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Abstract

We give a new proof of the Liouville theorem proved by Merle and Zaag for non-
negative solutions of the semilinear heat equation with power nonlinearity. Our proof
has a pedagogical interest and is based on Kaplan’s blow-up criterion.
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1 Introduction

In [MZ98] and [MZ00], Merle and Zaag consider the following semilinear heat equation

ut = ∆u+ |u|p−1u (1)

and prove the following Liouville theorem:

Theorem 1(Merle-Zaag) Assume that

p > 1 and (N − 2)p < N + 2. (2)

Consider u a solution of (1) defined for all (x, t) ∈ R
N × (−∞, T ). Assume in addition

that |u(x, t)| ≤ C(T−t)−
1

p−1 , for some constant C > 0. Then u ≡ 0 or there exists T0 ≥ T

such that for all (x, t) ∈ R
N × (−∞, T ), u(x, t) = ±κ(T0 − t)

−
1

p−1 with κ = (p − 1)
−

1

p−1 .

Introducing the following similarity variables:

y =
x√
T − t

, s = − log(T − t), w(y, s) = (T − t)
1

p−1u(x, t), (3)

equation (1) is transformed in the following equation:

ws = ∆w − 1

2
y · ∇w − 1

p− 1
w + |w|p−1w, (4)
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and we get another equivalent formulation of the above Liouville theorem.

Theorem 1′(Merle-Zaag) Assume (2) and consider w(y, s) a bounded solution of (4),
defined for all (y, s) ∈ R

N × R. Then w is one of the following solutions: w ≡ 0, or

w = ±κ, or there exist s0 ∈ R, such that w = ±ϕ(s − s0) with ϕ(s) = κ(1 + es)
−

1

p−1 .

This theorem introduces a new approach in the study of equation (1), in the sense that
it gives uniform estimates both in space and with respect to initial data. For instance, the
following localization property is proved in [MZ98] and [MZ00]:

Uniform ODE Behavior: Consider T ≤ T0, ‖u0‖C2(RN ) ≤ C0 and u(x, t) the solution
of equation (1), with initial data u0. Then, for all ǫ > 0, there is C(ǫ, C0, T0) such that
for all x ∈ R

N and t ∈ [0, T ),

∣

∣

∣

∣

∂u

∂t
(x, t) − |u|p−1u(x, t)

∣

∣

∣

∣

≤ ǫ |u(x, t)|p + C.

The above uniform estimate allowed to get new blow-up results for equation (1), un-
known before, such as the stability of the blow up profile (see Fermanian, Merle and Zaag
[FKMZ00]) and the regularity of the blow-up set (see Zaag [Zaa06]).
Moreover, the approach consisting in proving Liouville theorems in order to get new blow-
up results has been successful for other parabolic equations with no gradient structure
(see Nouaili and Zaag [NZ07]), hyperbolic equations like Korteweg de Vries (Martel and
Merle [MM00]) and the wave equation (Merle and Zaag [MZ08]).
In [MZ98] and [MZ00], the authors prove the Liouville theorem in similarity variables.
They use the following Lyapunov functional associated with (4):

E(w) =

∫

RN

(

1

2
|∇w|2 +

|w|2
2(p − 1)

− |w|p+1

p+ 1

)

ρdy, where ρ(y) =
e−

|y|2

4

(4π)N/2
. (5)

The heart of the proof is the linearization of w (defined by (4)) around κ as s → −∞.
Using similar ideas to Filippas and Kohn [FK92], Merle and Zaag prove that there are at
most three possible ways in which w goes to κ as s→ −∞. Then, they show that one of the

three cases corresponds to w(y, s) = ϕ(s−s0) for some s0 ∈ R where ϕ(s) = κ (1 + es)−
1

p−1 .
In the other two cases, they find a contradiction using the following blow-up criterion:

Let w be a solution of (4) which satisfies I(w(s0)) > 0 for some s0 ∈ R where

I(w(s)) = −2E(w(s)) +
p− 1

p+ 1

(
∫

RN

|w(y, s)|2 ρ(y)dy
)

p+1

2

.

Then, w blows up at some time S > s0.

