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On digit patterns in expansions of rational numbers with prime denominator

We show that, for any fixed ε > 0 and almost all primes p, the g-ary expansion of any fraction m/p with gcd(m, p) = 1 contains almost all g-ary strings of length k < (5/24-ε) log g p. This complements a result of J. Bourgain, S. V. Konyagin, and I. E. Shparlinski that asserts that, for almost all primes, all g-ary strings of length k < (41/504 -ε) log g p occur in the g-ary expansion of m/p.

Introduction

Let us fix some integer g ≥ 2. It is well-known that if gcd(n, gm) = 1 then the g-ary expansion of the rational fractions m/n is purely periodic with period t n , which is independent of m and equals the multiplicative order of g modulo n, see [START_REF] Korobov | On the distribution of digits in periodic fractions[END_REF]. In the series of works [START_REF] Bourgain | Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm[END_REF][START_REF] Konyagin | Character sums with exponential functions and their applications[END_REF][START_REF] Korobov | On the distribution of digits in periodic fractions[END_REF], the distribution of digit patterns in such expansions has been studied. In particular, for positive integers k and m < n with gcd(n, gm) = 1, we denote by T m,n (k) the number 1 of distinct g-ary strings (d 1 , . . . , d k ) ∈ {0, 1, . . . , g -1} k that occur among the first t n trings (δ r , . . . , δ r+k-1 ), r = 1, . . . , t n , from the g-ary expansion m n = ∞ r=1 δ r g -r , δ r ∈ {0, 1, . . . , g -1}.

(

) 1 
Motivated by applications to pseudorandom number generators, see [START_REF] Blum | A simple unpredictable pseudo-random number generator[END_REF], we are interested in describing the conditions under which T m,n (k) is close to its trivial upper bound

T m,n (k) ≤ min{t n , g k }.
Since t n ≤ n, it is clear that only values k ≤ ⌈log g n⌉ are of interest. It has been shown in [START_REF] Konyagin | Character sums with exponential functions and their applications[END_REF]Theorem 11.1] that, for any fixed ε > 0 and for almost all primes p (that is, for all but o(x/ log x) primes p ≤ x), we have T m,p (k) = g k , provided that k ≤ (3/37 -ε) log g p. The coefficient 3/37 has been increased up to 41/504 in [START_REF] Bourgain | Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm[END_REF]Corollary 8]. Here we show that, for almost all primes p, we have T m,p (k) = (1 + o(1))g k for much larger string lengths k.

Theorem 1. For any fixed ε > 0, for almost all primes p, we have

T m,p (k) = (1 + o(1))g k as p → ∞, provided that k ≤ (5/24 -ε) log g p.
Our arguments depend on the reduction of the problem to the study of intersections of intervals and multiplicative groups modulo p generated by g, that has been established in [START_REF] Konyagin | Character sums with exponential functions and their applications[END_REF]. In turn, the question about the intersections of intervals and subgroups in residue rings has been studied in a number of works [START_REF] Bourgain | Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm[END_REF][START_REF] Bourgain | Distribution of elements of cosets of small subgroups and applications[END_REF][START_REF] Konyagin | Character sums with exponential functions and their applications[END_REF]. In particular, the results of [START_REF] Bourgain | Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm[END_REF]Corollary 8] and [START_REF] Konyagin | Character sums with exponential functions and their applications[END_REF]Theorem 11.1] are based on estimates of the length of the longest interval that is not hit by a subgroup of the multplicative group F * p of the field F p of p elements. To prove Theorem 1, we use the results and ideas of [START_REF] Bourgain | Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm[END_REF] to estimate the total number of intervals of a given length that do not intersect a given subgroup of F * p .

Multiplicative Orders

We recall the following well-known implication of the classical result of [START_REF] Erdős | On the order of a (mod p)[END_REF].

Lemma 2. For almost all primes p, the multiplicative order t of g modulo p satisfies t > p 1/2 .

Bounds of Some Exponential Sums

Let p be prime and let G ⊆ F * p be a subgroup of order t, where F p is a finite field of p elements.

We denote e p (z) = exp(2πiz/p) and define exponential sums

S λ (p; G) = v∈G e p (λv).
Using [6, Lemma 3] (see also [START_REF] Konyagin | Character sums with exponential functions and their applications[END_REF]Lemma 3.3]) if t < p 2/3 , and the well known bounds [START_REF] Konyagin | Character sums with exponential functions and their applications[END_REF]Equations (3.4) and (3.15)]) if t ≥ p 2/3 , we derive: Lemma 3. For any prime p and a subgroup G ⊆ F * p of order t, we have

|S λ (p; G)| ≤ p 1/2 and λ∈F * p |S λ (p; G)| 2 ≤ pt (see
λ∈F * p |S λ (p; G)| 4 ≪ pt 5/2 .

Intervals Avoiding Subgroups

As before, let p be prime and let G ⊆ F * p be a subgroup of order t. Let U(p; G, H) be the set of u ∈ F p such the congruence

v ≡ u + x (mod p), v ∈ G, 0 ≤ x < H, has no solution.
Lemma 4. Assume that G is of order t > p 1/2 . Then, for any fixed integer ν ≥ 1, we have

#U(p; G, H) ≤ p 2-1/4(ν+1)+o(1) H -1/2 t -5/4+(2ν+1)/4ν(ν+1) + p 5/2-1/2ν+o(1) H -1 t -5/4+1/2ν .
Proof. Let us fix some ε > 0. We put

s = 3 2 (1 + ε -1 ) , h = p 1+ε /H , Z = ⌈H/s⌉ .
We can assume that h < p/2, as otherwise the bound is trivial (for example, it follows immediately from the bound of Heath-Brown and Konyagin [6, Theorem 1]). Obviously

U(p; G, H) ⊆ W s (p; G, Z), (2) 
where W s (p; G, Z) is the set of u ∈ F p such the congruence

v ≡ u + x 1 + . . . + x s (mod p), v ∈ G, 0 ≤ x 1 , . . . , x s < Z, (3) 
has no solution.

