2, f〉ds,

V(1)
ǫ (t) :=

∫ t

0
ds

∫

T

ψ̂(ǫ)(s, k)ψ̂(ǫ)(s,−k)f∗(k)dk, (4.3){mar804}

V(2)
ǫ (t) :=

∫ t

0
〈[ψ̂(ǫ)(s)]2, f〉ds.

Here f(k) is a certain explicit function related to the scattering kernel. As ψ̂(ǫ)(t, k) (without

the compensation) is rapidly oscillating as e−iω(k)t/ǫ, we expect that only V(0)
ǫ (t) has a non-

trivial limit. This term contains no oscillation and is essentially the time integral of scattered
energy |ψ̂(ǫ)(t, k)|2. It has been shown in [4] that the expectation of the energy converges to
the solution of (1.9). We need to strengthen this result to convergence in probability.

The proof of part ii) uses the same ideas. Integrating against a test function results in
the formula for the quadratic variation, see (4.35), containing only terms with fast oscillating
factors, so the stochastic part vanishes in the limit.

We now turn to the proof of the theorem. An application of the Itô formula to (2.8) yields,
see Theorem 4.17 of [6],

d|ψ̂(ǫ)(t, k)|2 = [Iǫ(t, k) + IIǫ(t, k)] dt+ dM(ǫ)
t (k), (4.4){wigner-eqt}

where

Iǫ(t, k) := (A[ψ̂(ǫ)(t)])∗ (k) ψ̂(ǫ) (t, k) + (ψ̂(ǫ))∗ (t, k)A[ψ̂(ǫ)(t)] (k) ,

IIǫ(t, k) :=
∑

y∈Z

(Q[ψ̂(ǫ)(t)](ey))
∗ (k)Q[ψ̂(ǫ)(t)](ey) (k) ,

and M(ǫ)
t is an Ft-adapted local martingale, given by M(ǫ)

t = M(1,ǫ)
t +M(2,ǫ)

t , with

M(1,ǫ)
t (k) :=

∫ t

0
(Q[ψ̂(ǫ)(s)]dW (s))∗ (k) ψ̂(ǫ) (s, k) ,

(4.5){030207}

M(2,ǫ)
t (k) :=

∫ t

0
(ψ̂(ǫ))∗ (s, k) (Q[ψ̂(ǫ)(s)]dW (s))(k).

We obtain from (2.9) that

Iǫ(t, k) = − β̂(k)
2

|ψ̂(ǫ)(t, k)|2 − β̂(k)

4
ψ̂
(ǫ)
2 (t, k), (4.6){030207c}

where
ψ̂
(ǫ)
2 (t, k) := ψ̂(ǫ)(t, k)ψ̂(ǫ)(t,−k) + (ψ̂(ǫ))∗(t, k)(ψ̂(ǫ))∗(t,−k),

while equation (2.11) yields

IIǫ(t, k) =

∫

T

R(k, k′)|ψ̂(ǫ)(t, k′)|2dk′ + 1

2

∫

T

R(k, k′)ψ̂
(ǫ)
2 (t, k′)dk′. (4.7){030207b}
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We can derive analogous equations for d[ψ̂(ǫ)(t, k)]2 and d[ψ̂(ǫ)(t, k)ψ̂(ǫ)(t,−k)]. The corre-

sponding terms shall be denoted by I
(i)
ǫ (t, k), II

(i)
ǫ (t, k) and the martingale

N (ǫ)
t,i (k) = N (1,ǫ)

t,i (k) +N (2,ǫ)
t,i (k), i = 1, 2.

We have

I(1)ǫ (t, k) = −2iω(k)

ǫ
[ψ̂(ǫ)(t, k)]2 + P1[ψ̂

(ǫ)(t), (ψ̂(ǫ))∗(t)],

I(2)ǫ (t, k) = −2iω(k)

ǫ
ψ̂
(ǫ)
2 (t, k) + P2[ψ̂

(ǫ)(t), (ψ̂(ǫ))∗(t)],

and
II(i)ǫ (t, k) = Qi[ψ̂

(ǫ)(t), (ψ̂(ǫ))∗(t)], i = 1, 2, (4.8){030207ba}

where Pi,Qi are second degree polynomials in ψ̂(ǫ)(t), (ψ̂(ǫ))∗(t).
{lm013108}

Proposition 4.2 Let f ∈ L∞(T), and V(j)
ǫ (t), j = 0, 1, 2 be defined by (4.3). Then for any

t∗ > 0 we have

lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣

∣

V(0)
ǫ (t)−

∫ t

0
〈Ē(s), f〉ds

∣

∣

∣

∣

= 0 (4.9){013009}

and
lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣
V(i)
ǫ (t)

∣

∣

∣
= 0, i = 1, 2 (4.10){023009}

in probability.

Proof. The proof of this proposition shall be obtained at the end of a series of lemmas. We
start with the following.

{lm023108}
Lemma 4.3 For any p ∈ [2,+∞) there exists C > 0 such that

sup
ǫ∈(0,1]

E

[

sup
t∈[0,t∗]

‖ψ̂(ǫ)(t)‖pLp(T)

]

≤ CeCt∗‖ψ̂‖pLp(T), ∀ t∗ > 0. (4.11){110510}

Proof. Let

T
(ǫ)
t ψ̂(k) := exp

{

−iω(k)t
ǫ

}

ψ̂(k), ψ̂ ∈ Lp(T), t ∈ R.

We obviously have

‖T (ǫ)
t ψ̂‖Lp(T) = ‖ψ̂‖Lp(T), ∀ t ≥ 0, p ∈ [1,+∞]. (4.12){013108}

Using the Duhamel formula, the solution of (2.8) can be written as

ψ̂(ǫ)(t, k) = ψ̂(k) +

∫ t

0
T
(ǫ)
t−sB[ψ̂(ǫ)(s)](k)ds +

∑

y∈Z

∫ t

0
T
(ǫ)
t−sQ[ψ̂(ǫ)(s)](ey)(k)dwy(s). (4.13){023108}
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Hence, for a given ǫ ∈ (0, 1] and t0 > 0 to be adjusted later on, we can write

E

[

sup
t∈[0,t0]

|ψ̂(ǫ)(t, k)|p
]

≤ C

{

|ψ̂(k)|p + tp−1
0

∫ t0

0
E|ψ̂(ǫ)(s, k)|pds

+ E







sup
t∈[0,t0]

∣

∣

∣

∣

∣

∣

∫ t

0

∑

y∈Z

T
(ǫ)
−sQ[ψ̂(ǫ)(s)](ey)(k)dwy(s)

∣

∣

∣

∣

∣

∣

p










. (4.14){010410}

To estimate the martingale term on the right hand side we use Burkholder-Davis-Gundy
inequality which allows to bound it by

4p/2E

(
∫ t0

0

∫

T

R(k, k′)|ψ̂(ǫ)(s, k − k′)|2dk′ds
)p/2

≤ C1t
p/2−1
0

∫ t0

0
E‖ψ̂(ǫ)(s)‖pLp(T)ds, (4.15){020410}

for some constant C1 > 0. Choosing t0 sufficiently small, so that Ctp0 + CC1t
p/2
0 < 1/2, we

conclude that

E

{

sup
t∈[0,t0]

‖ψ̂(ǫ)(t)‖pLp(T)

}

≤ 2C‖ψ̂‖pLp(T). (4.16){011411}

The argument leading to (4.16) can be used on each of the intervals [jt0, (j + 1)t0) for any
j ≥ 1 and yields

E

{

sup
t∈[jt0,(j+1)t0]

‖ψ̂(ǫ)(t)‖pLp(T)

}

≤ CE‖ψ̂(ǫ)(jt0)‖pLp(T) ≤ CE

{

sup
t∈[(j−1)t0,jt0]

‖ψ̂(ǫ)(t)‖pLp(T)

}

,

(4.17){011411j}
for some constant C > 0 independent of j and ǫ ∈ (0, 1]. Hence, after j iterations of the above
estimate, we conclude

E

{

sup
t∈[jt0,(j+1)t0]

‖ψ̂(ǫ)(t)‖pLp(T)

}

≤ Cj‖ψ̂‖pLp(T) (4.18){011411ja}

and (4.11) follows. �
Combining the above result with estimates (4.14) and (4.15) we conclude the following.

