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Improving the tuning of First-Order Autoregressive
Model for the estimation of Amplify and Forward

Relay channel
Soukayna GHANDOUR-HAIDAR, Laurent ROS, Jean-Marc BROSSIER

Abstract—This paper deals with the estimation of the
Amplify-and-Forward channel. Considering two widely accepted
Rayleigh links with Jakes’ spectrum, a first-order autoregressive
model AR(1) is used to approximate the cascade of both links. A
standard estimation algorithm is the Kalman filter. In this paper,
we keep the choice of the AR(1)-Kalman filter, but we show that
the method usually exploited in the literature to calculate the
AR(1)-model parameter presents some disappointing results. We
propose other values of the AR(1)-model parameter to improve
the channel estimation, based on an off-line minimization of the
asymptotic mean square error MSE for a given Doppler and
signal to noise ratio. The simulation results show a considerable
gain in terms of MSE of the well-tuned Kalman-based channel
estimator, especially for the most common scenario of slow-
fading channel.

Index Terms - Amplify-and-Forward Relay, Channel estimation,
Autoregressive model, Kalman Filter, Jakes’ spectrum, Bessel
function, Auto-correlation, Doppler Frequency.

I. INTRODUCTION

Recently, engineers switched to cooperative communica-
tions. The principal cause of this switching is the need to
exploit spatial diversity at low cost or sometimes in small
space. When we talk about cooperative communication, we
have to mention the Multiple Input Multiple Output systems
due to the relation between them. After the revolution of the
MIMO systems, the engineers and researchers proposed a
new way to benefit from the MIMO systems, without need
of multiple antennas at the source and/or destination. The
simplest way to do this is to use one relay, and to send one
version of the signal from the unique antenna placed at the
source, but to receive at the destination two versions of the
signal, from the direct path and the via-relay path.
The cooperative communication is then summarized by a
network composed of a source, a destination, and one or more
relays. There are many types of relays, and the widely used
types are the Amplify-and-Forward relay (AF) which amplifies
the received signal and retransmits it, and the decode-and-
Forward relay (DF) which decodes the received signal, then re-
encodes and retransmits it. We cite the Estimate-and-Forward
relay (EF) [6] and Compress-and-Forward relay (CF) too [7].
The source-relay-destination and source-destination links
should be independent, since their dependency expels the
diversity benefits. Moreover, the source-relay and relay-
destination links are supposed independent too [1], [2], [3],
[4].
Each of the Source-Relay and Relay-Destination links is

modeled by a Rayleigh fading channel model with Jakes’
Doppler spectrum. This is the most accepted random model
that represents temporal variations of the equivalent baseband
channel complex gain (CG) [4], [5], [8], [11].
To estimate or equalize this channel, it is difficult to use
directly this model, because it is not convenient for imple-
mentation and for computer simulation. In the literature, the
authors of [9] demonstrate that the autoregressive model with
order one AR(1) is convenient enough for such correlated
fading channel, especially in case of narrowband Doppler
fading processes. So usually, the AR(1) model, accompanied
with the assumption of zero-mean additive white circular
complex Gaussian noise (CAWGN), is used to approach the
one-link channel and facilitate its manipulation [8], [10], [11],
[13].
Up to now, the appropriateness of AR(1) model for the
Amplify-and-Forward channel is not demonstrated. Although,
the AR(1) model has been used in the literature to model the
Amplify-and-Forward channel [2], [4]. This approximation has
been used to track the true channel by a Kalman Filter (KF)
in various wireless communication systems [2], [10], [11],
[13], and sometimes by other particle filters [4], linear MMSE
estimator [1], [3], or least square estimator [3]. In this work,
we keep using the Kalman filter like in our previous work
dealing with one-link channel in [11].
The use of an AR(1) model requires a good choice of the
AR(1) coefficient. In many papers [2], [4], [13], the AR(1) co-
efficient calculation for a given normalized Doppler frequency
is based on a same criterion, called Correlation Matching
(CM) in this paper. However, the problem of poorly tuned
coefficient by Correlation Matching criterion has just recently
been pointed out and analyzed in [10], [11] for the case of
one-link flat fading Rayleigh channel with Jakes’ spectrum.
In this paper, we extend our previous one-link work in [11] to
the case of cooperative communications and more specifically
for Amplify-and-Forward channel. This channel is the product
of two Rayleigh channels approached with an AR(1) model.
The filter used for estimation is the Kalman Filter (KF) and
the goal is to minimize the asymptotic variance of estimation
error (MAV). So we find numerically the optimal AR(1)
coefficient under the MAV criterion, without the CM constraint
and compare the performances for both cases. The paper is
organized as follows: we first write the mathematical model
used to represent the channel in section II. We then find
numerically the value of optimal coefficient for the criterion of
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Figure 1. Relay-channel system model

minimizing the estimation error variance in section III.A. We
also emphasize in section III.B and III.C the poor performance
with the CM-based method, compared to the proposed method.
Moreover, we study the behavior of the optimal MSE for a
given Doppler and SNR scenario.

