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This paper deals with the estimation of the Amplify-and-Forward channel. Considering two widely accepted Rayleigh links with Jakes' spectrum, a first-order autoregressive model AR(1) is used to approximate the cascade of both links. A standard estimation algorithm is the Kalman filter. In this paper, we keep the choice of the AR(1)-Kalman filter, but we show that the method usually exploited in the literature to calculate the AR(1)-model parameter presents some disappointing results. We propose other values of the AR(1)-model parameter to improve the channel estimation, based on an off-line minimization of the asymptotic mean square error MSE for a given Doppler and signal to noise ratio. The simulation results show a considerable gain in terms of MSE of the well-tuned Kalman-based channel estimator, especially for the most common scenario of slowfading channel.

I. INTRODUCTION

Recently, engineers switched to cooperative communications. The principal cause of this switching is the need to exploit spatial diversity at low cost or sometimes in small space. When we talk about cooperative communication, we have to mention the Multiple Input Multiple Output systems due to the relation between them. After the revolution of the MIMO systems, the engineers and researchers proposed a new way to benefit from the MIMO systems, without need of multiple antennas at the source and/or destination. The simplest way to do this is to use one relay, and to send one version of the signal from the unique antenna placed at the source, but to receive at the destination two versions of the signal, from the direct path and the via-relay path. The cooperative communication is then summarized by a network composed of a source, a destination, and one or more relays. There are many types of relays, and the widely used types are the Amplify-and-Forward relay (AF) which amplifies the received signal and retransmits it, and the decode-and-Forward relay (DF) which decodes the received signal, then reencodes and retransmits it. We cite the Estimate-and-Forward relay (EF) [START_REF] Chakrabarti | Half-Duplex Estimate-and-Forward Relaying: Bounds and Code Design[END_REF] and Compress-and-Forward relay (CF) too [START_REF] Akhbari | Compress-and-Forward Strategy for The Relay Channel With Non-Causal State Information[END_REF]. The source-relay-destination and source-destination links should be independent, since their dependency expels the diversity benefits. Moreover, the source-relay and relaydestination links are supposed independent too [START_REF] Patel | Channel Estimation for Amplify and Forward Relay Based Cooperation Diversity Systems[END_REF], [START_REF] Zhou | Kalman Filter-based Channel Estimation for Amplify and Forward Relay Communications[END_REF], [START_REF] Liu | Channel Estimation for Amplify and Forward Relay in OFDM System[END_REF], [START_REF] Nevat | Channel Tracking in Relay Systems via Particle MCMC[END_REF]. Each of the Source-Relay and Relay-Destination links is modeled by a Rayleigh fading channel model with Jakes' Doppler spectrum. This is the most accepted random model that represents temporal variations of the equivalent baseband channel complex gain (CG) [START_REF] Nevat | Channel Tracking in Relay Systems via Particle MCMC[END_REF], [START_REF] Patel | Statistical Properties of Amplify and Forward Relay Fading Channels[END_REF], [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF], [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF].

