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Abstract: Dependability analysis is crucial to control the risks resulting from failures in 

modern industrial systems whose complexity increases by leaps and bounds. This paper 

proposes a modeling approach to construct dynamic models of fault-tolerant (FT) systems 

based on Stochastic Activity Networks (SANs). This approach allows the systematic 

inclusion of the diagnosis performances to make the dependability analysis. This SAN-

model is used jointly with the Monte Carlo simulation to make a study of the impact of 

diagnosis’ performances on the availability of a FT system when various redundancy and 

maintenance policies are employed. 
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1. Introduction 

To meet the productivity and safety requirements in industrial systems, many components are added to 

the original system or process in order to improve its dependability, such as supervision or diagnosis 

systems, control systems and reconfiguration or backup systems. This leads to the creation of autonomous 

and adaptive systems capable of making decisions in a given context. These systems become more and 

more complex. Consequently, the dependability analysis in those systems becomes a difficult task. The 

overall system, i.e. the one composed of the process and its supervision and backup subsystems, is called 

a fault-tolerant (FT) system. The role of the supervision system is to diagnose the occurrence of faults, 

i.e., to detect and localize the system’s faults. However, the backup system allows the reconfiguration 



when faults occur. These components are used to improve the system’s reliability. Nevertheless, they are 

not totally reliable and therefore, their performances should be taken into account when assessing the 

dependability of the FT system.  

In fact, fault detection is based on some diagnosis algorithm which defines a procedure to detect a failure 

based on some tuning parameters. The quality of detection depends on those parameters, and so are the 

actions needed to recover from faults like reconfiguration and maintenance. This shows that the 

performance of the diagnosis systems should be considered explicitly when evaluating the system’s 

dependability. In the same way, the dependability information and objectives could be considered in fault 

detection and isolation (FDI) procedures, to improve the decision making. 

In other words, the diagnosis issue and dependability analysis should be considered jointly in order to 

improve the system’s performances.  

There are few papers in the literature which deal with the interaction between supervision and 

dependability analysis and design. For example, in [1] the authors consider the sensor placement problem 

by combining a fault diagnostic observability study by signed directed graphs and reliability information 

on component failures probability. Weber et al [2] propose a new approach that improves the 

performance of the decision making in fault diagnosis by taking into account a priori knowledge of the 

system/components’ reliability.  Aslund et al [3], consider the safety study of FT control systems that 

include diagnosis subsystem. They propose an approach allowing the inclusion of diagnosis performance 

in the fault-tree analysis in order to evaluate its impact on the overall system’s safety. In the same way, 

Gustafsson et al, propose a method to optimize the detection threshold based on the previously cited 

approach [4]. Bonivento et al [5] suggest a procedure for evaluating reliability of diagnostic systems in 

terms of capability of not generating false alarms and missed diagnosis using statistical tools. Castaneda 

et al [6] address the problem of dynamic reliability estimation of hybrid systems modelled by stochastic 

hybrid Automata. Some diagnosis performances are included in their simulation study. Guenab et al [7] 



work on FT control systems and their reconfiguration. They propose a control strategy which incorporates 

both the reliability and dynamic performance of the system for control reconfiguration. 

The aim of this paper is, in one side to propose a modelling approach which systematically includes the 

diagnosis system, to make the dependability analysis of FT systems. For that, stochastic activity networks 

(SANs) are used. The major advantage of such formalism (i.e. SANs) is that it allows the modelling of 

dynamic systems by modelling all their possible states, but unlike tools such as automata and Markov 

processes, this can be done simply and in a compact manner. On the other side, the proposed modelling 

approach is combined with Monte Carlo simulation to assess the system’s availability and to study the 

impact of the supervisor performances. The use of simulation is justified by the fact that the considered 

systems may have non-homogenous components; active and passive redundancies, repairable 

components, they may include both discrete and continuous dynamics, etc. This makes the analytical 

formulation very difficult. The paper deals with repairable FT systems and is organized as follows: 

Section 2 is dedicated to the dependability analysis tools and presents a description of the stochastic 

activity networks in comparison to the well known Petri nets (PNs). The principle of fault detection in 

diagnosis systems and some of its performances are discussed in section 3. Section 4 is devoted to the 

presentation the proposed modelling approach. This procedure is applied on an automated thermal 

process in section 5. This section is also dedicated to the simulation study and results discussion.  Finally, 

the paper is concluded in section 6 where some perspectives are also given. 