II. MATHEMATICAL MODEL

A. Real Transmission

We consider the estimation of the channel shown in figure 1.
It consists of a source S, a destination D, and a relay R placed
between them. We suppose that the direct link from source
to destination is too poor, and we consider only the via-relay
link. We divide our channel into two links, the Source-Relay
link and the Relay-Destination link. Each of those links may
be subject to be:

• A link where both extremities are mobile
• A link where one extremity is fixed while the other one

is mobile
• A link where both of them are fixed

From the different scenarios that derivate, we focus on the
mobile-fixed-mobile scenario. The source is moving at a speed
of vS, and the destination is moving at a speed of vD. The relay
is fixed. We can assume in this case that each link (S−R and
R−D) is a flat fading Rayleigh channel with Jakes’ spectrum
(Clarkes’ model [12]), characterized by a complex gain CG α1
and α2 respectively, varying from one symbol to another, but
we assume that the CG variation can be neglected during one
symbol period. The variance of those gains are σ2

α1
and σ2

α2
respectively. For a sampling rate of T , the normalized Doppler
frequency of the S−R link is fd1T , where fd1 =

vS
λ , and the

normalized Doppler frequency of the R−D link is fd2T , where
fd2 = vD

λ . λ is the wavelength of the analog emitted signal.
A Jakes’ Doppler spectrum is assumed for the S−R link (the
same will be for the R−D link by replacing fd1 by fd2 and

σ2
α1

by σ2
α2

):

Γα1( f ) =


σ2

α1

π fd1

√
1−

(
f

fd1

)2
if | f |< fd1

0 if | f |> fd1

(1)

The autocorrelation coefficient for the kth tap of S-R link is
given by:

Rα1 [k] = σ2
α1

J0(2π fd1T k) (2)

where J0 is the zeroth-order Bessel function of the first kind.
The same holds for the R−D link.

The source sends the signal sk. The relay receives the signal
rk, amplifies it with a factor of A called relay gain, and
retransmits the amplified signal A.rk to the destination. The
destination receives the signal yk at the end. Since the gain
of both links is constant during the period of the symbol, we
observe a sampled and noised signal ( sampling at rate T ).

rk = skα1k +n1k (3)

yk = Arkα2k +n2k (4)

where n1k and n2k, k = 1,2, ... are Complex Additive White
Gaussian Noises (CAWGN), with variances σn1

2 and σn2
2

respectively.
The observation equation will be then

yk = skαk +nk (5)

where αk = Aα1kα2k and nk = Aα2kn1k +n2k, leading to

σα
2 = A2σα1

2σα2
2 (6)

and
σn

2 = A2σα2
2σn1

2 +σn2
2 (7)

The Gain A is implicitly determined from the desired/required
signal-to-noise ratio in the second link (SNR2) defined below,
which is related to the energy of symbols emitted given σ2

α1
,

σ2
α2

, σ2
n1

and σ2
n2

. The signal sk is transmitted from the source
with energy E1. The energy E2 of the signal Ark transmitted
from relay is then

E2 = A2(E1σα1
2 +σn1

2) (8)

The signal-to-noise ratio for the S-R link, R-D link, and all
the channel are respectively given by :

γ1 =
E1σα1

2

σn1
2 (9)

γ2 =
E2σα2

2

σn2
2 (10)

γ =
E1σα

2

σn2 =
γ1γ2

γ1 + γ2 +1
(11)

And the corresponding values in (dB) are:

SNR1,2 = 10log10γ1,2 (dB)

SNR = 10log10γ (dB)
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(a)  fd1T = fd2T = 0.1 (b)  fd1T = fd2T = 0.001

Figure 2. Comparison of the auto-correlation functions of the true process
α (continuous line) and the approached AR(1) process α̃ for high and low
Doppler frequencies (respectively left and right figures)

Both links are supposed independent. This leads to a total
Doppler spectrum and total autocorrelation function [12], [4]:

Γα( f ) = AΓα1( f )∗Γα2( f ) (12)

Rα [k] = A2Rα1 [k]Rα2 [k]
= A2σ2

α1
σ2

α2
J0(2π fd1T k)J0(2π fd2T k) (13)

We design by ∗ the convolution product.