To estimate or equalize this channel, it is difficult to use directly this model, because it is not convenient for implementation and for computer simulation. In the literature, the authors of [START_REF] Wang | On verifying the first-order Markovian Assumption for a Rayleigh Fading Channel Model[END_REF] demonstrate that the autoregressive model with order one AR(1) is convenient enough for such correlated fading channel, especially in case of narrowband Doppler fading processes. So usually, the AR(1) model, accompanied with the assumption of zero-mean additive white circular complex Gaussian noise (CAWGN), is used to approach the one-link channel and facilitate its manipulation [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF], [START_REF] Barbieri | On the ARMA Approximation for Frequency Channels Described by the Clarke Model with Applications to Kalman-based Receivers[END_REF], [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF], [START_REF] Al-Naffouri | An EM-based forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF]. Up to now, the appropriateness of AR(1) model for the Amplify-and-Forward channel is not demonstrated. Although, the AR(1) model has been used in the literature to model the Amplify-and-Forward channel [START_REF] Zhou | Kalman Filter-based Channel Estimation for Amplify and Forward Relay Communications[END_REF], [START_REF] Nevat | Channel Tracking in Relay Systems via Particle MCMC[END_REF]. This approximation has been used to track the true channel by a Kalman Filter (KF) in various wireless communication systems [START_REF] Zhou | Kalman Filter-based Channel Estimation for Amplify and Forward Relay Communications[END_REF], [START_REF] Barbieri | On the ARMA Approximation for Frequency Channels Described by the Clarke Model with Applications to Kalman-based Receivers[END_REF], [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF], [START_REF] Al-Naffouri | An EM-based forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF], and sometimes by other particle filters [START_REF] Nevat | Channel Tracking in Relay Systems via Particle MCMC[END_REF], linear MMSE estimator [START_REF] Patel | Channel Estimation for Amplify and Forward Relay Based Cooperation Diversity Systems[END_REF], [START_REF] Liu | Channel Estimation for Amplify and Forward Relay in OFDM System[END_REF], or least square estimator [START_REF] Liu | Channel Estimation for Amplify and Forward Relay in OFDM System[END_REF]. In this work, we keep using the Kalman filter like in our previous work dealing with one-link channel in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF]. The use of an AR(1) model requires a good choice of the AR(1) coefficient. In many papers [START_REF] Zhou | Kalman Filter-based Channel Estimation for Amplify and Forward Relay Communications[END_REF], [START_REF] Nevat | Channel Tracking in Relay Systems via Particle MCMC[END_REF], [START_REF] Al-Naffouri | An EM-based forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF], the AR(1) coefficient calculation for a given normalized Doppler frequency is based on a same criterion, called Correlation Matching (CM) in this paper. However, the problem of poorly tuned coefficient by Correlation Matching criterion has just recently been pointed out and analyzed in [START_REF] Barbieri | On the ARMA Approximation for Frequency Channels Described by the Clarke Model with Applications to Kalman-based Receivers[END_REF], [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF] for the case of one-link flat fading Rayleigh channel with Jakes' spectrum. In this paper, we extend our previous one-link work in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF] to the case of cooperative communications and more specifically for Amplify-and-Forward channel. This channel is the product of two Rayleigh channels approached with an AR(1) model. The filter used for estimation is the Kalman Filter (KF) and the goal is to minimize the asymptotic variance of estimation error (MAV). So we find numerically the optimal AR(1) coefficient under the MAV criterion, without the CM constraint and compare the performances for both cases. The paper is organized as follows: we first write the mathematical model used to represent the channel in section II. We then find numerically the value of optimal coefficient for the criterion of minimizing the estimation error variance in section III.A. We also emphasize in section III.B and III.C the poor performance with the CM-based method, compared to the proposed method. Moreover, we study the behavior of the optimal MSE for a given Doppler and SNR scenario.
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II. MATHEMATICAL MODEL

A. Real Transmission

We consider the estimation of the channel shown in figure 1. It consists of a source S, a destination D, and a relay R placed between them. We suppose that the direct link from source to destination is too poor, and we consider only the via-relay link. We divide our channel into two links, the Source-Relay link and the Relay-Destination link. Each of those links may be subject to be:

• A link where both extremities are mobile • A link where one extremity is fixed while the other one is mobile • A link where both of them are fixed From the different scenarios that derivate, we focus on the mobile-fixed-mobile scenario. The source is moving at a speed of v S , and the destination is moving at a speed of v D . The relay is fixed. We can assume in this case that each link (S -R and R -D) is a flat fading Rayleigh channel with Jakes' spectrum (Clarkes' model [START_REF] Akki | A Statistical Model of Mobile-to-Mobile Land Communication Channel[END_REF]), characterized by a complex gain CG α 1 and α 2 respectively, varying from one symbol to another, but we assume that the CG variation can be neglected during one symbol period. The variance of those gains are σ 2 α 1 and σ 2 α 2 respectively. For a sampling rate of T , the normalized Doppler frequency of the S -R link is f d1 T , where f d1 = v S λ , and the normalized Doppler frequency of the R-D link is f d2 T , where

f d2 = v D λ .
λ is the wavelength of the analog emitted signal. A Jakes' Doppler spectrum is assumed for the S -R link (the same will be for the R -D link by replacing f d1 by f d2 and σ 2 α 1 by σ 2 α 2 ):