{cor1}
Corollary 4.4 For a given p ∈ [1,+∞) there exists C > 0 such that

sup
ǫ∈(0,1],k∈T

E

[

sup
t∈[0,t∗]

|ψ̂(ǫ)(t, k)|p
]

≤ CeCt∗‖ψ̂‖Lp(T), ∀ t∗ > 0.

From (2.8) and the above corollary we conclude the following.
{cor2}

Corollary 4.5 For given t∗ > 0, a ≥ 0, k, k′ ∈ T, k 6= 0 and function f ∈ C1[0, t∗] we have

lim
ǫ→0+

E

∣

∣

∣

∣

∣

sup
t∈[0,t∗]

∫ t

0
exp

{

−ias
ǫ

}

f(s)ψ̂ǫ(s, k)ds

∣

∣

∣

∣

∣

= 0 (4.19){070410}

and

lim
ǫ→0+

E

{

sup
t∈[0,t∗]

∣

∣

∣

∣

∫ t

0
ψ̂(ǫ)(s, k)ψ̂(ǫ)(s, k′)ds

∣

∣

∣

∣

}

= 0. (4.20){030410}
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In addition if ω(k) 6= ω(k′) we have

lim
ǫ→0+

E

{

sup
t∈[0,t∗]

∣

∣

∣

∣

∫ t

0
ψ̂(ǫ)(s, k)(ψ̂(ǫ))∗(s, k′)ds

∣

∣

∣

∣

}

= 0. (4.21){030410a}

Proof. Using (2.8) we obtain

exp

{

−iat
ǫ

}

f(t)ψ̂ǫ(t, k) − f(0)ψ̂(k) = −ia+ ω(k)

ǫ

∫ t

0
exp

{

−isa
ǫ

}

f(s)ψ̂ǫ(s, k)ds

+

∫ t

0
P[ψ̂ǫ(s), (ψ̂ǫ)

∗(s)](k)ds +

∫ t

0

∑

y∈Z

Qy[ψ̂ǫ(s), (ψ̂ǫ)
∗(s)](k)wy(ds), (4.22){090510}

where P, Qy are first degree polynomials in ψ̂ǫ(s), (ψ̂ǫ)
∗(s) with bounded coefficients and such

that
sup

s∈[0,t∗]

∑

y∈Z

|Qy[ψ̂ǫ(s), (ψ̂ǫ)
∗(s)](k)|2 ≤ C‖ψ̂ǫ(s)‖2L2(T).

Dividing both sides of (4.22) by (ω(k) + a)/ǫ (possible since this factor is strictly positive) we
calculate

∫ t

0
exp

{

−isa
ǫ

}

f(s)ψ̂ǫ(s, k)ds.

Using Lemma 4.3 together with Corollary 4.4 we can easily conclude (4.19).
The proof of (4.20) is analogous. We use the Itô formula to express d[ψ̂(ǫ)(s, k)ψ̂(ǫ)(s, k′)]

and d[ψ̂(ǫ)(s, k)(ψ̂(ǫ))∗(s, k′)]. Then, we repeat the argument used above. �
The following lemma shall be crucial for us.

{lm013009}
Lemma 4.6 For any f ∈ L2(T), t∗ > 0 we have

lim
ǫ→0+

E

[

sup
t∈[0,t∗]

∣

∣

∣
〈M(i,ǫ)

t , f〉
∣

∣

∣

2
]

= 0 (4.23){010310}

and

lim
ǫ→0+

E

[

sup
t∈[0,t∗]

∣

∣

∣
〈N (i,ǫ)

t,j , f〉
∣

∣

∣

2
]

= 0, i, j = 1, 2. (4.24){020310}

Proof. We can write

E

∣

∣

∣
〈M(1,ǫ)

t , f〉
∣

∣

∣

2
≤ 2







∑

j∈Z

∫ t

0
dsE

∣

∣

∣

∣

∫

T2

r(k, k′)f∗(k)(ψ̂(ǫ))∗(s, k − k′)e∗j (k
′)ψ̂(ǫ)(s, k)dk

∣

∣

∣

∣

2

+
∑

j∈Z

∫ t

0
dsE

∣

∣

∣

∣

∫

T2

r(k, k′)f∗(k)(ψ̂(ǫ))(s, k′ − k)e∗j (k
′)ψ̂(ǫ)(s, k)dk

∣

∣

∣

∣

2






(4.25){030207a}

Here, for abbreviation sake, we wrote dk = dkdk′. The estimate of E
∣

∣

∣
〈M(2,ǫ)

t , f〉
∣

∣

∣

2
is very

similar except f∗ on the right hand side should be replaced by f . Using Parseval identity we
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can further transform the right hand side of (4.25) into

2

∫ t

0
ds

∫

T3

r(k, k′)r(k1, k
′)f∗(k)f(k1)

×
{

E

[

(ψ̂(ǫ))∗(s, k − k′)ψ̂(ǫ)(s, k)ψ̂(ǫ)(s, k1 − k′)(ψ̂(ǫ))∗(s, k1)
]

+E

[

ψ̂(ǫ)(s, k − k′)ψ̂(ǫ)(s, k)(ψ̂(ǫ))∗(s, k1 − k′)(ψ̂(ǫ))∗(s, k1)
]}

dk, (4.26){030207aa}

where dk = dkdk1dk
′.

Consider the term of (4.26) corresponding to the first expectation (the other can be dealt
with in a similar fashion). Recall that

K1 := [(k, k′, k1) : ω(k) + ω(k′ − k1) = ω(k′) + ω(k − k1)].

We claim that for k = (k, k′, k1) 6∈ K1 we have

lim
ǫ→0+

∫ t

0
Ψ(ǫ)(s,k)ds = 0, (4.27){phi}

where
Ψ(ǫ)(s,k) := E

[

(ψ̂(ǫ))∗(s, k − k′)ψ̂(ǫ)(s, k1 − k′)ψ̂(ǫ)(s, k)(ψ̂(ǫ))∗(s, k1)
]

.

Using (2.8) and Itô formula we conclude that

i

ǫ

[

ω(k − k′) + ω(k1)− ω(k1 − k′)− ω(k)
]

∫ t

0
Ψ(ǫ)(s,k)ds

= Ψ(ǫ)(t,k)−Ψ(ǫ)(0,k) +

∫ t

0
P[ψ̂(ǫ)(s), (ψ̂(ǫ))∗(s)](k)ds, (4.28){010110}

where P is a fourth degree polynomial formed over the wave function ψ̂(ǫ)(s), (ψ̂(ǫ))∗(s).
Dividing both sides of (4.28) by the factor in front of the integral on the left hand side and
subsequently using Corollary 4.4 with p = 4 we conclude (4.27). The lemma then follows,
provided we can substantiate the following interchange of the limit with integral

lim
ǫ→0+

∫ t

0
ds

∫

T3

r(k, k′)r(k1, k
′)f∗(k)f(k1)Ψ

(ǫ)(s,k)dk

=

∫

T3

r(k, k′)r(k1, k
′)f∗(k)f(k1)dk

{

lim
ǫ→0+

∫ t

0
Ψ(ǫ)(s,k)ds

}

.

