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Signal subspace approach for psychoacoustically

motivated speech enhancement

Adam Borowicz∗, Alexandr Petrovsky

Department of Real-Time Systems, Bialystok Technical University, Wiejska Str. 45A,
15-351 Bialystok, Poland

Abstract

In this paper we deal with the perceptually motivated signal subspace meth-
ods for speech enhancement. We focus on extended spectral-domain-constrained
(SDC) estimator. It is obtained using Lagrange multipliers method. We
present an algorithm for a precise computation of the Lagrange multipliers,
allowing for a direct shaping the residual noise power spectrum. In addition
the SDC estimator is presented in a new, possibly more effective form. As
a practical implementation of the estimator we propose perceptually con-
strained signal subspace (PCSS) method for speech enhancement. The ap-
proach utilizes masking phenomena for residual noise shaping and is optimal
for the case of coloured noise. Also, less demanding approximate version of
this method is derived. Finally comparative evaluation of the most known
subspace-based methods is performed using objective speech quality mea-
sures and listening tests. Results show that the PCSS method outperforms
other methods providing high noise attenuation and better speech quality.

Keywords:
speech enhancement, KLT, psychoacoustics

1. Introduction

A noise reduction problem arises in a wide range of speech processing ap-
plications including mobile radio devices, speech recognition systems, speech
coding, aids for the hearing impaired or analysis of low quality recordings.
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An objective of speech enhancement is to improve performance of these sys-
tems in the presence of environmental noise by increasing speech intelligi-
bility and quality. Often a single-channel application is considered, which
makes the design much more difficult. Nevertheless, there is a need for
an efficient noise reduction algorithms operating at extremely low signal to
noise ratios (SNRs). Most of existing single-channel speech enhancement
systems work in the frequency domain using spectral weighting technique.
Unfortunately, these methods suffer from self-generated distortions known as
”musical tones”. Many methods have been proposed to eliminate this phe-
nomenon including perceptually motivated approaches (Gustafsson et al.,
1998), (Petrovsky et al., 2004, 14 p.), but their optimality in a sense of linear
estimation is not clear.

On the other hand a signal subspace approach for speech enhancement is
an interesting generalization of the spectral weighting methods. This tech-
nique has been originally proposed in (Ephraim and Van Trees, 1995). The
speech estimation is considered there as a constrained optimization prob-
lem, where the speech distortions are minimized subject to the residual noise
power level (defined in a particular domain). Two linear estimators have been
proposed: time-domain-constrained (TDC) and spectral-domain-constrained
(SDC). Unlike DFT-based methods, signal subspace approaches decompose a
signal space into speech subspace and noise subspace using Karhunen-Loeve
transform (KLT). Then the spectral weighting is performed in the signal sub-
space only. The components projected onto the noise subspace are simply
nulled which results in a significantly better performance when compared
to the conventional frequency domain methods where a full-band spectrum
must be processed.

Unfortunately an efficient implementation of the KLT-based methods is
a difficult task and substantial simplifications are often taken into account.
For instance, the conventional approaches (Ephraim and Van Trees, 1995),
assume that the noise is white, in the case of coloured noise it is suggested
to whiten the noisy speech signal first. In a such case optimality of the es-
timators is not guaranteed, because the distortions of the whitened speech
are minimized rather than the distortions of the clean speech. Other meth-
ods (Rezayee and Gazor, 2001), (Mittal and Phamdo, 2000) deal with the
coloured noise problem by approximating a noise covariance matrix, which
in fact also results in suboptimal estimators.

Similarly as in (Ephraim and Van Trees, 1995) other signal subspace
approaches perform the residual noise shaping in the eigendomain using a
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generalised Wiener rule. Such a technique depends on erroneous signal-to-
noise estimates and is not optimal from the perceptual point of view (the
resulting residual noise might not be masked correctly). However a major
difficulty with an incorporating psychoacoustics into the KLT-based meth-
ods is the fact that the hearing properties (i.e. masking effects) are unex-
plained in the eigendomain. In (Jabloun and Champagne, 2003) appropriate
transformations have been proposed to convert the masking threshold to the
KLT domain and vice versa. In that method, a psychoacoustically moti-
vated weighting rule is used, but the problem of the coloured noise is solved
similarly to (Rezayee and Gazor, 2001).