2. Dependability analysis  

The dependability of a system can be defined as a property that allows its users to have a justified reliance 

on the service they are delivered. It is described by various non-functional properties such as: reliability, 

availability, safety and maintenability [8]. The present paper deals essentially with the availability factor. 

Availability analysis is performed to verify that an item has a satisfactory probability of being 



operational, so it can achieve its intended objective [9]. Formally, it is the probability that a system, under 

stated conditions, is operational at a given time.  

There is a variety of classical methods for reliability and availability analysis, which can be either static 

or dynamic, like fault-trees, Markov processes and Petri nets [10]. This section presents the stochastic 

activity networks (SANs). SANs are extension of Petri nets (PNs) [11]. A Petri net structure is a directed 

weighted bipartite graph defined by a 4-tuple PN=(P, T, Pre, Post), where T and P are two distinct sets of 

vertexes. T={t1, t2,…tn} is a set of transitions, and P={p1, p2, …pk} a set of places. A transition can be 

seen as an event or an action, and a place represents either a condition for the event or a consequence of 

it. Pre and Post are two applications, defined from the set of arcs to the set of natural 

numbers : and ( , ) :i jpre p T P T   ( , ) :i jpost T p T P   . They define the valuation of arcs 

relating places to transitions (Pre) and transitions to places (Post). A marked Petri net is a 5-tuple 

PNm=(P, T, Pre, Post, M0), where M0 is the initial marking of the PN. It is a k-dimension vector, where k 

is the number of places and models the system’s initial state. A marking vector could be written 

as: , where M(pi) is the number of tokens in place pi. 1 2( ), ( ),... ( ))T
kp M p M p(M M

The SANs were first introduced by Mogavar et al. [12], and used as a modelling formalism for the 

performance and dependability evaluation of a wide range of systems [13]. Hereafter is given an informal 

definition of SANs in comparison to PNs. 

- Places, as for Petri nets, can be seen as a state of the modelled system, and are represented 

graphically by circles (Fig. 1). 

- Activities, like transitions in Petri nets, they are of two kinds: timed and instantaneous. This 

duration can be either deterministic or stochastic. In Petri nets vocabulary, we say that transitions 

fire while in SANs vocabulary, activities complete. Each activity has a non-zero integer number 

of cases probabilities.  



- Cases probabilities allow the modelling of the uncertainty about the enabled activity to 

complete. Here, the term case is used to denote a possible action that may be taken upon the 

completion of an event such as a routing choice in a network, or a failure mode in a faulty 

system. Cases are graphically represented by small circles on the right side of an activity (Fig. 

1). Moreover, a case probability distribution can depend on the marking of the network when the 

activity completes.  

- Input gates are used to control the activation or enabling of the activities. An input gate is 

defined by two functions: the predicate and the input function. The enabling predicate of an 

input gate defines the condition which enables or activates the activity. It depends on the 

marking of the gate’s input places. An activity is enabled when the predicates of all its input 

gates are true. When the activity completes, the new marking of its input places is defined by the 

gate’s input function. Input gates are graphically represented by triangles, with the flat side 

inside connected to the activity via its input arc (Fig. 1). 

- Output gates are used to change the state of the system when an activity completes. It defines the 

marking change of the output places thanks to the output function. They are graphically 

represented by triangles, with the flat side inside connected to the activity via its output arc. Each 

input or output gate is connected to only one activity. 

  

 

 

Fig. 1  The graphical representation of SANs elements.  