The latter however is a consequence of the Lebesgue dominated convergence theorem and
Corollary 4.4. This ends the proof of (4.23). The proof of (4.24) is analogous. �

Going back to the proof of Proposition 4.2 we conclude that (4.10) holds, thanks to (4.20)
and the Lebesgue dominated convergence theorem.

On the other hand from the Itô formula for d|ψ̂(ǫ)(t, k)|2 we obtain

〈|ψ̂(ǫ)(t)|2, f〉 − 〈|ψ̂(0)|2, f〉 =
∫ t

0
〈L|ψ̂(ǫ)(s)|2, f〉ds + 1

2

∫ t

0
〈Lψ̂(ǫ)

2 (s), f〉ds+ 〈M(ǫ)
t , f〉.

Denote by {Qǫ, ǫ ∈ (0, 1]} the family of the laws of {|ψ̂(ǫ)(t)|2, t ≥ 0} over C([0,+∞), L2
w(T)).

Here L2
w(T) stands for the space L2(T) equipped with the weak topology.
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Using Lemma 4.3 we conclude from the above equality that for any t∗ > 0 there exists a
constant C > 0 such that

E

∣

∣

∣
〈|ψ̂(ǫ)(t)|2, f〉 − 〈|ψ̂(ǫ)(s)|2, f〉

∣

∣

∣

4
≤ C(t− s)2, ∀ ǫ ∈ (0, 1], t, s ∈ [0, t∗].

This implies tightness of the family of the laws of {〈|ψ̂(ǫ)(t)|2, f〉, t ≥ 0}, as ǫ → 0+ over
C[0,+∞). From the above and estimate (4.11) we conclude weak pre-compactness of Qǫ,
ǫ ∈ (0, 1], see Theorem 3.1, p. 276 of [8]. Thanks again to Lemma 4.6 and the already proved
formula (4.10) we conclude that the limiting law is a δ-type measure supported on Ē(t) – the
solution of (3.4). This, in particular, implies that

lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣
〈|ψ̂(ǫ)(t)|2 − Ē(t), f〉

∣

∣

∣
= 0

in probability. Hence (4.9) follows. �
With the results proved above in hand, we return to the proof of Theorem 3.1. Assume

first that n = 1 and we consider the process ψ̃(ǫ)(t, k) evaluated at a single k. From (2.13) and
Corollary 4.4 we conclude easily that for any t∗ > 0 there exists a constant C > 0 such that

E|ψ̃(ǫ)(t, k)− ψ̃(ǫ)(s, k)|4 ≤ C(t− s)2, ∀ ǫ ∈ (0, 1], s, t ∈ [0, t∗].

This implies tightness of the laws of {ψ̃(ǫ)(t, k), t ≥ 0} over C[0,+∞).
In the next step we identify the limiting law Pk of {ψ̃(ǫ)(t, k), t ≥ 0} over C[0,+∞). Denote

by Πt(f) := f(t), f ∈ C[0,+∞) the canonical coordinate map.
Consider the quadratic variation of the complex valued martingale given by (2.15)

〈M̃(ǫ)(k), (M̃(ǫ))∗(k)〉t =
∑

σ1,σ2=±1

σ1σ2

∫

T

r2(k, k′)ψ(ǫ)
σ1

(t, k − k′)(ψ(ǫ)
σ2

)∗(t, k − k′)dk′, (4.29){050410}

and

〈M̃(ǫ)(k),M̃(ǫ)(k)〉t =
∑

σ1,σ2=±1

σ1σ2

∫

T

r2(k, k′)ψ(ǫ)
σ1

(t, k − k′)ψ(ǫ)
σ2

(t, k − k′)dk′. (4.30){050410a}

Using Proposition 4.2 we conclude that

lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣

∣

〈M̃(ǫ)(k), (M̃(ǫ))∗(k)〉t −
∫ t

0
R(s, k)ds

∣

∣

∣

∣

= 0

and
lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣
〈M̃(ǫ)(k),M̃(ǫ)(k)〉t

∣

∣

∣
= 0.

Then by virtue of Theorem 5.4 of [7] we conclude that {M̃(ǫ)
t , t ≥ 0} converge in law over

C[0,+∞) to a complex valued Gaussian process {M̃t, t ≥ 0} given by

M̃t(k) :=

∫ t

0
R1/2(s, k)w(ds), (4.31){010510}

where {w(t), t ≥ 0} is a complex valued standard Brownian motion.
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Assume now that k 6= 0 and Pk is a limiting law of {ψ̃(ǫ)(t, k), t ≥ 0} obtained from a
certain sequence ǫn → 0+. Denote by Πt the coordinate mapping, given by Πt(g) := g(t) for
g ∈ C[0,+∞).We conclude from (2.13) and (4.19) that

Πt +
β̂(k)

4

∫ t

0
Πsds, t ≥ 0

is a Pk-martingale whose law coincides with that of the process described by (4.31). The
conclusion extends also to the case when k = 0 and ω(0) > 0. If, on the other hand, ω(0) = 0
we have β̂(0) = 0 and R1/2(s, 0) = 0 and therefore Πt ≡ Π0 a.s.

Suppose now that k1, . . . , kn ∈ T are pairwise distinct. Denote by Qǫ the law of

{(ψ̃(ǫ)(t, k1), . . . , ψ̃
(ǫ)(t, kn)), t ≥ 0}

over C([0,+∞),Cn). Then, following the argument made in the previous part of the proof,
we conclude

lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣

∣

〈M̃(ǫ)(ki), (M̃(ǫ))∗(kj)〉t − δi,j

∫ t

0
R(s, ki)ds

∣

∣

∣

∣

= 0

and
lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣
〈M̃(ǫ)(ki),M̃(ǫ)(kj)〉t

∣

∣

∣
= 0, ∀ i, j = 1, . . . , n.

Combining this observation with (4.19) we obtain from equation (2.13) that any limiting point
of the family of laws of Qǫn as ǫn → 0+ is a measure Pk1,...,kn such that

Mt = (M(1)
t , . . . ,M(n)

t ) := Πt +
β̂(k)

4

∫ t

0
Πsds, t ≥ 0

is Cn-valued martingale, whose quadratic covariation is given by

〈M(i), (M(j))∗〉t = δi,j

∫ t

0
R(s, kj)ds

and
〈M(i), (M(j))〉t = 0, ∀ i, j = 1, . . . , n.

This of course implies that Pk1,...,kn = Pk1 ⊗ . . .⊗ Pkn .
Let f ∈ L2(T). We shall prove that

lim
ǫ→0+

E|〈M̃(ǫ)
t , f〉|2 = 0. (4.32){050410a1}

Assuming this result we show how to finish the proof of part (ii). Denote

δψ(ǫ)(t) := ψ̃(ǫ)(t)− ψ̄(t).