Extended approaches (Hu and Loizou, 2003), (Lev-Ari and Ephraim,
2003) exploit a joint diagonalisation of the noise and clean speech covari-
ance matrices which allows for a derivation of the optimal estimators for the
coloured noise. Unfortunately closed form expressions (Lev-Ari and Ephraim,
2003) for these estimators are rather impractical. In fact they involve La-
grange multipliers, which must be carefully set to obtain desired filter. How-
ever in general, analytical expressions for these multipliers are unknown. In
(Hu and Loizou, 2003) Lagrange multipliers were simply set to fixed value
which results in the conventional Wiener-like spectral weighting rule.

Major motivation of our work is to exploit the masking properties in
the noise-independent signal subspace approach. We propose perceptually
constrained signal subspace (PCSS) method for speech enhancement based
on the extended SDC estimator. The solution is presented in a new form
which makes the implementation of the estimator more reliable. Unlike
the other approaches, our method exploits a perceptually motivated residual
noise shaping and imposes the constraints strictly in the frequency domain
using discrete Fourier transform (DFT) basis vectors. Namely, the residual
noise levels are set just below a masking threshold to attenuate only audible
noise components. Since the Lagrange multipliers are involved in the expres-
sion for the extended SDC estimator, they must be precisely set for a given
set of the residual noise levels. However, we found that these multipliers
are independent each other and can be computed numerically. In addition
we present an approximate version of the PCSS method as a low-complexity
alternative.

The paper is organized as follows. In Section 2 a signal subspace approach
for speech enhancement is introduced. In Section 3 we derive the perceptually
constrained signal subspace method, also the problems of the residual noise
shaping and Lagrange multipliers estimation are discussed. The approximate
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version of the PCSS method is derived in Section 4. Implementation details
are given in Section 5. The proposed method is evaluated and compared to
most known subspace-based approach in Section 6. Finally, we conclude the
paper in Section 7.

2. Signal subspace approach for speech enhancement

The noisy speech model used in the signal subspace approach assumes
that the clean speech and noise are additive. Let x = y + n denotes k-
dimensional noisy speech vector, where y and n are zero-mean random vec-
tors representing the clean speech and noise signal respectively. Since the
speech and noise are assumed to be uncorrelated, the covariance matrix of
the noisy speech process Rx can be written as

Rx = Ry + Rn, (1)

where Rn and Ry are the covariance matrices of the noise and clean speech
process, respectively. It is also assumed that the matrix Rn is positive def-
inite. Let ŷ = Hx be a linear estimator of the clean speech. The effective
filter H is found by minimizing an average speech distortion power and con-
straining a residual noise power level. The residual error vector is defined as
follows:

ε = ŷ − y = (H− I)y + Hn = εy + εn, (2)

where εy and εn are interpreted as the speech distortion vector and residual
noise vector respectively. The average speech distortion power is given by

ε2
y =

1

k
trE

{
εyε

#
y

}
=

1

k
tr

{
(H− I)Ry (H− I)#

}
, (3)

where E{.} is an expectation operator, tr{.} is matrix trace and superscript
# denote the transpose of a real matrix or the conjugate transpose of a
complex matrix. The constraints can be defined in time- or spectral-domain
giving the TDC or SDC estimator, respectively (Lev-Ari and Ephraim, 2003).
In fact, the TDC estimator is a special case of the SDC estimator. There-
fore, we give a brief description of the second one only. In this case the
optimization problem is formulated as follows:

min
H

ε2
y

subject to: E

{∣∣∣v#
i εn

∣∣∣2} ≤ αi, i = 1, . . . , k, (4)
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where {vi, i = 1, . . . , k} is a set of k-dimensional real or complex vectors.
Originally, in (Lev-Ari and Ephraim, 2003) the matrix V = [v1,v2, . . . ,vk]
was restricted to any orthogonal or unitary matrix.