An example of a SAN model with the previously cited elements is given in (Fig. 2). The predicate 

function of the input gate I_G expresses the enabling condition of the timed activity Timed_A. This latter 

is enabled if and only if M(P1)=4 and M(P2)=2. When this predicate is true, the activity Timed_A will 



complete after a delay T which is the time duration of the activity. The input function of I_G specifies the 

new marking of the places P1 and P2 after the completion of Timed_A, in this example, M(P1)= M(P1)-2 

and M(P2)= M(P2)-1. The output function of the output gate O_G defines the marking of place P3 after 

the completion of Timed_A, here: M(P3)=2*M(P3). The instantaneous activity I_A has three cases 

probabilities, each related to one place. These probabilities are fixed in this example to P(Case1)=0.3, 

P(Case2)=0.2 and P(Case3)=0.5. This means that I_A has for example 50% chances to complete through 

case3 and a token will be added to place P2. As said before, these probabilities can depend on the 

marking of some places like P3, which shows the modelling power of the SANs. 

 

 

 

Fig. 2  Example of a SAN model with its previously defined elements.  

3. Diagnosis analysis: performance measures 

The diagnosis system is a key component in fault-tolerant systems. It allows the detection of faults or 

abnormal functioning of components under supervision. In FT systems, the fault detection and isolation 

(FDI) allows reactivity, such as reconfiguration, to avoid losing the system’s function, safety, etc. 

Consequently, fault detection and isolation (FDI) procedures are essential to improve system’s 

dependability and different approaches are proposed in the literature to design such procedures (see for 

example [14]).  

One common way to perform fault detection is to define a set of tests quantities ri, called residuals. A 

residual is defined as the difference between the measured value of some system’s variables and the 

expected ones, estimated from a system’s fault-free model as the observer. In fault-free situations, these 

residuals should be equal to zero and non-zero otherwise. In practice, systems operate in noisy 

environment. This may affect the residuals and thus, the decision making. Consequently, the 



residuals are compared to some tuning parameter called the thresholds instead of zero. If then 

the test is said to alarm.  

ir iJ ii Jr 

In the residual evaluation problem and according to the statistical theory: the hypothesis “component is 

Ok” is called the null hypothesis of a test and is denoted [2, 3]. When the supervised component is Ok 

and the test produces an alarm, is called false alarm (FA). Not alarm when the supervised component is 

down is called missed detection (MD). As a conclusion, the residual analysis will produce, according to 

whether the null hypothesis is true or not, three results: good detection , false alarm  and missed 

detection  as shown in table 1. 

i

0
iH

)(D )(FA

)(MD

0

iH is true 0
iH is false 

0
iH is accepted:  ii Jr  Ok  iMD  
0
iH is rejected:  ii Jr  iFA  iD  

 

Table 1. Definition of the diagnosis decisions  iii MDFAD and,
 

The probability of the events FAi and MDi is: 

)()( 0 trueHJrPFAP iiii   and )()( 0 falseHJrPMDP iiii 
                    

  

These probabilities represent measures of the diagnosis performances and the threshold value adjusts the 

compromise between a small FA probability FAP  and MD probability MDP . 

4. The SAN modelling of diagnosis performances for dependability analysis of FT-systems 

In the reliability literature, it is always assumed that the detection is made with certainty however; as seen 

before, the dependability of a system depends on the quality of the detection. Indeed, FDI procedures 

have a direct impact on the actions made to recover from faults. The dependability of the system is thus 

tightly related to the performances of the diagnosis system. This section proposes a procedure to model 

FT-systems using SANs, with a systematic inclusion of the diagnosis performances.  



The objective of such modelling is to make reliability/availability analysis. Only components’ failures are 

considered in the paper. 

4.1. SAN-modelling of physical components  

Each physical component jC of the system can be modelled by two places: ,up down

j jC C  where a token on a 

place up

jC

( j

 (resp. ) means the component is up (resp. failed or down). The marking of these places 

(i.e.

down

jC jC

)upM C and ) satisfies the inequality :( down

j )M C ( ) ( )up down

j jM C M C 1  . The two places are linked to 

each other by a timed activity called " "jfail representing the failure of jC (Fig. 3). This duration can 

follow any probabilistic distribution such as the exponential distribution function.  