B. First-order autoregressive dynamical model

In the literature, the time-varying CG αk is often approached
by a first-order autoregressive (AR(1)) model α̃k:

α̃k = a.α̃k−1 + ek (14)

where ek is a white circular complex Gaussian noise with
variance σ2

e = (1−a2)σ2
α . The observation equation (5) is then

approximated by:
yk = skα̃k +nk (15)

The AR(1) coefficient verifies

a =
Rα̃ [1]
Rα̃ [0]

(16)

In the literature, the correlation matching (CM) criterion is
usually imposed [2], [4]. It means that the autocorrelation of
the exact channel gain α and the AR(1) approached process
α̃ coincide for the first two coefficients (i.e., Rα̃ [0] = Rα [0] =
A2σ2

α1
σ2

α2
, and Rα̃ [1] = Rα [1]), and using equation (16) and

(13) the AR(1) coefficient a noted aCM becomes

aCM = J0(2π fd1T )J0(2π fd2T ) (17)

The figure 2 shows the autocorrelation functions for both
dual Rayleigh link and AR(1)-CM cases, at two values of
Doppler frequencies. When the channel is varying slowly,
that means when we have low Doppler frequencies (right
figure, with fd1T = fd2T = 10−3), we see that the AR(1)-
CM autocorellation function seems to stay constant, since the

AR(1) coefficient aCM ≈ 1 (see eq. (17), with J0(ε)≈ 1 when
0 ≤ ε << 1). Then, the matching is less convincing in case of
low frequencies, contrary to the situation with high frequencies
where the autocorrelation function is less out of tune (left
figure, with fd1T = fd2T = 10−1). Based on this observation,
we will not consider the CM criterion to compute the AR(1)
parameter in the present study but a variance criterion, as
already proposed for the one-link channel in [10] and [11].
The choice of the AR(1) parameter a will then be based on
minimizing the asymptotic estimation error variance (MAV)
as developed in the section III.A, and we will call it aMAV .

C. Kalman filter (KF)

Given the model and observation equations (14) and
(15), we use a KF to get an on-line unbiased estimate, α̂k,
of the true αk. The error is εk = αk − α̂k, with variance
MSE = E{|εk|2}.
In this work, we concentrate of the performance of the
channel estimator. So we treat a simplified case assuming the
symbols are known (pilot-aided scenario) or perfectly decided
(decision-directed scenario), thus we assume sk = 1. Note that
in practice, our channel estimator can be easily coupled with
a detector in order to perform joint channel estimation and
decision tasks, for example via the Expectation-Maximization
algorithm framework (see [13]).

The KF for this simplified case is given by (see p. 436
in [14]):

Prediction α̂k|k−1 = a α̂k−1 (i)
Prediction MSE Pk|k−1 = a2Pk−1 +σ2

e (ii)

Kalman Gain Kk =
Pk|k−1

σ2
n +Pk|k−1

(iii)

Correction α̂k = α̂k|k−1 +Kk(yk − α̂k|k−1) (iv)
MSE Pk = (1−Kk)Pk|k−1 (v)

Replacing (ii) in (iii), (v) in (ii), and (i) in (iv), we obtain the
simplified system:

Kk = [a2Pk−1 +σ2
e ]/[a

2Pk−1 +σ2
e +σ2

n ] (18)
Pk = (1−Kk)(a2Pk−1 +σ2

e ) (19)
α̂k = a α̂k−1 +Kk(yk −a α̂k−1) (20)

where Kk is the Kalman gain at iteration k and Pk is the
estimation error variance.
Without loss of generality, we assume E1 = 1 and σ2

α1
= σ2

α2
=

1. Given (6),
σα

2 = A2

For the special case where σ2
n1
= σ2

n2
, given (7)

σ2
n = A2σ2

n1
+σ2

n2
= σ2

n1
(A2 +1)

So for this case, and given (11), we have

γ =
A2

σ2
n1
(A2 +1)

= γ1
A2

A2 +1
(21)

We clearly see that γ < γ1.
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(a) fd1T = fd2T = 10 4

(b) fd1T = fd2T = 10 3
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 = 1  a

 = 1  a

Figure 3. MSE in function of ε = 1− a for different Doppler frequencies
fd1T = fd2T = fdT . The ⋆ indicates the position of MSECM and the corre-
sponding 1−aCM .