In this note, we found that in the nonnegative case (treated in [MZ98]), we could
avoid the long and technical linearization around κ as s→ −∞ and the application of the
blow-up criterion. More precisely, we found that the Liouville theorem in the nonnegative
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case follows from Kaplan’s blow-up criterion for equation (1) (see [Kap63]) and the work
of Giga and Kohn (see [GK85], [GK87] and [GK89]), which are more simple ingredients.
The aim of this note is to present this more simple proof, which is pedagogically easier
then the analysis of [MZ98]. Of course, for unsigned solutions, we cannot escape the proof
given in [MZ00], which heavily relies on the preceding paper [MZ98].

We proceed in two sections:
In section 2, for the reader’s convenience, we give and prove our version of Kaplan’s
criterion, making our paper more self contained.
In section 3, we give our proof of the Liouville theorem in the nonnegative case.

Acknowledgment: We would like to thank the referee for his careful reading and
helpful remarks. He suggests the use of Kaplan’s blow-up criterion instead of Fujita’s,
which we used in the first version of this paper.

2 Kaplan’s blow-up criterion

In the following, we give our version of Kaplan’s criterion:

Proposition 2.1 (Kaplan’s blow-up criterion for equation (1)) There exists M > 0 such
that if V0(x) in L∞(RN ) is nonnegative and satisfies

∀|x| ≤M, V0(x) ≥
κ

2
,

then the solution V (x, t) of equation (1) with initial data V0 blows up in finite time T > 0.

Proof : Here we use Kaplan’s method introduced in [Kap63] (see Theorem 8 page 327).
Note that since V0(x) is nonnegative, the same holds for V (x, t) whenever it exists.
We note by λ > 0 the first eigenvalue of −∆ on the ball B(0,M) and by ψ(x) the
corresponding eigenfunction to λ. In other words, we have

{

−∆ψ = λψ in B(0,M),
ψ = 0 on ∂B(0,M).

Note that ψ(x) ≥ 0 in B(0,M) and from scaling arguments, we have λ = λ1

M2 , where λ1 > 0
is the first eigenvalue of −∆ on the ball B(0, 1). We also assume that

∫

B(0,M) ψ(x)dx = 1.

We define V̂ (t) =
∫

B(0,M) V (x, t)ψ(x)dx. Multiplying both sides of (1) by ψ(x) and inte-

grating over B(0,M), then using Jensen’s inequality and integration by parts, we obtain

{

V̂
′
(t) ≥ −λ1V̂ + V̂ (t)p wherever V is defined,

V̂ (0) ≥ κ
2 ,

(6)

(see [Kap63] for details).
Now, we note by Φ(t) the solution of the ODE:

{

Φ
′
(t) = Φ(t)p − λΦ(t),

Φ(0) = κ
2 .

Since λ = λ1

M2 , we can see that taking M large enough, Φ(t) blows up at some finite time

T0 > 0, hence by (6), V̂ (t) ≥ Φ(t) and V̂ blows up at some earlier time.
Using the fact that supx∈RN V (x, t) ≥ V̂ (t), we conclude that V (x, t) blows up in finite
time T > 0. �
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3 Our new proof of the Liouville Theorem

We consider w a nonnegative, global and bounded solution of (4). We proceed in two
steps. First, we find limits w±∞ for w as s→ ±∞ and reach a conclusion in some trivial
cases. In a second step, we focus on the case where w−∞ = κ as s → −∞ and conclude
the proof.

Step 1: Limits of w as s→ ±∞

We recall respectively, Theorem 1 and Proposition 5 from [GK85] (page 305 and 309),
under the condition (2).

Proposition 3.1 (Stationary problem of (4) (Giga-Kohn)) The only global solutions in
L∞(RN ) of

0 = ∆w − 1

2
y · ∇w − w

p− 1
+ |w|p−1w,

are the constant ones w ≡ 0, w ≡ −κ and w ≡ κ.

Proposition 3.2 (Limits of w as s → ±∞ (Giga-Kohn)) Let w be a bounded global
solution of (4) in R

N . Then, lims→∞w(y, s) exists and equals 0 or ±κ. The convergence
takes place in C2(B(0, R)) for any R > 0. The corresponding statements holds also for
the limits as s→ −∞.