If a component is repairable, maintenance action can be modelled by some timed activity connected to 

place 

jC

up

jC to add a token in it when the component is repaired. This activity will not be connected to place 

 but to the diagnosis SAN sub-model since maintenance is made only if the supervision system 

diagnoses the failure. Indeed, if the detection is made instantaneously and with certainty, the activity 

modelling the repair action will connect place to 

down

jC

down

jC up

jC as for automata or Markov processes. But as 

explained before, this repair action depends on the quality of detection. 

 

  up
jC

 

 

 

4.2. SAN-modelling of a backup system  

A backup component/system is modelled as any physical component by two 

places{ , }up down

Backup BackupC C excepted that the initial marking of these places depends on the redundancy policy: 

down
jC

jfail  

Fig. 3  The SAN modeling of a physical component  jC



0

1, for hot active redundancy
( )

0, for cold passive redundancy
up

BackupM C


 


. 

4.3. SAN-modelling of the diagnosis system  

The diagnosis system can be modelled as a generator of three mutually exclusive 

events: D , FA and MD (Cf. §3). Knowing the probability of these, the supervisor could be modelled by 

a place, called , with an initial marking of one token (i.e.ALGO 0 ( )M ALGO 1 ). The place ALGO has 

an output activity, named Diag , with four cases probabilities (Fig. 4). Each place in { , 

, } is related to  one Case (k=1,3) and models the events D, MD and FA respectively. For 

a specific network’s marking, these cases have the probability of their associated event, i.e., PMD, PFA and 

PD respectively. is added only to satisfy the condition

DetectionP

MDetectionP FAlarmP k

4Case 4

1 ( )kk P Case 1 (where is the 

probability of case k) and means no event is produced by the supervisor. Case4 is connected to the 

place  to conserve the token in it when completes through this case in order to activate 

“Diag”. 

(P Ca )kse

ALGO Diag

 

 

 

ALGO

MDetectionP

 

 

 

Notice however, that these probabilities depend also on the markings of the SAN model associated with 

the supervised component/system. Consider for example that a component C is supervised. Then the 

probability of each case is given by the following: 

k

 

Case1 
Diag 

Case2 
FAlarmP

DetectionP

Case3 
Case4 

Fig. 4  The SAN-modelling of the diagnosis system and its performance 
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The SAN-model of the diagnosis system satisfies the following: 








1)()()()(

1)(0

DetectionFAlarmMDetection PMPMPMALGOM

ALGOM

                                                                  

4.4. The global SAN-modelling  

In the final SAN-model, each place in  FAlarmMDetectionDetection PPP ,,  will be related, using logic operators 

like AND and OR, to activities of other SAN sub-models, like the components’ models, to activate them. 

For sake of clarity, the combination of such sub-models will be explained on an example in the following 

section. 

Notice here that the SAN-modelling of the system’s components is quite similar to the automata 

modelling since the places of the components’ SAN-models are binary and denote the components’ states. 

But when automata are used, the overall model states number will explode exponentially according to the 

components number.  

5. Case study 

This modelling approach is illustrated hereafter on a simulation example of a heating water process (Fig. 

5.a). The aim of such a thermal process is to provide water at a given temperature with a constant flow 

rate. From the automatic point of view, the process’s inputs are the water flow rate Qi and the heater 

electric power P and the outputs are the water’s temperature T and flow rate Qo. The system has two 

actuators: the valve and the resistors (R1 and R2), and three sensors to measure the temperature 

(SensorT), the flow rate (SensorF) and the water height (SensorH). Since there is a physical relationship 

between the flow rate and the water’s level [2], the flow and height sensors are considered in redundancy. 