The solution of (1) is found using Lagrange multipliers method. The
Lagrangian is given by

L(H, µ̄) = ε2
y +

k∑
i=1

µi

(
v#

i HRnH
#vi − αi

)
. (5)

Let’s define M = k diag {µ1, µ2, . . . µk} and L = VMV#. From∇HL(H, µ̄) =
0 we obtain

LHRn + HRy = Ry. (6)

Above equation can be solved iteratively as proposed in (Hu and Loizou,
2003). An explicit solution is based on a factorisation which transforms
jointly both matrices Ry and Rn to a diagonal matrix. Such a transform
was found in (Hu and Loizou, 2003) where the signal KLT was replaced with
a non-orthogonal transform. In (Lev-Ari and Ephraim, 2003) an equivalent
solution using the whitening approach was presented and explicit forms for
the TDC and SDC estimators were derived. Namely, the signal KLT was
replaced with the KLT of the whitened clean speech. Therefore the eigen-
decomposition of the whitened clean speech covariance matrix is considered
instead of the matrix Ry, i.e.

Rỹ = E
{
ỹỹT

}
= R−0.5

n RyR
−0.5
n = UΛU#, (7)

where ỹ is whitened clean speech vector, U = [u1, . . . ,uk] denote an orthog-
onal matrix of eigenvectors and Λ = diag {λ1, . . . , λk} is a diagonal matrix
of corresponding eigenvalues (a subscript ỹ is omitted here for clarity). Let
Q = R−0.5

n U and G = Q#H(Q#)−1. Substituting these relations in (6) we
have

Q#L(Q#)−1G + GΛ = Λ. (8)

The work (Lev-Ari and Ephraim, 2003) proposes the following implementa-
tion:

H = R0.5
n UH̃U#R−0.5

n . (9)

The columns of the matrix H̃ are defined as follows:

hl = Tλl (M + λlI)
−1 T−1el, l = 1, . . . , k, (10)
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where T = U#R−0.5
n V and el denote a unit-vector for which the l−th element

is one and all other components are zeros.
Note that a direct implementation of the filter (9) is rather impractical.

Even though the signal subspace dimension is small, the computation of the
matrix H is still expensive since it requires a knowledge of a full-rank matrix
U. In addition, since H̃ is not a diagonal matrix, the subspace decomposition
is not evident. The equation (9) is called ”closed form” expression (Lev-Ari
and Ephraim, 2003), but in fact it involves the set of Lagrange multipliers
which control a trade-off between speech distortion and residual noise and
should be carefully set to obtain desired (possibly psychoacoustically moti-
vated) residual noise shaping. Although setting the multipliers to fixed value
gives relatively good results, it might not be optimal from the perceptual
point of view. Usually, the residual noise constraints are defined in the eigen-
domain while the masking properties are explained in the frequency domain
(i.e. DFT domain). In a such case it is difficult to use any psychoacoustically
motivated rule for the noise shaping. At last, the extended SDC estimator
requires prewhitening, which is computationally costly and might be inef-
fective for non-stationary noises. Note that the whitening and unwhitening
transformations depend on a time-varying noise characteristics. Commonly
they can be simply computed from the noise covariance matrix. However in
practice this matrix is unknown and must be estimated. In Section 5 we will
provide some details on how it can be done.

3. PCSS method

Taking into account the problems summarized in the previous Section
we propose a novel perceptually constrained signal subspace method based
on the extended SDC estimator. We selected the extended SDC estimator
because it performs an optimal decorrelation in transform domain and its effi-
ciency does not depend on the noise type. Optimality of the KLT transform
is especially important for a cancellation of the musical tones effect. Al-
though the main processing is performed in the KLT domain of the whitened
speech, the constraints on the residual noise spectrum can be defined in other
domain not necessarily related to the KLT. This possibility was suggested in
(Lev-Ari and Ephraim, 2003), but it was not examined in practice until now.
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3.1. Novel interpretation of the SDC estimator

As mentioned before, a direct implementation of the filter (9) is rather
impractical, in addition the decomposition onto the signal and noise subspace
is not evident. However, if the matrix Rỹ is a positive semi-definite, the
column-vectors hl corresponding to zero eigenvalues have all elements equal
to zero. Therefore, (9) can be rewritten as follows:

H = R0.5
n U

r∑
l=1

hlul
#R−0.5

n , (11)

where r denote the signal subspace dimension. The parameter r is usually
estimated as the number of the strictly positive eigenvalues according to the
following rule:

r = arg max
1≥l≥k

{λl > θ} . (12)

In practice, the threshold θ is usually set to some small positive number to
avoid numerical problems. Greater values of θ lead to reducing the resid-
ual noise, however a special care must be taken because low-power speech
components can be also cancelled. In our experiments we simply set this
parameter to be 3 times greater than absolute value of the minor eigenvalue,
but not smaller than 2−52.

Recalling definition of (10) the expression for the effective filter can be
simplified to

H =
r∑

l=1

Vλl (λlI + M)−1 V#q̄lq
#
l , (13)

where q̄l is the l-th column vector of the matrix (Q#)−1 and ql is the l-
th column vector of the matrix Q. Note that to compute these vectors we
require only the l-th eigenvector of the matrix U (and whitening/unwhitening
transforms). The problem has unique solution if and only if λlI + M is non-
singular.

As can be seen in (13) the proposed approach does not require a complete
set of eigenvectors. This fact is especially important if the eigenvalues are
estimated using any iterative technique like PASTd algorithm (Yang, 1995).
Moreover, it is clearly visible that the noisy components which are projected
onto the noise subspace are nulled. Although both solutions are equiva-
lent, our interpretation may avoid many unnecessary numerical operations.
Namely, the computational load of our method is data-dependent. In the
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Figure 1: An example estimation of the signal subspace dimension (top) for typical speech
signal (bottom).

worst-case the complexity of our solution is approximately the same as that
in the work (Lev-Ari and Ephraim, 2003) but the number of the eigenvalues
varies over time. As can be seen in Fig. 1 the situation when r < k is very
common for typical speech sample. Therefore in average-case our solution
outperforms the conventional one.

Also note that, the collection of the non-orthogonal subspace projectors
{q̄lq

#
l , l = 1, 2, . . . , r} can be interpreted as the r-channel filter bank. Such

an interpretation is especially useful in parallel processing, especially when
FPGA implementation is considered. In addition, if the matrix V is the
DFT related, the in-channel filters can be efficiently implemented using fast
Fourier transform (FFT) algorithm. Such a realisation is presented in Fig. 2.
Note that the matrices Gl = λl (λlI + M)−1 can be viewed as the frequency
domain weighting filters.

3.2. Perceptually motivated constraints

It was verified empirically that the Wiener-like weighting rule (Ephraim
and Van Trees, 1995) makes enhanced spectrum similar to that of the clean
speech. Unfortunately, such a technique is weakly correlated with the hu-
man auditory perception. If the constraints are defined in eigendomain, it
is difficult to use any psychoacoustically motivated weighting rule (defined
usually in the frequency domain) for shaping the residual noise spectrum.
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Figure 2: Direct realisation of the extended SDC estimator using the FFT algorithm.

According to well known IND rule (Gustafsson et al., 1998), if any frequency
component of the residual noise is greater than the masking threshold, it is
audible and clean speech is deteriorated by noise. In the opposite situation,
when the frequency component is below the threshold, we have unnecessary
attenuation of the clean speech. Thus, ideally, these components should be
placed just below the masking threshold of the clean speech signal to make
the noise inaudible and avoid unnecessary attenuation.

Although frequency-domain representation of the residual noise spectrum
can be obtained using the appropriate transformation (Jabloun and Cham-
pagne, 2003), we propose a simpler solution. One possible choice of V is a
unitary matrix. Thus the residual noise spectrum {αi, i = 1, 2, . . . , k} can
be defined directly in the frequency domain using sinusoidal vectors

v#
i = k−1/2

[
e−jωi·0, e−jωi·1, . . . , e−jωi·(k−1)

]
, (14)

where
ωi = 2π (i− 1) /k, i = 1, 2, . . . , k. (15)

The vector v#
i is interpreted here as the i-th row of normalized DFT matrix.