Using Lemma 4.3 and Theorem 3.1, p. 276 of [8] we can conclude weak pre-compactness of Pǫ,
ǫ ∈ (0, 1] – the family of the laws of {δψ(ǫ)(t), t ≥ 0} – in C([0,+∞), L2

w(T)). With the help
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of Corollary 4.20 and (4.32) we conclude that the limiting measure, as ǫ → 0+, is supported
on the solution of the equation

〈g(t), f〉 − 1

4

∫ t

0
〈β̂g(s), f〉ds = 0, ∀ f ∈ L2(T).

This of course shows that it is the δ-measure supported on g(t) ≡ 0. Hence, in particular we
get

lim
ǫ→0+

sup
t∈[0,t∗]

|〈δψ(ǫ)(t), f〉| = 0 (4.33){060510}

in probability and (3.6) follows.

Coming back to the proof of (4.32) note that by the definition of the martingale M̃(ǫ)
t , see

(2.15), we only need to show that

lim
ǫ→0+

E

∣

∣

∣

∣

∣

∣

∫ t

0

∑

y∈Z

∫

T2

exp

{

is
ω(k)

ǫ

}

r(k, k′)f∗(k) ψ̂(ǫ)
σ (s, k − k′)ey(k

′)wy(ds)

∣

∣

∣

∣

2

= 0 (4.34){080510}

for σ = ±1. We consider only the case σ = 1, the other one can be dealt in a similar manner.
The expression under the limit in (4.34) equals

t
∫

0

∫

T3

exp

[

is
ω(k)− ω(k1)

ǫ

]

r(k, k′)r(k1, k
′)f∗(k)f(k1)E

[

ψ̂(ǫ)(s, k − k′)(ψ̂(ǫ))∗(s, k1 − k′)
]

dsdk,

(4.35){080510a}
with dk = dkdk1dk

′. Observe that

exp

{

it
ω(k)− ω(k1)

ǫ

}

E

[

ψ̂(ǫ)(t, k − k′)(ψ̂(ǫ))∗(t, k1 − k′)
]

− E

[

ψ̂(k − k′)ψ̂∗(k1 − k′)
]

=

∫ t

0

d

ds

{

exp

{

is
ω(k)− ω(k1)

ǫ

}

E

[

ψ̂(ǫ)(s, k − k′)(ψ̂(ǫ))∗(s, k1 − k′)
]

}

ds

=
i

ǫ

[

ω(k)− ω(k − k′)− ω(k1) + ω(k1 − k′)
]

×
∫ t

0
exp

{

is
ω(k)− ω(k1)

ǫ

}

E

[

ψ̂(ǫ)(s, k − k′)(ψ̂(ǫ))∗(s, k1 − k′)
]

ds

+

∫ t

0
P
[

ψ̂(ǫ)(s), (ψ̂(ǫ))∗(s)
]

(k, k′)ds,

where P is a second degree polynomial in ψ̂(ǫ)(s), (ψ̂(ǫ))∗(s). Using Corollary 4.4 and an
argument identical with the one used in the proof of Lemma 4.6 we conclude that

lim
ǫ→0+

∫ t

0
exp

{

is
ω(k)− ω(k1)

ǫ

}

E

[

ψ̂(ǫ)(s, k − k′)(ψ̂(ǫ))∗(s, k1 − k′)
]

ds = 0

for all k 6= k1. Equality in (4.34) is a consequence of the Lebesgue dominated convergence
theorem.
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5 Spatially homogeneous initial data
{sec5}

Tightness of the family of laws {ψ̃(ǫ)(t), t ≥ 0}, in the space of continuous functionals taking
values in a space of distributions is again due to the fact that the evolution equation (2.13)
contains no terms that are large in magnitude. This is done in Sections 5.1 and 5.2. However,
we have no estimates of the H−m(T) norm of ψ̃(ǫ)(t) analogous to the ones in Lemma 4.3,
that have played an important role in the limit identification argument of Section 4 for square
integrable data. Therefore, instead of considering the quadratic variation of the martingale
term as we did in the proof of Theorem 3.1, for the proof of Theorem 3.3 we identify the limit of
all moments of ψ̃(ǫ)(t). Accordingly, we first write equations for time evolution of an arbitrary
moment of ψ̃(ǫ)(t) in Section 5.3. Using standard averaging argument we show (see Proposition
5.3) the convergence of moments, as ǫ → 0+, to a solution of the limiting equation obtained
simply by discarding the oscillatory terms from the moment equation. Finally in Section 5.5
we prove that the solutions of the limiting equation coincide with the respective moments of
the non-homogeneous Ornstein-Uhlenbeck equation (3.13) concluding in this way the proof of
Theorem 3.3.

5.1 Properties of spatially homogeneous solutions of (2.8)
{sec5.1}

Recall that the initial data ψ̂ is random and takes values in the Hilbert space of distributions
H−m(T) for some m ∈ (1/2, 3/2). In fact, in Sections 5.1-5.3 we shall not make any use of the
assumption that the data is Gaussian and we use only the fact that E‖ψ̂‖2−m < +∞. Consider

the random field {ψy := 〈ψ̂, ey〉, y ∈ Z}. Note that

∑

y∈Z

(1 + y2)−m
E|ψy|2 = E‖ψ̂‖2−m < +∞,

and Eψ0 = 0. Moreover, {ψy+z , y ∈ Z} and {ψy, y ∈ Z} have identical laws for all z ∈ Z. The

latter is equivalent to the fact that ψ̂(k) and ez(k)ψ̂(k) are identically distributed in H−m(T)
for any z ∈ Z.

Since the covariance function of the field

Sx−y := E[ψxψ
∗
y ], ∀x, y ∈ Z

is positive definite, there exists a finite measure Ê(dk) such that

Sx =

∫

T

eixkÊ(dk), ∀x ∈ Z.

We assume that Ê(dk) = E0(k)dk for some non-negative density E0 ∈ C(T). In addition, we
also suppose that the covariance function depends sufficiently fast in space so that

∑

x∈Z

|E[ψxψ0]| < +∞. (5.1){conv-y}

When the field ψx is a complex valued Gaussian, the quantity in the left side vanishes. As-
sumption (5.1) implies, in particular, that

Y =
∑

x∈Z

exE[ψxψ0]

21



belongs to C(T).
We note that the translation invariance of the solution persists in time. Indeed, let

ψ
(ǫ)
x (t) := 〈ψ̂(ǫ)(t), ex〉 and z ∈ Z. A direct computation shows that ezψ̂

(ǫ)(t) is also a so-
lution of (2.13). Since the laws of the initial conditions ezψ̂ and that of ψ̂ are identical,
we conclude from the uniqueness in law of solutions that the same holds for the processes

{ezψ̂(ǫ)(t), t ≥ 0} and {ψ̂(ǫ)(t), t ≥ 0}. In consequence, the laws of {ψ(ǫ)
x (t), x ∈ Z} and that

of {ψ(ǫ)
x+z(t), x ∈ Z} are identical for any z ∈ Z. We can now define the correlation functions

S
(ǫ)
t,x = E

[

ψ(ǫ)
x (t)(ψ

(ǫ)
0 )∗(t)

]

and Y
(ǫ)
t,x = E

[

ψ(ǫ)
x (t)ψ

(ǫ)
0 (t)

]

and introduce two distributions on H−m(T)

〈f, Ŝ(ǫ)
t 〉 :=

∑

x∈Z

f̌x(S
(ǫ)
t,x)

∗ and 〈f, Ŷ (ǫ)
t 〉 :=

∑

x∈Z

f̌x(Y
(ǫ)
t,x )

∗.