Γ α 1 ( f ) =      σ 2 α 1 π f d1 √ 1- ( f f d1 ) 2 if | f | < f d1 0 if | f | > f d1 (1)
The autocorrelation coefficient for the k th tap of S-R link is given by: R α

1 [k] = σ 2 α 1 J 0 (2π f d1 T k) (2)
where J 0 is the zeroth-order Bessel function of the first kind.

The same holds for the R -D link.

The source sends the signal s k . The relay receives the signal r k , amplifies it with a factor of A called relay gain, and retransmits the amplified signal A.r k to the destination. The destination receives the signal y k at the end. Since the gain of both links is constant during the period of the symbol, we observe a sampled and noised signal ( sampling at rate T ).

r k = s k α 1k + n 1k ( 3 
)
y k = Ar k α 2k + n 2k (4) 
where n 1k and n 2k , k = 1, 2, ... are Complex Additive White Gaussian Noises (CAWGN), with variances σ n 1 2 and σ n 2 2 respectively.

The observation equation will be then

y k = s k α k + n k ( 5 
)
where

α k = Aα 1k α 2k and n k = Aα 2k n 1k + n 2k , leading to σ α 2 = A 2 σ α 1 2 σ α 2 2 (6) and σ n 2 = A 2 σ α 2 2 σ n 1 2 + σ n 2 2 (7)
The Gain A is implicitly determined from the desired/required signal-to-noise ratio in the second link (SNR 2 ) defined below, which is related to the energy of symbols emitted given σ 2 α 1 , σ 2 α 2 , σ 2 n 1 and σ 2 n 2 . The signal s k is transmitted from the source with energy E 1 . The energy E 2 of the signal Ar k transmitted from relay is then

E 2 = A 2 (E 1 σ α 1 2 + σ n 1 2 ) (8) 
The signal-to-noise ratio for the S-R link, R-D link, and all the channel are respectively given by :

γ 1 = E 1 σ α 1 2 σ n 1 2 (9) γ 2 = E 2 σ α 2 2 σ n 2 2 (10) γ = E 1 σ α 2 σ n 2 = γ 1 γ 2 γ 1 + γ 2 + 1 ( 11 
)
And the corresponding values in (dB) are: Both links are supposed independent. This leads to a total Doppler spectrum and total autocorrelation function [START_REF] Akki | A Statistical Model of Mobile-to-Mobile Land Communication Channel[END_REF], [START_REF] Nevat | Channel Tracking in Relay Systems via Particle MCMC[END_REF]:

SNR 1,2 = 10log 10 γ 1,2 (dB) SNR = 10log 10 γ (dB)
Γ α ( f ) = AΓ α 1 ( f ) * Γ α 2 ( f ) (12) R α [k] = A 2 R α 1 [k]R α 2 [k] = A 2 σ 2 α 1 σ 2 α 2 J 0 (2π f d1 T k)J 0 (2π f d2 T k) (13) 
We design by * the convolution product.

B. First-order autoregressive dynamical model

In the literature, the time-varying CG α k is often approached by a first-order autoregressive (AR(1)) model αk : αk = a. αk-1 + e k [START_REF] Kay | Fundamentals of Statistical Signal Processing -Estimation Theory[END_REF] where e k is a white circular complex Gaussian noise with variance σ 2 e = (1-a 2 )σ 2 α . The observation equation ( 5) is then approximated by:

y k = s k αk + n k (15)
The AR(1) coefficient verifies

a = R α [1] R α [0] (16) 
In the literature, the correlation matching (CM) criterion is usually imposed [START_REF] Zhou | Kalman Filter-based Channel Estimation for Amplify and Forward Relay Communications[END_REF], [START_REF] Nevat | Channel Tracking in Relay Systems via Particle MCMC[END_REF]. It means that the autocorrelation of the exact channel gain α and the AR(1) approached process α coincide for the first two coefficients (i.e., R α