Since the masking threshold is also defined in the frequency domain, the
frequency-to-eigendomain transformation (Jabloun and Champagne, 2003)
is not necessary. Taking into account these considerations, we propose the
following IND-based rule for shaping residual noise power spectrum

αi = min (φt(ωi), αi,max) , i = 1, . . . , k, (16)

9



  

where φt(ωi) denote the masking threshold of the clean speech and

αi,max =
r∑

l=1

∣∣∣v#
i q̄l

∣∣∣2 , (17)

is a maximum possible residual noise level for the i-th spectral bin (no
attenuation-case).

3.3. Lagrange multipliers estimation

An interesting aspect of the Lagrange multipliers method is that the val-
ues of the multipliers at the solution point usually have some significance. In
our optimization problem they control a trade-off between the residual noise
and speech distortions and should be carefully set to obtain desired filter. As
we mentioned before, in the case of coloured noise, an explicit derivation of
the Lagrange multipliers for a given set of residual noise levels seems to be
a difficult task. According our best knowledge a such expression is currently
unknown. However as we will show they can be computed numerically after
all.

If the constraints in (4) are satisfied with equality, the residual noise levels
can be written as follows:

αi = v#
i R0.5

n UGG#U#R0.5
n vi, i = 1, 2, . . . , n. (18)

It can be observed that

GG# =
r∑

l=1

glg
#
l , (19)

where gl is the l-th column vector of the matrix G. Thus, substituting (19)
into (18) we have

αi =
r∑

l=1

∣∣∣∣v#
i

λl

kµi + λl

q̄l

∣∣∣∣2 , i = 1, 2, . . . , k. (20)

In general, v#
i q̄l 6= 0, for all i, l. If we assume that residual noise levels are

defined in the eigendomain (i.e. V = U) and the noise is white with the
variance σ2

n, i.e. q̄l =
√

σ2
nul, then above equation can be simplified to

αi =

(
λl

kµi + λl

)2

σ2
n (21)

10



  

It results in the following expression for the Lagrange multipliers

µi =
λi

k

[(
αi/σ

2
n

)−0.5 − 1
]
. (22)

Note that, substituting these relations to (9) and using an appropriate rule for
the noise shaping we can obtain the conventional SDC estimator for white
noise (Ephraim and Van Trees, 1995). However in our case we make no
assumption about noise nature as well as the constraints domain. Therefore
the Lagrange multipliers must be estimated directly. Taking into account
the relation (20) it is easy to see that the estimation of the i-th multiplier is
equivalent to finding the root of the following function:

gi(µi) =
k∑

l=1

∣∣∣∣v#
i

λl

kµi + λl

q̄l

∣∣∣∣2 − αi. (23)

As we will show further, it can be found numerically for a given residual noise
level.

4. Approximate solution

In this Section we present an approximate version of the PCSS method.
The proposed approach does not require a whitening (unwhitening) step,
however it exploits the same perceptually motivated residual noise shaping
rule and imposes the constraints strictly in the frequency domain using dis-
crete Fourier transform (DFT) basis vectors.

Let UyΛyU
#
y be eigen-decomposition of the matrix Ry. In the case of

the white noise i.e. Rn = σ2
nI, where σ2

n is the noise variance, both ma-
trices Ry and Rn can be diagonalised jointly using the matrix Uy, which
makes the solution of (6) trivial. In the case of coloured noise, the following
approximation has been suggested (Rezayee and Gazor, 2001):

Rn ≈ UyΛ̂nU
#
y , (24)

where Λ̂n is a diagonal matrix with entries defined as follows:

λ̂n,i = u#
y,iRnuy,i, i = 1, . . . , k. (25)

Substituting (24) to (6) and denoting the sub-optimal filter by Ĥ we obtain

LĤUyΛ̂nU
#
y + ĤRy = Ry. (26)
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Let Ĝ = U#
y ĤUy, then the above equation can be written as follows:

U#
y LUyĜΛ̂n + ĜΛy = Λy. (27)

Note that
U#

y LUyĝlλ̂n,l + ĝlλy,l = λy,lel, (28)

where ĝl denote the l-th column vector of Ĝ. Thus we have

ĝl = Uy
#λy,l

(
λ̂n,lL + λy,lI

)−1

Uyel. (29)

Recalling the definition of Ĝ, the closed form expression for the sub-optimal
linear filter is given by

Ĥ =
k∑

l=1

Vλy,l

(
λy,lI + Mλ̂n,l

)−1

V#uy,lu
#
y,l. (30)

Note that, (30) has unique solution if and only if λ̂n,lM+λy,lI is non-singular.
It is worthwhile to note that although presented approximate solution is sub-
optimal for the coloured noise, it is optimal for the white noise. Thus it is an
an interesting, low-complexity alternative for whitening-based approaches.