III. SIMULATION AND RESULTS

We present Monte Carlo simulations to demonstrate the
channel estimation error variance of AF relaying. We apply the
Kalman filter for the CM case where a = aCM , and calculate
the corresponding error variance MSECM as first step. As a
second step, we apply the AR(1) Kalman filter for many other
cases where a is taken manually, and found the MSE for each
case. At the end, we choose the optimal value of a, denoted
aMAV

1, that minimizes the MSE.
In our simulations, we are in the special case of σ2

n1
=σ2

n2
, and

we take A = 1. Then σ2
n = 2σ2

n1
and γ = γ1

2 , similarly to say
SNR = SNR1 − 3dB where SNR1 is the signal to noise ratio
for the S-R link.

A. Tuning of the AR(1)-parameter

The figure 3 shows the error variance in function of ε =
1 − a. We see that at low frequencies, the minimum value
of MSE is attended for εMAV >> εCM , i.e, for aMAV < aCM
while we can see that this difference is more reduced when
the Doppler frequency and/or the SNR increase. Comparing
the values of the MSE in the “valley” (i.e. in the minimum
region) and the one obtained with CM criterion, MSECM , we
observe that the CM criterion is far from optimal, leading
to a strong loss in performance in terms of MSE. The strict
minimum is noted MSEMAV , from which we can measure the
related AR(1)-parameter, aMAV .

1Note that once the values of aMAV for different values of SNR and Doppler
frequencies are stored in tables, we can use them for the on-line estimation.

aCM
aMAV

fd1T = 1e−4 fd1T = 1e−3 fd1T = 1e−2

fd2T = 1e−4
0.9999998
0.9999500

0.9999900
0.9991000

0.9990131
0.9800000

fd2T = 1e−3
0.9999900
0.9991000

0.9999802
0.9980000

0.9990034
0.9800000

fd2T = 1e−2
0.9990131
0.9800000

0.9990034
0.9800000

0.9980275
0.9700000

Table I
COMPARISON BETWEEN aCM AND aMAV FOR DIFFERENT DOPPLER

FREQUENCIES AT SNR = 0 dB

aCM
aMAV

fd1T = 1e−4 fd1T = 1e−3 fd1T = 1e−2

fd2T = 1e−4
0.9999998
0.9999800

0.9999900
0.9998000

0.9990131
0.9960000

fd2T = 1e−3
0.9999900
0.9998000

0.9999802
0.9997000

0.9990034
0.9950000

fd2T = 1e−2
0.9990131
0.9960000

0.9990034
0.9960000

0.9980275
0.9930000

Table II
COMPARISON BETWEEN aCM AND aMAV FOR DIFFERENT DOPPLER

FREQUENCIES AT SNR = 20 dB
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MAV  SNR1 = 0 dB

MAV  SNR1 = 20 dB

CM

Figure 4. State noise variance σ2
e /σ2

α = 1−a2 used in the AR(1)-model in
function of Doppler frequency for MAV and CM cases

In tables I and II, we can compare the values of aMAV and
aCM . It is clear, especially for low Doppler frequencies, that
the CM coefficient is higher than the optimal coefficient. Thus,
when we are in the optimal case, the AR(1)-based autocorre-
lation curve decreases more rapidly to zero and approaches
better the values of the Bessel-based autocorrelation function
(13) than it was in figure 2 for the CM case.

In figure 4, we have plotted the state noise variance σ2
e

used in the Kalman filter as a function of fdT . We recall that
the state noise variance is related to the AR(1)-parameter a by
σ2

e = (1−a2)σ2
α . We can measure by this figure how much the

state noise variance of the CM criterion is too weak compared
to the optimal value (MAV criterion), leading about a factor
100 for fdT = 10−4, and about a factor 10 for fdT = 10−2.

It should be noted that the variation of σ2
e CM versus fdT in

a log/log scale is linear with a slope of 2 (i.e. 20 dB/decade).
It can be explained analytically by an approximation of
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Figure 5. Comparison between MSECM and MSEMAV in function of signal-
to-noise ratio for different Doppler frequencies

the Bessel function : [J0(2π fdT )]2 ≈ 1− (2π fdT )2/2 when
2π fdT << 1, leading to σ2

e CM
σ2

α
= 1−a2

CM ≈ (2π fdT )2.