[0] = R α [0] = A 2 σ 2 α 1 σ 2 α 2 , and R α [1] = R α [1]
), and using equation ( 16) and (13) the AR(1) coefficient a noted a CM becomes

a CM = J 0 (2π f d1 T )J 0 (2π f d2 T ) (17) 
The figure 2 shows the autocorrelation functions for both dual Rayleigh link and AR(1)-CM cases, at two values of Doppler frequencies. When the channel is varying slowly, that means when we have low Doppler frequencies (right figure, with f d1 T = f d2 T = 10 -3 ), we see that the AR(1)-CM autocorellation function seems to stay constant, since the AR(1) coefficient a CM ≈ 1 (see eq. ( 17), with J 0 (ε) ≈ 1 when 0 ≤ ε << 1). Then, the matching is less convincing in case of low frequencies, contrary to the situation with high frequencies where the autocorrelation function is less out of tune (left figure, with f d1 T = f d2 T = 10 -1 ). Based on this observation, we will not consider the CM criterion to compute the AR [START_REF] Patel | Channel Estimation for Amplify and Forward Relay Based Cooperation Diversity Systems[END_REF] parameter in the present study but a variance criterion, as already proposed for the one-link channel in [START_REF] Barbieri | On the ARMA Approximation for Frequency Channels Described by the Clarke Model with Applications to Kalman-based Receivers[END_REF] and [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF]. The choice of the AR(1) parameter a will then be based on minimizing the asymptotic estimation error variance (MAV) as developed in the section III.A, and we will call it a MAV .

C. Kalman filter (KF)

Given the model and observation equations ( 14) and (15), we use a KF to get an on-line unbiased estimate, αk , of the true α k . The error is

ε k = α k -αk , with variance MSE = E{|ε k | 2 }.
In this work, we concentrate of the performance of the channel estimator. So we treat a simplified case assuming the symbols are known (pilot-aided scenario) or perfectly decided (decision-directed scenario), thus we assume s k = 1. Note that in practice, our channel estimator can be easily coupled with a detector in order to perform joint channel estimation and decision tasks, for example via the Expectation-Maximization algorithm framework (see [START_REF] Al-Naffouri | An EM-based forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF]).

The KF for this simplified case is given by (see p. 436 in [START_REF] Kay | Fundamentals of Statistical Signal Processing -Estimation Theory[END_REF]):

Prediction αk|k-1 = a αk-1 (i) Prediction MSE P k|k-1 = a 2 P k-1 + σ 2 e (ii) Kalman Gain K k = P k|k-1 σ 2 n +P k|k-1 (iii) Correction αk = αk|k-1 + K k (y k -αk|k-1 ) (iv) MSE P k = (1 -K k )P k|k-1 (v)
Replacing (ii) in (iii), (v) in (ii), and (i) in (iv), we obtain the simplified system:

K k = [a 2 P k-1 + σ 2 e ]/[a 2 P k-1 + σ 2 e + σ 2 n ] (18) 
P k = (1 -K k )(a 2 P k-1 + σ 2 e ) (19) αk = a αk-1 + K k (y k -a αk-1 ) (20) 
where K k is the Kalman gain at iteration k and P k is the estimation error variance. Without loss of generality, we assume

E 1 = 1 and σ 2 α 1 = σ 2 α 2 = 1. Given (6), σ α 2 = A 2
For the special case where σ 2 n 1 = σ 2 n 2 , given (7)

σ 2 n = A 2 σ 2 n 1 + σ 2 n 2 = σ 2 n 1 (A 2 + 1)
So for this case, and given [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF], we have

γ = A 2 σ 2 n 1 (A 2 + 1) = γ 1 A 2 A 2 + 1 (21)
We clearly see that γ < γ 1 . 