For instance, if the constraints are defined in the KLT domain i.e. V =
Uy, the filter (30) simplifies to the sub-optimal SDC estimator (Jabloun and
Champagne, 2003). In a such case the Lagrange multipliers can be easily
computed. On the other hand if we set all multipliers to a fixed value say
µl = µ/k, we obtain the sub-optimal TDC estimator (Rezayee and Gazor,
2001). Otherwise the multipliers should be estimated in similar way as in
the exact PCSS method. Particularly, if the constraints in (4) are satisfied
with an equality, the residual noise levels can be written as follows:

αi = v#
i ĤRnĤ

#vi. (31)

Substituting (31) into the right side of the inequality (4) and using the ap-
proximation (24) we obtain

αi =
k∑

l=1

∣∣∣∣∣v#
i

λy,l

λ̂n,lkµi + λy,l

uy,l

∣∣∣∣∣
2

λ̂n,l. (32)

Thus, in this case, we have k independent one-dimensional equations and
the Lagrange multipliers can be computed numerically for a given set of the
residual noise levels in a similar way as before.
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5. Implementation

In our implementation we use a frame-by-frame algorithm. Namely, we
divide the signal into the frames of length Nf with overlap of No samples.
Each frame is partitioned into m = Nf−k smaller overlapping k-dimensional
vectors. Let’s define t-th in-frame vector as follows:

xt =


x(`(Nf −No) + t + 1)
x(`(Nf −No) + t + 2)

...
x(`(Nf −No) + t + k)

 , (33)

where ` is the frame index and x(.) are the noisy speech samples. The
sequence of these vectors can be considered as a trajectory in k-dimensional
Euclidean space. Such a sequence is arranged into so called trajectory matrix
of size k-by-m

X(`) =
[

x1 x2 · · · xm

]
. (34)

The outer product of the trajectory matrix is then used to compute the
sample covariance matrix of noisy speech

Cx
(`) =

1

m
X(`)(X(`))T . (35)

This estimate is the basis for the computation of the noise eigenstructures
(in the speech pauses only) and the KLT of the whitened signal, respectively:

Cn ≈ UnΛnUn
#,

Cỹ = C−0.5
n CxC

−0.5
n − I ≈ UΛU#. (36)

In the above we omitted the frame index ` for clarity. In order to avoid
the numerical problems the square roots of the matrices are calculated us-
ing the eigenstructures Un, Λn of the noise covariance matrix. A simplified
processing scheme is depicted in Fig. 3. First we compute the effective filter
H and then all in-frame vectors are processed using the same matrix. The
result is stored in the trajectory matrix of the enhanced speech, say Ŷ(`).
The enhanced vectors are obtained from the matrix Ŷ(`) using a diagonal
averaging technique (Vetter et al., 1999). Finally, the frames are multiplied
by Hanning window and synthesized using overlap-add method.
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Figure 3: Block diagram of the PCSS method.

As can be seen in Fig. 3, for the computation of the effective filter we
need the set of the non-orthogonal projectors, whitened clean speech eigen-
values and Lagrange multipliers. In our implementation the multipliers are
calculated iteratively using Newton’s method. It is known that this method
can be unstable near a local extremum or a horizontal asymptote. Since a
first-derivative of (23) is negative for µi ≥ 0, i.e.

dgi(µi)

dµi

= −2k
k∑

l=1

1

kµi + λl

∣∣∣∣v#
i

λl

kµi + λl

q̄l

∣∣∣∣2 < 0, (37)

the relation (23) is a monotonically decreasing function in 〈0;∞). Thus only
the second problem can arise. If min (φt(ωi), αi,max) ≈ 0, then gi(µi) = 0 for
µi →∞. Such a situation occurs in the speech pauses or when the power of
the noise signal is very low. Since Rn is assumed to be positive definite, the
maximum residual noise is always greater than zero, for r > 0. If it is not
the case, the matrix Rn could be regularized by adding some small positive
constant to the estimated eigenvalues.