We recall the following result of [4].
{lm011310}

Proposition 5.1 For any ǫ ∈ (0, 1] and t ≥ 0 we have Ŝ
(ǫ)
t , Ŷ

(ǫ)
t ∈ L1(T). Moreover,

(1) Ŝ
(ǫ)
t is non-negative, and for any t∗ > 0

sup
ǫ∈(0,1]

sup
t∈[0,t∗]

(‖Ŝ(ǫ)
t ‖L1(T) + ‖Ŷ (ǫ)

t ‖L1(T)) < +∞, (5.2){011310}

(2) for any f ∈ L∞(T) we have

lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣
〈Ŝ(ǫ)

t − Ē(t), f〉
∣

∣

∣
= 0, (5.3){021310}

where Ē(t) is given by (3.4) with the initial condition replaced by E0(k)

(3) for any f such that fω−1 ∈ L∞(T) we have

lim
ǫ→0+

sup
t∈[0,t∗]

∣

∣

∣

∣

∫ t

0
〈Ŷ (ǫ)

s , f〉ds
∣

∣

∣

∣

= 0. (5.4){021310a}

Proof. Parts 1) and 2) of the lemma are contained in Lemma 12 and Theorem 10 of [4],
respectively. Part 3) follows easily from part 1) and the arguments used in the proof of
Corollary 4.5. �

5.2 Tightness of solutions of (2.13)
{sec5.2}

Given f ∈ Hm(T), we denote by Qǫ and Qǫ,f the laws of the processes {ψ̂(ǫ)(t), t ≥ 0}
and {〈f, ψ̂(ǫ)(t)〉, t ≥ 0} over C([0,+∞),H−m

w (T)) and C([0,+∞),C), respectively, and by
{Q̃ǫ, ǫ ∈ (0, 1]} the family of laws of {ψ̃(ǫ)(t), t ≥ 0} over C([0,+∞),H−m

w (T)). According to
[15], see Remark R1, p. 997, to verify the tightness of Q̃ǫ, it suffices to show the following two
conditions:
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(UC) for any σ,M, t∗ > 0 there exists a δ > 0 such that

P

[

sup
t∈[0,t∗]

|〈ψ̃(ǫ)(t), f〉| ≥M

]

< σ, ∀ ‖f‖m < δ, ǫ ∈ (0, 1],

and

(FDT) for any f ∈ Hm(T) the family of the laws of the processes {〈ψ̃(ǫ)(t), f〉, t ∈ [0, t∗]},
ǫ ∈ (0, 1] is tight over C[0, t∗].

As in (3.12) we conclude that for any f1, f2 ∈ Hm(T), where m > 1/2, the covariance

E

[

〈f1, ψ̂(ǫ)
t 〉〈f2, ψ̂(ǫ)

t 〉∗
]

=

∫

T

Ŝ
(ǫ)
t (k)f1(k)f

∗
2 (k)dk. (5.5){031310}

From (2.13) and Doob’s inequality there exists a constant C > 0 such that

E

[

sup
t∈[0,t∗]

|〈ψ̃(ǫ)(t), f〉|2
]

≤ C
{

E|〈ψ̂, f〉|2 +
∫ t∗

0
E

∣

∣

∣

∣

〈

A
[

t

ǫ
, ψ̃(ǫ)(t)

]

, f

〉
∣

∣

∣

∣

2

dt+ E

∣

∣

∣

〈

M̃(ǫ)
t∗ , f

〉
∣

∣

∣

2
}

.

(5.6){041310}
Using (5.5), (5.2) and the definitions of A[t/ǫ, ·], and the martingale M̃(ǫ)

t (see (2.14) and
(2.15)) we conclude that the right hand side of (5.6) can be estimated from above by C‖f‖2∞,
which can be made less than σ > 0, provided we choose δ > 0 sufficiently small.

To show condition (FDT) consider Q̃
(M)
ǫ,f – the law of the stopped process

{(〈ψ̃(ǫ)(t ∧ τ (ǫ)M ), f〉, 〈ψ̃(ǫ)(t ∧ τ (ǫ)M ), f0〉) t ∈ [0, t∗]}

over C([0, t∗];C
2). Here f0(k) := f(−k) and

τ
(ǫ)
M := inf[t ∈ [0, t∗] : |〈ψ̃(ǫ)(t), f〉|2 + |〈ψ̃(ǫ)(t), f0〉|2 ≥M2].

We adopt the convention that τM := t∗ if the set is empty. Thanks to (UC) we conclude that

limM→+∞ τ
(ǫ)
M = t∗, a.s. for each ǫ ∈ (0, 1]. Denote also by Q̃ǫ,f the law of the process without

the stopping condition.
From (2.13) we conclude that for a fixed M and an arbitrary non-negative function φ :

C
2 → R, of class C1

c (R
4), one can choose a constant Kφ, independent of spatial translations

of φ, such that

φ(〈ψ̃(ǫ)(t ∧ τ (ǫ)M ), f〉, 〈ψ̃(ǫ)(t ∧ τ (ǫ)M ), f0〉) +Kφt, t ∈ [0, t∗]

is a non-negative submartingale. This proves tightness of {Q̃(M)
ǫ,f , ǫ ∈ (0, 1]} for a fixed M , by

virtue of Theorem 1.4.3 of [17]. Since for any σ > 0 one can find a sufficiently large M > 0
such that BM – the ball centered at 0 and of radius M in C([0, t∗];C

2) – satisfies

Q̃
(M)
ǫ,f (Bc

M ) + Q̃ǫ,f (B
c
M ) < σ

and
Q̃

(M)
ǫ,f (BM ∩A) = Q̃ǫ,f(BM ∩A)

for all Borel measurable subsets A of C([0, t∗];C
2), we conclude tightness of {Q̃ǫ,f , ǫ ∈ (0, 1]},

see step (vi) of the proof of Theorem 3 of [9] for details of this argument.

23



5.3 Evolution of moments{sec5.3}
To describe the evolution of moments we rewrite equation (2.13) in a more compact form.
Denote by C(t, k) = [Cij(t,k)], i, j = ±1, the 2× 2 hermitian matrix

C(t, k) :=

[

C1,1 C1,−1

C−1,1 C−1,−1

]

,

with the entries

Cp,q(t, k) :=
pqβ̂(k)

4
exp {ipω(k)(1 − pq)t} .

Let also Q(t, k, k′) = [Qpq(t, k, k
′)], p, q = ±1, be the 2× 2 matrix

Qp,q(t, k, k
′) := ipqr(k, k − k′)eip[ω(k)−pqω(k′)]t

and W (t, k) :=
∑

y ey(k)wy(t). Let us recall that ψ̃
(ǫ)
−1(t, k) = ψ̃(ǫ)∗(t,−k). Then, equation for

Ψ(ǫ)(t, k) =





ψ̃(ǫ)(t, k)

ψ̃
(ǫ)
−1(t, k)





is

dΨ(ǫ)(t, k) = −C

(

t

ǫ
, k

)

Ψ(ǫ)(t, k)dt+

∫

T

Q

(

t

ǫ
, k, k − k′

)

Ψ(ǫ)(t, k − k′)W (dt, k′)dk′,(5.7){031710}

Ψ(ǫ)(0, k) = Ψ(k),

with the initial data

Ψ(k) =





ψ̂(k)

ψ̂−1(k)



 .

Let {Sǫ(s, t, k), s, t ∈ R} be the Hermitian matrices solving the deterministic system of ODE’s

dSǫ(s, t, k)

dt
= −C

(

t

ǫ
, k

)

Sǫ(s, t, k)

Sǫ(s, s, k) = I2.