III. SIMULATION AND RESULTS

We present Monte Carlo simulations to demonstrate the channel estimation error variance of AF relaying. We apply the Kalman filter for the CM case where a = a CM , and calculate the corresponding error variance MSE CM as first step. As a second step, we apply the AR(1) Kalman filter for many other cases where a is taken manually, and found the MSE for each case. At the end, we choose the optimal value of a, denoted a MAV 1 , that minimizes the MSE. In our simulations, we are in the special case of σ 2 n 1 = σ 2 n 2 , and we take A = 1. Then σ 2 n = 2σ 2 n 1 and γ = γ 1 2 , similarly to say SNR = SNR 1 -3dB where SNR 1 is the signal to noise ratio for the S-R link.

A. Tuning of the AR(1)-parameter

The figure 3 shows the error variance in function of ε = 1a. We see that at low frequencies, the minimum value of MSE is attended for ε MAV >> ε CM , i.e, for a MAV < a CM while we can see that this difference is more reduced when the Doppler frequency and/or the SNR increase. Comparing the values of the MSE in the "valley" (i.e. in the minimum region) and the one obtained with CM criterion, MSE CM , we observe that the CM criterion is far from optimal, leading to a strong loss in performance in terms of MSE. The strict minimum is noted MSE MAV , from which we can measure the related AR(1)-parameter, a MAV . In tables I and II, we can compare the values of a MAV and a CM . It is clear, especially for low Doppler frequencies, that the CM coefficient is higher than the optimal coefficient. Thus, when we are in the optimal case, the AR(1)-based autocorrelation curve decreases more rapidly to zero and approaches better the values of the Bessel-based autocorrelation function [START_REF] Al-Naffouri | An EM-based forward-backward Kalman for the estimation of time-variant channels in OFDM[END_REF] than it was in figure 2 for the CM case.

a CM a MAV f d1 T = 1e -4 f d1 T = 1e -3 f d1 T = 1e -2 f d2
SNR = 0 dB a CM a MAV f d1 T = 1e -4 f d1 T = 1e -3 f d1 T = 1e -2 f d2 T = 1e -4 0.
In figure 4, we have plotted the state noise variance σ 2 e used in the Kalman filter as a function of f d T . We recall that the state noise variance is related to the AR(1)-parameter a by σ 2 e = (1-a 2 )σ 2 α . We can measure by this figure how much the state noise variance of the CM criterion is too weak compared to the optimal value (MAV criterion), leading about a factor 100 for f d T = 10 -4 , and about a factor 10 for f d T = 10 -2 .

It should be noted that the variation of σ 2 e CM versus f d T in a log/log scale is linear with a slope of 2 (i.e. 20 dB/decade). It can be explained analytically by an approximation of the Bessel function :

[J 0 (2π f d T )] 2 ≈ 1 -(2π f d T ) 2 /2 when 2π f d T << 1, leading to σ 2 e CM σ 2 α = 1 -a 2 CM ≈ (2π f d T ) 2 .

B. Same Doppler frequencies

In this case, we suppose the source and the destination moving at the same speed. We note f d1 T = f d2 T = f d T .

In figure 5, we plot the error variance for Correlation Matching case (MSE CM ) in function of SNR, and compare it to the minimum error variance we reached (MSE MAV ). The plots are dressed for different Doppler frequencies f d T . We see that MSE CM dB and MSE MAV dB varies linearly with SNR 1 dB. We deduce then that MSE MAV = K.γ β . Graphically, we can calculate the coefficient β

β = ∆[log 10 (MSE MAV )] ∆[log 10 (γ)] = 10 ∆[log 10 (MSE MAV )] ∆[SNR]
We obtain β ≈ -0.67 ≈ - 2 3 In figure 6, we plot the error variance for Correlation Matching case (MSE CM ) in function of f d T , and compare it to the minimum error variance we reached (MSE MAV ). The plots are dressed for different SNR. We see too that MSE MAV dB vary linearly with log 10 ( f d1 T ) = log 10 ( f d2 T ) = log 10 ( f d T ), while MSE CM seems constant with respect to f d T . In the same way, we can say that MSE MAV = K ′ .( f d T ) ζ and we calculate graphically the coefficient ζ . We obtain