B. Same Doppler frequencies
In this case, we suppose the source and the destination

moving at the same speed. We note fd1T = fd2T = fdT .
In figure 5, we plot the error variance for Correlation Matching
case (MSECM) in function of SNR, and compare it to the
minimum error variance we reached (MSEMAV ). The plots are
dressed for different Doppler frequencies fdT .
We see that MSECMdB and MSEMAV dB varies linearly with
SNR1 dB. We deduce then that MSEMAV = K.γβ . Graphically,
we can calculate the coefficient β

β =
∆[log10(MSEMAV )]

∆[log10(γ)]
= 10

∆[log10(MSEMAV )]

∆[SNR]

We obtain β ≈−0.67 ≈− 2
3

In figure 6, we plot the error variance for Correlation
Matching case (MSECM) in function of fdT , and compare it to
the minimum error variance we reached (MSEMAV ). The plots
are dressed for different SNR. We see too that MSEMAV dB
vary linearly with log10( fd1T ) = log10( fd2T ) = log10( fdT ),
while MSECM seems constant with respect to fdT . In the same
way, we can say that MSEMAV = K′.( fdT )ζ and we calculate
graphically the coefficient ζ . We obtain

ζ =
∆[log10(MSEMAV )]

∆[log10( fdT )]

We obtain ζ ≈ 0.69 ≈ 2
3 .
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CM SNR1 = 20 dB

Figure 6. Comparison between MSECM and MSEMAV in function of Doppler
frequency for different signal-to-noise ratio

Finally, and given γ = 1
σ2

n
in our simulations, we can

say that
MSEMAV =C.( fdT ×σ2

n )
2
3

where C is a constant value.
It is noteworthy that this optimal MSE for the AR(1) Kalman-
based estimation of the mobile-fixed-mobile relay channel
(with two Clarkes’ models) seems to take the same form
than the one obtained for the one-link Clarkes’model channel
established in [11], eq. (25) (i.e. with the same (2/3) power
of fdT ×σ2

n ).

C. Different Doppler frequencies

In this case, we suppose the source and the destination
moving at different speeds. The same reasoning persists. The
minimum error variance MSEMAV increases with fd1T and
fd2T , and with SNR, as can be observed in figure 6.

D. BER performances

Until now, all the performances are dressed in terms of
MSE. Finally, we have a look at the consequences in terms of
Bit Error Rate (BER) in figure 8. This figure refers to a binary
PSK (BPSK) transmitted over an Amplify-and-Forward dual
Rayleigh fading channel with fd1T = fd2T = 10−3. In order
to ensure convergence of the iterative detection and decoding
algorithm, 10 pilot symbols (known at the receiver) every 100
code symbols is placed in the transmitted codeword2. So we

2To use the KF equations in (18), (19) and (20), which are given for known
symbols case, i.e. for sk = 1 in (15), and since we have sk ∈ {−1;+1}, the KF
equations are modified by substituting yk with yk × ŝ∗k|k−1 where ŝk|k−1 = sk if
sk is known (pilot) or ŝk|k−1 = sgn

{
ℜ(α̂∗

k−1 × yk)
}

if sk is unknown (data).
In this case, ŝk|k−1 represents the a priori decision, and the final decision will
be ŝk = sgn

{
ℜ(α̂∗

k × yk)
}

.
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Figure 7. MSEMAV in function of Doppler frequencies for high and low
signal-to-noise ratios SNR

use a semi-blind pilot-assisted channel estimation. We show
a significant improvement in BER performance after channel
estimation with MAV-KF versus the CM-KF, especially in low
SNR region.

IV. CONCLUSION

This paper addresses the problem of estimating an Amplify-
and-Forward channel using a first-order AR(1) model. Simu-
lations show that the most widely used choice for the AR(1)
pole estimation (the CM criterion) is not accurate for low SNR
and low Doppler fdT . Therefore, varying the value of the
AR(1) coefficient, we carry out the optimization of the AR(1)
model. It is demonstrated graphically that the MSEMAV of the
AR(1) KF is proportional to the (2/3) power of the product
( fdT ×σ2

n ), where σ2
n is the observation noise variance.

0 2 4 6 8 10 12 14 16 18 20
10 2

10 1

100

SNR

BE
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MAV
CM
known channel

Figure 8. BER in function of SNR for fdT = 10−3
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