From the propositions above and the positivity of w, we have w±∞ ≡ 0 or w±∞ ≡ κ. Since
E is a Lyapunov functional for w, one gets from (4) and (5):

0 ≤
∫ +∞

−∞

ds

∫

RN

∣

∣

∣

∣

∂w

∂s
(y, s)

∣

∣

∣

∣

2

ρdy = E(w−∞) −E(w+∞). (7)

Therefore, since E(κ) > 0 = E(0), there are only two cases:

• E(w−∞) = E(w+∞). This implies that
∂w

∂s
≡ 0, hence w is a stationary solution of

(4) and w ≡ 0 or w ≡ κ by Proposition 3.1.

• E(w−∞) − E(w+∞) > 0. This occurs only if w+∞ ≡ 0 and w−∞ ≡ κ. It remains to
treat this case:

Step 2: Case where w → κ as s→ −∞

Consider M > 0 given by Proposition 2.1. From Proposition 3.2, there is some time s∗

negative and large enough such that

w(y, s∗) ≥ κ

2
for all |y| < M. (8)

Introducing v(x, t) defined by

v(x, t) = (1 − t)
−

1

p−1w(y, s + s∗) where y =
x√

1 − t
and s = − log(1 − t), (9)
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we see that the function v is defined for all x ∈ R
N and t < 1, satisfies (1) and

∀x ∈ R
N , v(x, 0) = w(y, s∗). (10)

If we consider V (x, t) the solution of (1) with initial condition V (x, 0) = v(x, 0), then from
(8), (10) and Proposition 2.1, we have that V blows up at some finite time T > 0.
Since we have from uniqueness for (1) that

∀(x, t) ∈ R
N × [0, 1), V (x, t) = v(x, t),

this gives T ≥ 1. Extending v(x, t) for t ≥ 1 (if ever T > 1) by v(x, t) = V (x, t), we see
that v(x, t) is a solution of (1) defined for all (x, t) ∈ R

N × (−∞, T ) and which blows up
at time T ≥ 1 (note in particular that (9) still holds)

Now, if we consider a ∈ R
N a blow-up point of v and introduce the following similarity

variables:

y′ =
x− a√
T − t

, s′ = − log(T − t), wa(y
′, s′) = (T − t)

1

p−1 v(x, t), (11)

then, we see from Giga and Kohn [GK87], Theorem 3.7 (page 17) that:

∀s′ ∈ R, ‖wa(s
′)‖L∞ ≤ C1, where C1 > 0, (12)

and from [GK89], Corollary 3.4 (page 872), that:

wa(y
′, s′) → κ as s′ → +∞, uniformly on compact sets. (13)

In the following, we are looking for the limit of wa as s′ → −∞. Using (9) and (11), we
obtain:

wa(y
′, s′) = (1 − σ)−

1

p−1w (y, s) where σ = (T − 1)es
′
,

y =
y′ + aes

′/2

√
1 − σ

and s = s′ − log(1 − σ) + s∗.
(14)

Since w(y, s) → κ as s → −∞ uniformly on compact sets and σ → 0 as s′ → −∞, this
gives that

wa(y
′, s′) → κ as s′ → −∞, uniformly on compact sets. (15)

From parabolic regularity and the continuity of the energy E(wa), we get from (13) and
(15)

E(wa(s
′)) → E(κ) as s′ → ±∞.

Using the energy identity (7) for wa, we conclude that

∫ +∞

−∞

ds′
∫

RN

∣

∣

∣

∣

∂wa

∂s
(y′, s′)

∣

∣

∣

∣

2

ρdy′ = E(κ) − E(κ) = 0,

hence wa is just a function of y′. Using the bound (12) and Proposition 3.1, we see that
wa is constant. Using limits (13) and (15), this yields wa ≡ κ. Consequently, we obtain
from (9), (11) and (14):

w(y, s) = wa(y
′, s′)

(

1 + (1 − T )es
′
)1/(p−1)

= κ
(

1 + (1 − T )es
′
)1/(p−1)

.
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Since we have from (14) es
′
=

es−s∗

1 + es−s∗(T − 1)
, we get

w(y, s) = κ
(

1 + (T − 1)es−s∗
)−1/(p−1)

,

hence w(y, s) = κ if T = 1 or w = κ (1 + es−s0)
−1/(p−1)

if T > 1, where
s0 = − log(T−1)+s∗, which is the desired conclusion. This ends the proof of the Liouville
Theorem in the nonnegative case.
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