The flow controller can use both of them. A diagnosis system monitors the flow sensor which makes the 

reconfiguration to the height sensor possible when an alarm is produced. 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. The SAN modelling of the process 

The process described before is composed of two control subsystems: temperature control and flow rate 

control systems. The functional decomposition and analysis of this automatic system can be made 

according to this two main control functions (See [15, 16, 17] for details on functional decomposition and 

analysis). To achieve any control function, an automated system should be equipped with actuators, 

sensors and controllers. Communication network and software are not considered in this paper. Thus, if 

one of these components fails, the automated system will not deliver correctly or not at all the service it 

was designed for (Fig. 5.b). Based on this idea of functional decomposition, the SAN-model of this 

automated process can be derived easily as shown on (Fig. 6). 

PID 
Controller

(a) Heating water process (b) Example of a functional decomposition of the 
process according to its flow control function 

Fig. 5  The controlled heating water process and an example of its functional analysis. 
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For sake of simplicity, The SAN-model construction will be explained only on the flow rate control 

subsystem, where the diagnosis acts. The temperature control system is considered as a component with 

its own failure rate Temp . It is modelled in (Fig. 6) by places “ ” and 

“Te ” while the timed activity “

_ _Temperature Ctrl Ok

_mperature Ctrl _ Ko _Fail TC ” models its failure. According to §4, 

every component in this SAN-model is modelled by a couple of places: “ ” for 

theUp state and “ ” for the state. 

_Component Ok

_nt KoCompone Down

The supervised component, here the flow sensor , is assumed repairable and can be maintained 

each time the supervisor alarms. This action is modelled by the timed activity “ ” and place 

“

SensorF

Repair

Maint_SF ”. This latter is connected to the instantaneous activities “ Maint_1 ” and “ Maint_2 ”. The 

activity “ Maint_1” can be assimilated to a preventive maintenance action since its input place is 

“ FAlarm ” which models a false alarm. While “ Maint_2 ” has two input places: “ ” and 

“ ” which models the failure detection. Activity “

_ KoSensorF

Detection Maint_2 ” is used in an AND-logic way (i.e. 

places “ ” and “ ” should be marked together) and can be assimilated to a 

corrective maintenance action. When the diagnosis system produces an alarm, either correct or false, the 

FT-system will switch from the flow sensor ( ) to height sensor ( ). When this latter is 

used in cold passive redundancy, the place “ ” is connected to activities “

_nsorFSe Ko Detection

SensorF

_ensorH O

SensorH

S k Maint_1 ” and 

“ Maint_2 ” and will be marked each time an alarm occurs. The place “ _FlowMea

SensorF

sure Ko

Sensoring

” models the 

failure of the sensing part in the flow control system. It is connected to activities “ ” and 

“ ”: the first one models the fact that is turned-off for maintenance and its 

backup is down, and the second one models the missed failure of .  

_ Ko

_SF Ko

Sens

SensorF

orH

The entire flow control system fails (place “ _ _Flow Ctrl Ko

1VC

”) if the valve or the controller or the 

sensing loop is down. This is modelled by activities “ ”, “ ” and “ ” respectively. These 2VC 3VC



activities are connected to place“ _ _Flow Ctrl Ko

_System Ko

mp

” according to the logical operator OR. In the same 

way, the FT-system fails (place “ ”) if the temperature control system or the flow control 

system is failed (resp. activities “Te ” and “ Flow ”). Then the whole FT-system can be maintained 

through the timed activity “ Maintenance

1

” and tokens will be added to all places of type 

“ ” if and only if their marking is null (i.e. the component is down). This condition is 

expressed in the output gate “ OG ”. Since place “ ” can receive more than one token, the 

input gate “

_Component Ok

1

_stem KoSy

IG ” is used to avoid making a maintenance more than once at a time. The input function of 

gate “IG1” is: M(System_Ko)=0.  

 

 

 

 

 

 

 

 

 

 

 

To study the impact of the diagnosis performances and recovery actions on the availability of the 

supervised process, four simulations SAN-models are designed with various redundancy and maintenance 

policies, using Möbius software tool: 

Fig. 6  SAN-model of the water-heating process (Model B). 