Here I2 is the 2 × 2 identity matrix. Existence and uniqueness of solutions to (5.7) in the
strong sense (thus implying the result in the mild, or weak sense as well) follows from an
argument used in Chapter 6 of [6] (because the generators for the evolution family Sǫ(s, t) are
bounded), see Proposition 6.4 there. Although the case considered here differs slightly because
the coefficients are time dependent, this does not influence the results.

Given a nonnegative integer p ≥ 1, define a tensor valued distribution on H−m/p(Tp)

M̂ (ǫ)(t) :=
[

M̂
(ǫ)
i

(t)
]

, i = (i1, . . . , ip) ∈ {−1, 1}p,

by

M̂
(ǫ)
i

(t) = E

[

ψ̃
(ǫ)
i1

(t)⊗ . . .⊗ ψ̃
(ǫ)
ip

(t)
]

.
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Note that also
M̂

(ǫ)
i

(0) = M̂i := E

[

ψ̂i1 ⊗ . . . ⊗ ψ̂ip

]

(5.8){021910}

For a given multi-index i we define the multi-indices iℓ(j) = (i′1, . . . , i
′
p), iℓ,m(j1, j2) =

(i′′1 , . . . , i
′′
p) given by: i′q = iq for q 6= ℓ and i′ℓ = j, and i′′q = iq for q 6= ℓ,m and i′′ℓ = j1,

i′′m = j2. Denote by M(Tp) the space of all complex valued Borel measures ν on T
p whose

total variation norm ‖ν‖TV is finite.
{prop011810}

Proposition 5.2 The following are true:

1) M̂ (ǫ)(t) is the unique solution in H−m/p(Tp) of the system of equations

d

dt
M̂

(ǫ)
i

(t,k) = −
p
∑

ℓ=1

∑

j=±1

Ciℓ,j

(

t

ǫ
, kℓ

)

M̂
(ǫ)
iℓ(j)

(t,k) (5.9){011910}

+
∑

1≤ℓ<m≤p

∑

j1,j2=±1

∫

T

Rj1,j2
iℓ,im

(

t

ǫ
, kℓ, km, k

′

)

M̂
(ǫ)
iℓ,m(j1,j2)

(t,k′
ℓ,m)dk′,

with i ∈ {−1, 1}p and the initial data given by (5.8). Here

Rj1,j2
iℓ,im

(

t

ǫ
, kℓ, km, k

′

)

:= Qiℓ,j1

(

t

ǫ
, kℓ, k

′
ℓ

)

Qim,j2

(

t

ǫ
, km, k

′
m

)

and k′
ℓ,m = (k′1, . . . , k

′
p), where k

′
p := kp for p 6= ℓ,m and k′ℓ := kℓ − k′, k′m := km + k′.

2) If the initial condition is from M(Tp) then the solution also belongs to M(Tp) and for
any t∗ > 0

M∗(T ) :=
∑

i∈{−1,1}p

sup
ǫ∈(0,1]

sup
t∈[0,t∗]

‖M̂ (ǫ)
i

(t)‖TV < +∞. (5.10){062910}

Proof. The fact that M̂ (ǫ)(t) is a solution of (5.9) follows by an application of Itô formula
and equation (5.7). Since the operators appearing on the right hand side of the equation
in question are uniformly Lipschitz, on any compact time interval, both in H−m/p(Tp) and
M(Tp) the proof of uniqueness of solutions in these spaces is standard. Estimate (5.10) follows
by an application of Gronwall’s inequality. �

5.4 Asymptotics of even moments

Let us now describe the limit moment equations. Assume that p = 2n is even, then for any
1 ≤ ℓ < m ≤ 2n let Dℓ,m := [k ∈ T

2n : kℓ = −km]. We define a bounded linear operator
Rℓ,m : M(T2n) → M(T2n) by

∫

T2n

fdRℓ,mν :=

∫

T

dk

{

∫

Dℓ,m

r2(k, k − k′ℓ)f(S(k
′, k))ν(dk′)

}

for any bounded, measurable f : T2n → C and ν ∈ M(T2n). Here k′ = (k′1, . . . , k
′
2n) and

S : T2n+1 → T
2n is given by (k1, . . . , k2n) = S(k′, k) if kj = k′j for j 6∈ {ℓ,m} and kℓ = k,

km = −k.
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Suppose that the components of the tensor M̂ = [M̂i] belong to M(T2n). Similarly to
part 1) of Proposition 5.2 we conclude that the initial value problem

d

dt
M̂i(t) = −1

4

(

2n
∑

ℓ=1

β̂ (kℓ)

)

M̂i(t) +
∑

1≤ℓ<m≤2n

∑

j=±1

Rℓ,mM̂iℓ,m(j,−j)(t),

M̂(0) = M̂ . (5.11){031910}

possesses a unique solution in C([0,+∞),M(T2n)).
Any partition of the set {1, . . . , 2n} into a disjoint set of pairs is called a pairing. Define

µ(dk) =
∑

F

∏

(ℓ,m)∈F

δ(kℓ + km)dk,

where dk = dk1 . . . dk2n and the summation extends over all possible pairings of {1, . . . , 2n}.
The measure is supported in H :=

⋃

F H(F) where

H(F) := [k : kℓ + km = 0, ∀ (ℓ,m) ∈ F ].

Suppose that the components of the tensor ρ(k) = [ρi(k)], i ∈ {−1, 1}2n belong to L1(µ).
Consider the initial value problem

d

dt
ρi(t,k) = −1

4

(

2n
∑

ℓ=1

β̂ (kℓ)

)

ρi(t,k)

+
∑

1≤ℓ<m≤2n

∑

j=±1

∫

T

r2(kℓ, kℓ − k′)1Dℓ,m
(k)ρiℓ,m(j,−j)(t,k

′
ℓ,m)dk′,

ρi(0,k) = ρi(k), i ∈ {−1, 1}2n, (5.12){031910a1}

with k′
ℓ,m := (k1, . . . , kℓ−1, k

′, . . . , km−1,−k′, . . . , k2n). It is straightforward to conclude that
the above system possesses a unique continuous solution ρ(t,k) = [ρi(t,k)] whose components
belong to L1(µ). The next proposition gives the convergence of even moments to the solution
of (5.11).

{012410}
Proposition 5.3 Suppose that all the components of the tensor [M̂i(dk)] are absolutely con-
tinuous with respect to µ, i.e. M̂i(dk) = ρi(k)µ(dk), and the dispersion relation satisfies
hypothesis ω). Then, the following are true:

1) M̂i(t, dk) is absolutely continuous with respect to µ(dk) and

M̂i(t, dk) = ρi(t,k)µ(dk), ∀ i ∈ {−1, 1}2n (5.13){012910}

where {ρi(t), t ≥ 0} satisfy (5.12).