Simply, each µi can be initialised to zero, but the number of iterations
can be reduced by setting µi = µi−1, for i > 2 in the first iteration. It
was supported by the observation that the constraints are defined on the
smoothed spectrum, so the functions, have similar shapes and properties. In
our experiments the solution was found in the acceptable number of iterations
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(5-20). It is worthwhile to note that since the spectrum {αi, i = 1, 2, . . . , k}
is symmetric and k is even, only k/2 + 1 Lagrange multipliers have to be
estimated.

A direct method for estimation of φt(ωi) from the noisy data does not
exist. Commonly used methods operate on the critical-band energies which
are obtained by appropriate grouping the power spectral components of the
clean speech. Thus in fact the power spectrum of the clean speech is needed
here. From the definition, it is given by

φy(ωi) = E

[∣∣∣v#
i y

∣∣∣2] = v#
i Ryvi. (38)

Therefore, the clean speech covariance matrix should be estimated first. Typ-
ically it can be obtained from Ry = Rx−Rn, which is equivalent to a spectral
subtraction technique. On the other hand we can use the whitened speech
covariance matrix. In order to minimize musical tones effect we propose to
reconstruct the power spectrum of the clean speech from the signal subspace
only. Using the eigen-decomposition (7) we can rewrite (38) as follows:

φy(ωi) = v#
i (Q−1)#Λ(Q−1)vi =

r∑
l=1

∣∣∣v#
i q̄l

∣∣∣2 λl, (39)

The resulting estimates for i = 1, 2, . . . , k are used as the input data for
Johnston’s psychoacoustic model (Johnston, 1988). Note that the parameters
Q and Λ in (39) are calculated using the eigenstructures of the estimated
covariance matrix (36).

In our implementation we use the following settings: Nf = 400, No = 200,
k = 40 and assume the sampling rate at 16 kHz. Due to fact, that the
filter is estimated in relatively long frames, the computational complexity is
effectively reduced. Such an approach is only applicable when the processed
signal is stationary within the frame. In the case of highly non-stationary
processes it can lead to the significant estimation errors. However, in the
proposed method, the stationarity period (frame length) is about 16 ms and
seems to be short enough even for the speech signal.

6. Experiments

The proposed PCSS method and its approximate version (denoted here
as PCSSa) were implemented and tested using MATLAB software. For com-
parative purposes we also implemented a conventional SDC estimator for the
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(a) (b)

(c)

Figure 4: Objective evaluation of speech distortions for white noise (a), car engine noise
(b), jet cockpit noise (c) using SNR-based measure (SD) and perceptual measure (MBSD);
vertical lines denote standard deviations.

white noise (Ephraim and Van Trees, 1995). The set of eight speech sentences
uttered by both male and female speakers was selected from TIMIT database
(Garofolo et al., 1993). The sentences were about 5-8 s long. Three types of
noise signal were selected: white noise, car engine noise and F16-jet cockpit
noise. These signals were artificially added to the clean speech sentences
such that the segmental SNR (SegSNR) was between 0 dB and 20 dB. We
used the SNR based and perceptual measures for an objective performance
evaluation of the implemented algorithms. The speech distortion measure
(SD) is defined as the segmental signal to noise ratio where the noise is inter-
preted as a difference between the original and enhanced speech. A modified
Bark spectral distortion (MBSD) measure (Yang et al., 1998) was used for
the evaluation of the audible speech distortion.