- Model A (P&NM): SensorH is in passive cold redundancy and SensorF is not maintained; 

- Model B (P&M): SensorH is in passive cold redundancy and SensorF is maintained (Fig. 6);  



- Model C (A&NM): SensorH is in active redundancy and SensorF is not maintained; 

- Model D (A&M): SensorH is in active redundancy and SensorF is maintained;  

5.2. Monte Carlo simulation 

Monte Carlo simulation is often used to assess the dependability factors estimation. In MC simulation, a 

model is solved by simulation and is executed multiple times using different randomly generated event 

streams. Each execution generates a different trajectory through the possible event space of the system, 

called history. To get statistically significant estimations, it is necessary to generate many trajectories.  

Möbius computes confidence intervals as the observations are collected to give an estimate of the 

accuracy of the calculated estimates. When the desired confidence level for every studied variable is 

reached, the simulator will stop. The confidence level specifies the desired probability that the exact value 

of the measured variable will be within the specified interval around the variable estimate. However, the 

confidence interval specifies the width of the acceptable interval around the variable estimate. In this 

study, simulations are conducted over at least 5.104 and at most 8.105 histories. Each history has a 

duration Th of 20000 time units. The simulator stops if the maximum number of histories is reached, or if 

the discrepancy between the results is less than 5% with a confidence level of 95%, i.e. 95% of the results 

are contained within an interval of 5% around their mean value.  

Table 2 shows the values of the timed-activities distribution function parameters used in the simulation 

study. Here, the failures of components follow an exponential distribution with a constant ratejC
jC . 

Exponential distribution Uniform distribution 

Temp Valve Ctrl SensorF SensorH 1 1 2 2 

2.10-4 5.10-4 3.10-4 5.10-3 5.10-3 10 25 20 100 

Table 2. Distribution functions of the timed activities. 

In the simulation models, it is supposed that a maintenance operator and resources are immediately 

available when a maintenance action is needed. Its duration is supposed to follow a uniform distribution. 



The parameters 1 and 1 (resp. 2 and 2) denote the lower and upper bound of the uniform distribution 

associated with the timed activity Repair for the supervised component (resp. Maintenance for the whole 

system). The maintenance action may be only an inspection action since false alarms are possible.  

5.3. Simulation results 

The goal of these simulations is to study the impact of the diagnosis system on the mean availability of 

the FT-system. Many simulations were conducted with different values of PFA, PMD and PD. For that, PD 

is set to 80% while the values of PFA and PMD are varied between 1% and 19%. The hypothesis of 

certainty fault detection is also considered (i.e. PD=1). Even if it’s false, this is still widely used in the 

literature.  

The statistics on the time occupation of place “System_Ko” are used to calculate the mean availablitiy ‘A’. 

If TSystem_Ko is the mean time occupation of place “System_Ko”, then: _(1 ) 100System Ko

h

T
A

T
   . 

The simulations were made on an Intel® core™ Duo CPU with a clock speed of 2.26 Ghz. The 

simulation execution time varies, according to simulation data and model, from few seconds to about 50 

minutes. 
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Fig. 7  The mean availability evolution according to the false alarm rate for: 

model A (P & NM), model B (P & M), model C (A & NM) and model D (A & M). 



The mean availability results for six different values of PFA and PMD are reported in (Fig. 7). It can be seen 

that globally for all the models, excepted model C, the mean availability increases as the false alarm rate 

increases. This growth is more significant when maintenance actions are provided to the supervised 

component (Models B and D). In addition, these models give better results than models A and C. This 

shows that maintaining the supervised component improves the availability of the whole system. This 

action is possible thanks to the diagnosis.  

The model B, where passive cold redundancy is employed gives the best mean availability. 