2) For any T > 0 there exists a constant C > 0 such that

lim
ǫ→0+

∑

i∈{−1,1}2n

sup
t∈[0,t∗]

‖M̂ (ǫ)
i

(t)− M̂i(t)‖TV = 0. (5.14){063110}
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Proof. The conclusion of part 1) follows from uniqueness of solutions of (5.11) and (5.12),
and the fact that the right hand side of (5.13) defines a solution of (5.11). From (5.9) and
(5.11) we conclude that

‖M̂ (ǫ)
i

(t)− M̂i(t)‖TV ≤
2n
∑

ℓ=1

∑

j=±1

∫ t

0

∥

∥

∥
Ciℓ,j

(s

ǫ

)

[M̂
(ǫ)
iℓ(j)

(s)− M̂iℓ(j)(s)]
∥

∥

∥

TV
ds

+
∑

1≤ℓ<m≤2n

∑

j1,j2=±1

∫ t

0

∥

∥

∥
Rj1,j2

iℓ,im

(s

ǫ

)

[M̂
(ǫ)
iℓ,m(j1,j2)

(s)− M̂iℓ,m(j1,j2)(s)]
∥

∥

∥

TV
ds

+

2n
∑

ℓ=1

∑

j=±1

∣

∣

∣

∣

∫ t

0

∫

T2n

Eiℓ,j

(s

ǫ
, kℓ

)

ρiℓ(j)(s,k)dsµ(dk)

∣

∣

∣

∣

+
∑

1≤ℓ<m≤2n

∑

j1,j2=±1

∣

∣

∣

∣

∫ t

0

∫

T2n+1

R̃j1,j2
iℓ,im

(s

ǫ
,k, k′

)

ρiℓ,m(j1,j2)(s,k)dsµ(dk)dk
′

∣

∣

∣

∣

.

The matrix E(t, k) = [Ep,q(t, k)], p, q = ±1 is given by

E(t, k) := C(t, k)− (β̂(k)/4)I2, (5.15){042910}

where I2 is the 2× 2 identity matrix. In addition,

R̃j1,j2
iℓ,im

(s

ǫ
,k, k′

)

:= Rj1,j2
iℓ,im

(s

ǫ
, kℓ, km, k

′
)

− δ−im
iℓ

δ−j2
j1

r2(kℓ, kℓ − k′)1Dℓ,m
(k).

Denote the terms appearing on the right hand side of (5.15) by I(t), II(t), III(t) and IV (t)
respectively. It is easy to see that

I(t) + II(t) ≤ C

∫ t

0
sup

i∈{−1,1}2n

∥

∥

∥
M̂

(ǫ)
i

(s)− M̂i(s)
∥

∥

∥

TV
ds (5.16){0312910}

for some constant C > 0. To estimates the term III we need to bound terms of the form
∣

∣

∣

∣

∫ t

0

∫

T2n

β̂(kℓ) exp
{

2iω(kℓ)
s

ǫ

}

ρi(s,k)dsµ(dk)

∣

∣

∣

∣

for some ℓ and i. Integrating by parts we obtain that the expression above can be bounded
from above by

ǫ

∣

∣

∣

∣

∣

∫

T2n

β̂(kℓ)

2iω(kℓ)

[

exp

{

2iω(kℓ)
t

ǫ

}

− 1

]

ρi(t,k)1Dℓ,m
(k)µ(dk)

∣

∣

∣

∣

∣

+ǫ

∣

∣

∣

∣

∣

∫ t

0

∫

T2n

β̂(kℓ)

2iω(kℓ)

[

exp

{

2iω(kℓ)
t

ǫ

}

− 1

]

d

ds
ρi(s,k)1Dℓ,m

(k)dsµ(dk)

∣

∣

∣

∣

∣

.

The first term can be easily estimated by Cǫ, due to the fact that supk∈T β̂(k)ω
−1(k) < +∞.

To estimate the second term, we use equation (5.11). As a result,, we conclude that for any
t∗ > 0 we can find a constant C(t∗) > 0 such that

sup
t∈[0,t∗]

III(t) ≤ C(t∗)ǫ. (5.17){0512910}
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Finally we show that
lim
ǫ→0+

sup
t∈[0,t∗]

IV (t) = 0. (5.18){102910}

It implies the conclusion of part 2) of the proposition, via an application of the Gronwall’s
inequality.

We write IV (t) = IV1(t) + IV2(t), where the terms IVi(t), i = 1, 2 correspond to the
integration over Dℓ,m and its complement. In the latter case, we have to deal with terms of
the form

∣

∣

∣

∣

∫ t

0

∫

T2n+1

1[kℓ 6=−km]r(kℓ, k
′)r(km,−k′)ρi(s,k)

×
2
∏

j=1

exp
{

iσ
(j)
1 [ω(k

(j)
ℓ ) + σ

(j)
2 ω(k

(j)
ℓ + (−1)jk′)]

s

ǫ

}

dsµ(dk)dk′

∣

∣

∣

∣

∣

∣

for some i ∈ {−1, 1}2n, σ(j)p ∈ {−1, 1}. Here k
(1)
ℓ = kℓ and k

(2)
ℓ = km. Using integration by

parts over the s variable we can estimate the supremum of the above expression over t ∈ [0, t∗]
by the sum of

Iǫ :=

∫

T2n+1

µ(dk)dk′1[kℓ 6=−km]|r(kℓ, k′)r(km,−k′)| sup
t∈[0,t∗]

|ρi(t,k)|

×ǫ

∣

∣

∣

∣

∣

∣

2
∑

j=1

σ
(j)
1 [ω(k

(j)
ℓ ) + σ

(j)
2 ω(k

(j)
ℓ + (−1)jk′)]

∣

∣

∣

∣

∣

∣

−1

(5.19){013110}

× sup
t∈[0,t∗]

2
∏

j=1

∣

∣

∣

∣

exp

{

iσ
(j)
1 [ω(k

(j)
ℓ ) + si

(j)
2 ω(k

(j)
ℓ + (−1)jk′)]

t

ǫ

}

− 1

∣

∣

∣

∣

,

and

Jǫ :=

∫ T

0
ds

∣

∣

∣

∣

∫

T2n+1

µ(dk)dk′1[kℓ 6=−km]r(kℓ, k
′)r(km,−k′)

d

ds
ρi(s,k)

×ǫ







2
∑

j=1

σ
(j)
1 [ω(k

(j)
ℓ ) + σ

(j)
2 ω(k

(j)
ℓ + (−1)jk′)]







−1

(5.20){023110}

×
2
∏

j=1

{

exp
{

iσ
(j)
1 [ω(k

(j)
ℓ ) + σ

(j)
2 ω(k

(j)
ℓ + (−1)jk′)]

s

ǫ

}

− 1
}

∣

∣

∣

∣

∣

∣

.

Using (5.12) and Gronwall’s inequality, we conclude that

∫

T2n

sup
t∈[0,t∗]

|ρi(t,k)|dk < +∞.

Using condition ω) we conclude therefore, by virtue of Lebesgue dominated convergence the-
orem, that limǫ→0+ Iǫ = 0. Likewise, we conclude that limǫ→0+ Jǫ = 0. Part 2) of the

28



proposition follows then from another application of Gronwall’s inequality after substituting
for ρ′

i
(s,k) from (5.12). Summarizing, we have shown so far that

lim
ǫ→0+

sup
t∈[0,t∗]

IV2(t) = 0.

We are left therefore with estimates of the term

IV1(t) :=
∑

1≤ℓ<m≤2n

∑

j1,j2=±1

∣

∣

∣

∣

∫ t

0

∫

T2n+1

1Dℓ,m
(k) (5.21){033110}

×R̃j1,j2
iℓ,im

(s

ǫ
,k, k′

)

ρiℓ,m(j1,j2)(s,k)dsµ(dk)dk
′

∣

∣

∣

∣

.