For the number Q s (p; G, Z, u) of solutions to the congruence (3), exactly as in the proof of [START_REF] Konyagin | Character sums with exponential functions and their applications[END_REF]Lemma 7.1], we obtain

Q s (p; G, Z, u) = 1 p |a|<p/2
e p (-au) 

Hence

W ≤ p t 2 Z 2s Σ, (4) 
where

Σ = 1≤|a|<p/2 0≤x<Z e p (ax) 2s |S a (p; G)| 2 .
Following the idea of the proof of [8, Lemma 7.1], we write

Σ = Σ 1 + Σ 2 , (5) 
where

Σ 1 = 1≤|a|≤h 0≤x<Z e p (ax) 2s |S a (p; G)| 2 , Σ 2 = h<|a|<p/2 0≤x<Z e p (ax) 2s |S a (p; G)| 2 .
For 1 ≤ |a| ≤ h, we use the trivial estimate 0≤x<Z e p (ax) ≤ Z and derive

Σ 1 ≤ Z 2s 1≤|a|≤h |S a (p; G)| 2 = Z 2s t 1≤|a|≤h w∈G |S aw (p; G)| 2 = Z 2s t λ∈F * p M λ (p; G, h) |S λ (p; G)| 2 ,
where M λ (p; G, h) denotes the number of solutions to the congruence

λ ≡ aw (mod p), 1 ≤ |a| ≤ h, w ∈ G.
Hence, by the Cauchy inequality

Σ 1 ≤ Z 2s t   λ∈F * p M λ (p; G, h) 2   1/2   λ∈F * p |S λ (p; G)| 4   1/2 .
As in [3, Section 3.3], we have

λ∈F * p M λ (p; G, h) 2 ≤ tN(p; G, h),
where N(p; G, h) is the number of solutions of the congruence

ux ≡ y (mod p), 0 < |x|, |y| ≤ h, u ∈ G.
Therefore,

Σ 1 ≤ Z 2s t 1/2 N(p; G, h) 1/2   λ∈F * p |S λ (p; G)| 4   1/2 . (6) 
It is shown in [3, Theorem 1] that if t ≥ p 1/2 then for any fixed integer ν and any positive number h, we have

N(p; G, h) ≤ ht (2ν+1)/2ν(ν+1) p -1/2(ν+1)+o(1) + h 2 t 1/ν p -1/ν+o(1) . (7) 
Therefore, using Lemma 3 and the bound (7) we derive from (6) that 4) and ( 5), we obtain W ≤ p 3/2 t -5/4 h 1/2 t (2ν+1)/4ν(ν+1) p -1/4(ν+1)+o(1) + ht 1/2ν p -1/2ν+o (1) .

Σ 1 ≤ p 1/2 t 3/4 Z 2s h 1/2 t (2ν+1)/4ν(ν+1) p -1/4(ν+1)+o(1) + ht 1/2ν p -1/2ν+o(1) . (8) If h < |a| < p/2,
Recalling (2), the choice of h and that ε is arbitrary, after simple calculations, we obtain the result.

Corollary 5. Assume that G is of order t > p 1/2 . Then for any ε > 0 and

H ≥ p 19/24+ε
we have

#U(p; G, H) = o(p).
Proof. Since t > p 1/2 , we have, for any fixed integer ν ≥ 1, #U(p; G, H) ≤ p 11/8+1/8ν(ν+1)+o(1) H -1/2 + p 15/8-1/4ν+o(1) H -1 .

Taking ν = 2 or ν = 3, we conclude the proof.

Proof of Theorem 1

By Lemma 2 it is enough to consider prime p for which the multiplicative order t of g modulo p satisfies t > p 1/2 . We now take a positive integer k ≤ (5/24 -ε) log g p and consider the intervals D g k , D+1 g k . As in the proof of [START_REF] Konyagin | Character sums with exponential functions and their applications[END_REF]Theorem 11.1], we observe that, for any integer ℓ ≥ 0 and any g-ary string (d 1 , . . . , d k ), we have δ ℓ+i = d i , i = 1, . . . , k, if and only if Since g k ≤ p 5/24-ε , we infer from Corollary 5 that #U(p; G p , H) = o(p), which proves Theorem 1.

mg ℓ p - mg ℓ p ∈ D g k , D + 1 g k , where D = d 1 g k-1 + d 2 g k-2

Composite Denominators

It is quite likely that one can also study T m,n (k) for almost all composite n by supplementing the ideas of this work with those of [START_REF] Bourgain | On the smallest pseudopower[END_REF] (to get an analogue of Lemma 3) and also using the result of [START_REF] Kurlberg | On the period of the linear congruential and power generators[END_REF] that gives an analogue of Lemma 2.

0≤x<Z e p s

 p (ax) s S a (p; G).where the sums S a (p; G) are defined in Section 3.Separating the term tZ s p -1 corresponding to a = 0 and summing over allu ∈ W s (p; G, Z) yields 0 = u∈Ws(p;G,Z) Q s (p; G, Z, u) ≥ tW Z s p -|S a (p; G)| .Using the Cauchy inequality, and then the orthogonality relation for exponential functions, we obtain σ 2 ≤ 1≤|a|<p/2 u∈Ws(p;G,Z) e p (ax) 2s |S a (p; G)| 2 .
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