Indeed, the backup sensor (SensorH) is turned-on only when the supervisor alarms, while the supervised 

sensor is tuned-off to be maintained. Each time this latter is repaired, the system switches back to the 

principal sensor. The backup sensor is then tuned-off. Such a redundancy allows the persistence of the 

liquid’s flow measurement part and increases its life-time. However, when the backup sensor is used in 

active redundancy, even if the information provided by it is not used in the control loop, the sensor is still 

functioning, and may fail as well as the principal sensor. This is why the model D gives a lower 

availability than model B. Indeed, let’s consider the contribution in per cent of the flow sensing part, to 

failure of the system in comparison to the other components of the flow control system (Fig. 8).  
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 Fig. 8  The cumulative contribution to the failure of the FT-system of the flow sensing part ( ) in 

comparison to the actuating ( ) and control ( ) parts (Models B and D). 
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Here, of (Fig. 8) are related to their corresponding activities VCj  of (Fig. 6) and express 

the cumulative contribution of the number of times that these activities have completed leading to the 

system’s failure. The contribution of the flow sensing part, i.e. , is more important when active 

redundancy is employed (Fig. 8.a) than passive redundancy (Fig. 8.b). For both models B and D, this 

contribution decreases as false alarm rate increases. 

)3,1(, jVC j

3VC

These results show that the combination of the redundancy policy together with the maintenance policy 

makes one model better than another. They also show that in the studied system, it is better to over detect 

faults than to miss them, since the availability is improved as the false alarm probability grows. Indeed, 

when the supervisor alarms, even if the fault is not real, actions like the reconfiguration and repair of the 

supervised sensor will increase the system’s functioning time. Maintaining a non-faulty component can 

be assimilated to a preventive maintenance action. Such an action will contribute to reduce the total 

number of repair actions on the whole system as shown in (Fig. 9). Finally, the hypothesis which 

considers that failure detection is made with certainty is too optimistic as the system’s availability is 

greater than in any other case. In Figs 7 to 9, it corresponds to the case where the FA rate is null.   
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Fig. 9  The total number of repair actions of the FT-system according to the false alarm rate 
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6. Conclusion 

This paper proposes a method to construct dependability models for fault tolerant systems using the 

Stochastic Activity Networks. Combined with Monte Carlo simulation, these models allow the evaluation 

of dependability factors by including events associated with the supervision system and maintenance 

actions.  

This modelling approach was tested on an example of a heating process. A simulation study is made for 

this FT system, where different redundancy and maintenance policies were employed. Monte-Carlo 

simulation has been used to evaluate the system’s mean availability and to study the impact of diagnosis 

performances, as well as the redundancy and maintenance policies on the system’s availability.  

As said in section 3, the diagnosis performances depend on the design parameter called threshold. The 

next step of this research work is to study the direct impact of this parameter on the system’s 

dependability. For that, there is a need to model the physical process and its supervisor, and to incorporate 

this diagnosis model into the whole dependability evaluation SAN-model. This may help for choosing the 

design parameters with respect to the dependability objectives.  
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LIST OF CAPTIONS 

 

Fig. 1  The graphical representation of SANs elements.  

Fig. 2  Example of a SAN model with its previously defined elements. 

Fig. 3  The SAN-modelling of a physical component Cj. 

Fig. 4  The SAN-modelling of the diagnosis system and its performance. 

Fig. 5  The controlled heating water process and an example of its functional analysis. 

Fig. 6  SAN model of the water-heating process (Model B). 

Fig. 7  The mean availability evolution according to the false alarm rate for: 

model A (P & NM), model B (P & M), model C (A & NM) and model D (A & M). 

Fig. 8  The cumulative contribution to the failure of the FT-system of the flow sensing part ( ) in 

comparison to the actuating ( ) and control ( ) parts (Models B and D). 

3VC

1VC 2VC

Fig. 9  The total number of repair actions of the FT-system according to the false alarm rate for model A 

(P & NM), model B (P & M), model C (A & NM) and model D (A & M). 



NOTATIONS 

 

 

AN: Activity Network. 

upC : Component C is up. 

downC : Component C is down. 

D: Detection. 

FA: False Alarm. 

FT: Fault-Tolerant 

M: Marking of a place/SAN. 

MD: Missed Detection. 

DP : fault detection probability (probability of event D). 

FAP : false alarm probability (probability of event FA). 

MDP : missed detection probability (probability of event MD). 

S.A.D.T: Structured Analysis and Design Technique. 

SAN: Stochastic Activity Network. 

 

 