Figure 4 shows the evaluation results in different noise environments.
Generally, the worst performance was reported for the conventional SDC
estimator (SDCw). Even in the case of the white noise the both PCSS
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methods offer improvements comparing to the SDCw method. Although the
performance gain for the SegSNR measure is not stunning (about 3%), it is
evident for the MBSD measure. It confirms our thesis that the perceptually
motivated constraints (7) are more robust than the Wiener-like rule used in
(Ephraim and Van Trees, 1995). The best results were obtained for the exact
(whitening-based) PCSS method, but this is done at the cost of increased
computational complexity. The approximate version of this method (PCSSa)
is much simpler and gives similar results for the white-like noises. In the
case of the coloured noise we must accept a trade-off between complexity
and speech quality. As expected, the relative performance gain of the PCSSa
method strongly depends on the noise type. The best results are obtained for
the car noise. Our observations show that the optimal KLT basis of the car
noise used in the tests is similar to the KLT basis of the long-term estimate
of the clean speech covariance matrix, thus the approximation (16) produces
near diagonal matrix. However it is not the case for the F16-jet cockpit noise,
which was confirmed in our experiments too. As can be seen, the presented
method outperforms the SDCw approach, but the relative improvement is
much smaller for coloured noises. This suggests that an approximation error
may be significant in some situations.

The MSBD measure is relatively highly correlated with subjective speech
distortion measures, however it is less useful in the evaluation of the noise
shaping capabilities. Therefore the informal listening test was also carried out
in order to compare the residual noise artefacts generated by each method.
For this purpose we were used a similar test as in the work (Jabloun and
Champagne, 2002). The evaluation was carried out in a group of five listeners
from 25 to 40 years of age. Three noisy speech signals corresponding to three
previously used noise types were enhanced using a given method. We selected
the signals at the lowest SegSNR of 0 dB to make sure the residual noise will
be audible in all cases. The subjects were asked to score a difference between
the residual noise characteristics of the enhanced signals using 5 level scale.
The following choices were allowed:

0: Completely different.

1: Different.

2: Do not know.

3: Almost similar.
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Figure 5: Subjective evaluation of the noise shaping capabilities for the selected speech
enhancement methods.

4: Similar.

The same test was performed for all three methods. The percentage
results are depicted in Fig. 5. As can be seen, for the conventional SDC
estimator, the scores in range of 0-1 suggest that residual noise is different
for every signal. For the PCSS method we obtained the average score of 3.6
which indicates that the residual noise characteristics is almost identical for
all noises. The approximate version of the PCSS method gives slightly lower
scores, however it is clear that its performance does not depend on noise
conditions as strong as for the SDC method.

The subjective tests were also confirmed by spectrogram analysis. As
can be seen in Fig. 6, the conventional SDC approach generates annoying
low-band residual noise. Note that it is completely different from well known
musical noise which is typical for most of the DFT-based methods. Also
the approximate PCSS method generates the similar residual signal, but at
lower level. We verified that this effect is especially audible in speech pauses
only. During the voice activity, it is rather inaudible due to the masking
phenomenon.
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7. Conclusion

We proposed the perceptually constrained signal subspace approach for
speech enhancement. An extended SDC estimator has been presented in a
new form making an implementation of the subspace approach more practi-
cal. The residual noise constraints are defined strictly in the frequency do-
main using DFT-related vector basis and perceptual criteria. Experiments
show that the proposed method outperform other approaches providing per-
ceptually optimal residual noise shaping and lower speech distortions. Also
approximate solution have been derived as a low-complexity alternative for
the PCSS method. Unlike the exact method, the approximate approach
does not require whitening, thus the number of operations per frame can be
significantly reduced. The experiments show that a degradation due to ap-
proximation depends on noise type and can be neglected for white-like noises.
Nevertheless our method outperforms conventional approach in all cases.
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Figure 6: Speech spectrograms: (a) noisy speech signal (car-engine noise at SegSNR = 5
dB), enhanced signals using (b) SDCw, (c) PCSSa, (d) PCSS.
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Highlights: 

� Extended spectral-domain-constrained estimator for speech enhancement is 

considered. 

� Lagrange multipliers are directly computed allowing precise residual noise shaping. 

� The residual noise is shaped optimally according to the masking phenomenon. 

� A novel perceptually constrained signal-subspace (PCSS) method is proposed. 

� Finally comparative evaluation of the selected subspace-based methods is performed. 



  

 