The non-vanishing terms appearing in the above sum are of the form
∣

∣

∣

∣

∣

∣

∫ t

0

∫

T2n+1

r2(kℓ, kℓ − k′)1Dℓ,m
(k)

2
∏

j=1

exp
{

iσ
(j)
1 [ω(kℓ) + σ

(j)
2 ω(kℓ − k′)]

s

ǫ

}

dsµ(dk)dk′

∣

∣

∣

∣

∣

∣

,

with (σ
(1)
1 , σ

(1)
2 ) 6= −(σ

(2)
1 , σ

(2)
2 ) and σ

(j)
p ∈ {−1, 1}. To these terms we can apply the integration

by parts argument as before, to conclude that

lim
ǫ→0+

sup
t∈[0,t∗]

IV1(t) = 0.

Summarizing, we have shown that (5.18) holds, and the proof of part 2 of the proposition is
therefore complete. �

5.5 Proof of Theorem 3.3{sec5.5}
In this section, and in this section only, we make use of the assumption that ψ̂ is Gaussian.
We show that the limiting measure for Q̃ǫ, as ǫ→ 0+, coincides with the law Q̃ of the process
given (3.13) by proving that for any N ≥ 1, 0 ≤ t1 < . . . < tN , any non-negative integers
ℓj,mj , test functions fj, gj ∈ Hm(T), j = 1, . . . , N we have

lim
ǫ→0+

E





N
∏

j=1

[〈ψ̃(ǫ)(tj), fj〉ℓj (〈ψ̃(ǫ)(tj), gj〉∗)mj ]



 = E





N
∏

j=1

[〈ψ̄(tj), fj〉ℓj(〈ψ̄(tj), gj〉∗)mj ]



 .

(5.22){011710}
To simplify the notation, we prove (5.22) only in the case N = 1. The general case can be
handled in the same manner, using Markov property of the process {ψ̃(ǫ)(t), t ≥ 0}, at the
expense of some additional complications in the notation. We recall (see Section 3.2) that the
initial data {ψ̂(k), k ∈ T} is a δ-correlated Gaussian random field given by (3.11). Therefore,
for the odd moments we have

M̂
(ǫ)
i

(0) = 0, ∀ i ∈ {−1, 1}2n−1,

where n ≥ 1 is an integer. By uniqueness of solutions of (5.9) we conclude that in this
case M̂ (ǫ)(t) ≡ 0 for all t ≥ 0. When i ∈ {−1, 1}2n we can use the conclusion (5.14) of
Proposition 5.3. Define

M̄ (2n)(t) :=
[

M̄
(2n)
i

(t)
]

, i = (i1, . . . , i2n) ∈ {−1, 1}2n,
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where
M̄

(2n)
i

(t) = E
[

ψ̄i1(t)⊗ . . .⊗ ψ̄i2n(t)
]

and ψ̄1(t) = ψ̄(t) is the solution of (3.13) and ψ̄−1(t, k) = ψ̄∗(t,−k). The conclusion of
Theorem 3.3 will follow provided that we show that M̄ (2n)(t), satisfies (5.11). Note that for
n = 1 we obtain that

M̄
(2)
i1,i2

(t, dk) = δi1,−i2 Ē(t, k1)δ(k1 + k2)dk1dk2.

From (3.13) and Itô formula we conclude that

d

dt
M̄

(2n)
i

(t) = −1

4

(

2n
∑

ℓ=1

β̂ (kℓ)

)

M̄
(2n)
i

(t)−
∑

1≤ℓ<m≤2n

R(t, kℓ)M̄
(2n−2)
iℓ,m

(t)⊗ℓ,m ∆,

M̄(0) = M̂ . (5.23){031910a}

Here M̄
(2n−2)
iℓ,m

(t) is the 2n−2-nd order moment obtained from M̄
(2n)
i

(t) by omitting ψ̄iℓ(t) and

ψ̄im(t) and for any measure ν on T
2n−2, 1 ≤ ℓ < m ≤ 2n we denote by ν ⊗ℓ,m ∆ a measure on

T
2n given by

∫

T2n

fd(ν ⊗ℓ,m ∆) =

∫

T2n−2

dk

∫

T

dk′f(k1, . . . , kℓ−1, k, . . . , km−1,−k′, . . . , k2n−2)

for all f ∈ C(T2n). Since

R(t, kℓ) =

∫

T

R(kℓ, k
′)Ē(t, k′)dk′ =

∫

T

[r2(kℓ, kℓ − k′) + r2(kℓ, kℓ + k′)]Ē(t, k′)dk′

=
∑

j=±1

∫

T2

r2(kℓ, kℓ − k′)E
[

ψ̄j(t, k
′)⊗ ψ̄−j(t, k

′′)
]

dk′dk′′

and (ψ̄i1(t), . . . , ψ̄i2n(t)) is jointly Gaussian, we infer that the last term on the right hand side
of the first equation in (5.23) can be rewritten as being equal to the last term on the right
hand side of the first equation of (5.11). Thus the conclusion of Theorem 3.3 has been shown.

References

[1] G. Bal, T. Komorowski and L. Ryzhik, Asymptotics of the solutions of the random
Schrdinger equation. Arch. Ration. Mech. Anal. 200, 2011, 613–664.

[2] G. Basile, C. Bernardin, and S. Olla, A momentum conserving model with anomalous
thermal conductivity in low dimension, Phys. Rev. Lett. 96, 2006, 204303.

[3] G. Basile, C. Bernardin, and S. Olla, Thermal conductivity for a momentum conserving
model, Comm.Math.Phys., 287, 2009, 67–98.

[4] G. Basile, S. Olla, H. Spohn, Energy transport in stochastically perturbed lattice dynam-
ics, Arch.Rat.Mech., 195, 2009, 171–203.

[5] C. Bernardin, S. Olla, Fourier’s law for a microscopic model of heat conduction, Jour.
Stat. Phys., 118, 2005, 271–289.

30



[6] Da Prato, G., Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambridge Univ.
Press, (1992).

[7] Helland, I, S., Central limit theorems for martingales with discrete, or continuous time,
Scan. J. Statist., 9, 1982, 79–94.

[8] A. Jakubowski, On the Skorochod topology, Annales de l’I.H.P., Section B, 22, 1986,
263–285.

[9] H. Kesten, G. C. Papanicolaou, A limit theorem for turbulent diffusion, Commun. Math.
Phys. 65, 1979, 97–128.

[10] T. Komorowski, M. Jara, and S. Olla, Limit theorems for a additive functionals of a
Markov chain, Annals of Applied Probability, 19, 2009, 2270–2300.

[11] T. Komorowski, L. Stepien, Long time, large scale limit of the Wigner transform for a sys-
tem of linear oscillators in one dimension, available at http://arxiv.org/abs/1108.0086

[12] S. Lepri, R. Livi, A. Politi, Thermal conduction in classical low-dimensional lattices, Phys.
Rep. 377, 2003, 1–80.

[13] J. Lukkarinen and H. Spohn, Kinetic limit for wave propagation in a random medium,
Arch. Rat. Mech. Anal. 183, 2007, 93–162.

[14] A. Mielke, Macroscopic behavior of microscopic oscillations in harmonic lattices via
Wigner-Husimi transforms, Arch. Rat. Mech. Anal. 181, 2006, 401–448.

[15] I. Mitoma, On the sample continuity of S ′ processes, J. Math. Soc. Japan, 35, 1983, 629–
636.

[16] H. Spohn, The phonon Boltzmann equation, properties and link to weakly anharmonic
lattice dynamics, J. Stat. Phys. 124, 2006, 1041–1104.

[17] Stroock, Daniel W.; Varadhan, S. R. Srinivasa, Multidimensional diffusion processes.
Reprint of the 1997 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2006.

31