ζ = ∆[log 10 (MSE MAV )] ∆[log 10 ( f d T )]
We obtain ζ ≈ 0.69 ≈ 2 3 . in our simulations, we can say that

MSE MAV = C.( f d T × σ 2 n ) 2 3
where C is a constant value. It is noteworthy that this optimal MSE for the AR(1) Kalmanbased estimation of the mobile-fixed-mobile relay channel (with two Clarkes' models) seems to take the same form than the one obtained for the one-link Clarkes'model channel established in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh Flat Fading Channel Estimation with Kalman filter[END_REF], eq. (25) (i.e. with the same (2/3) power of f d T × σ 2 n ).

C. Different Doppler frequencies

In this case, we suppose the source and the destination moving at different speeds. The same reasoning persists. The minimum error variance MSE MAV increases with f d1 T and f d2 T , and with SNR, as can be observed in figure 6.

D. BER performances

Until now, all the performances are dressed in terms of MSE. Finally, we have a look at the consequences in terms of Bit Error Rate (BER) in figure 8. This figure refers to a binary PSK (BPSK) transmitted over an Amplify-and-Forward dual Rayleigh fading channel with f d1 T = f d2 T = 10 -3 . In order to ensure convergence of the iterative detection and decoding algorithm, 10 pilot symbols (known at the receiver) every 100 code symbols is placed in the transmitted codeword 2 . So we 2 To use the KF equations in (18), ( 19) and (20), which are given for known symbols case, i.e. for s k = 1 in (15), and since we have s k ∈ {-1; +1}, the KF equations are modified by substituting y k with y k × ŝ * k|k-1 where ŝk|k-1 = s k if s k is known (pilot) or ŝk|k-1 = sgn { ℜ( α * k-1 × y k ) } if s k is unknown (data). In this case, ŝk|k-1 represents the a priori decision, and the final decision will be ŝk = sgn { ℜ( α * k × y k ) } . 

IV. CONCLUSION

This paper addresses the problem of estimating an Amplifyand-Forward channel using a first-order AR(1) model. Simulations show that the most widely used choice for the AR(1) pole estimation (the CM criterion) is not accurate for low SNR and low Doppler f d T . Therefore, varying the value of the AR(1) coefficient, we carry out the optimization of the AR(1) model. It is demonstrated graphically that the MSE MAV of the AR(1) KF is proportional to the (2/3) power of the product ( f d T × σ 2 n ), where σ 2 n is the observation noise variance. 
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 1 Figure 1. Relay-channel system model
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 2 Figure 2. Comparison of the auto-correlation functions of the true process α (continuous line) and the approached AR(1) process α for high and low Doppler frequencies (respectively left and right figures)
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 3 Figure 3. MSE in function of ε = 1a for different Doppler frequencies f d1 T = f d2 T = f d T . The ⋆ indicates the position of MSE CM and the corresponding 1a CM .
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 4 Figure 4. State noise variance σ 2 e /σ 2 α = 1a 2 used in the AR(1)-model in function of Doppler frequency for MAV and CM cases
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 5 Figure 5. Comparison between MSE CM and MSE MAV in function of signalto-noise ratio for different Doppler frequencies
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 62 Figure 6. Comparison between MSE CM and MSE MAV in function of Doppler frequency for different signal-to-noise ratio
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 7 Figure 7. MSE MAV in function of Doppler frequencies for high and low signal-to-noise ratios SNR
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 8 Figure 8. BER in function of SNR for f d T = 10 -3

Table II COMPARISON

 II BETWEEN a CM AND a MAV FOR DIFFERENT DOPPLER FREQUENCIES AT SNR = 20 dB

		9999998	0.9999900	0.9990131
		0.9999800	0.9998000	0.9960000
	f d2 T = 1e -3	0.9999900 0.9998000	0.9999802 0.9997000	0.9990034 0.9950000
	f d2 T = 1e -2	0.9990131 0.9960000	0.9990034 0.9960000	0.9980275 0.9930000

Note that once the values of a MAV for different values of SNR and Doppler frequencies are stored in tables, we can use them for the on-line estimation.