
HAL Id: hal-00701110
https://hal.science/hal-00701110v1

Submitted on 24 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware Models for Location-Based Services : a
Survey

Ana Roxin, Christophe Dumez, Maxime Wack, Jaafar Gaber

To cite this version:
Ana Roxin, Christophe Dumez, Maxime Wack, Jaafar Gaber. Middleware Models for Location-Based
Services : a Survey. International Conference on Pervasive Services (ICPS), Jul 2008, Sorrento, Italy.
ISBN: 978-1-60558-206-1, p.35-40, �10.1145/1387249.1387255�. �hal-00701110�

https://hal.science/hal-00701110v1
https://hal.archives-ouvertes.fr

Middleware Models for Location-Based Services: A Survey

Ana-Maria Roxin

SeT, UTBM

90010 Belfort, France

+33384228502

ana-maria.roxin@utbm.fr

Christophe Dumez

SeT, UTBM

90010 Belfort, France

+33384583038

christophe.dumez@utbm.fr

Jafaar Gaber, Maxime Wack

SeT, UTBM

90010 Belfort, France

+33384583038

gaber@utbm.fr

maxime.wack@utbm.fr

ABSTRACT

Embedded computing systems, sensor networks, LBS pervasive

deployment environments, and worldwide computing systems

have common characteristics. They are large scale, decentralized

and dynamic networks, and needing context-awarness to

automatically adapt their behaviour and continue their execution

despite network dynamics. Identifying innovative software

engineering approaches that take into account all the above

mentionned characteristics is a real challenge. This paper focuses

on LBS applications and the middleware models required for

supporting their operation and characteristics.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online Information

Services – commercial services, data sharing, web-based

services.

General Terms

Documentation, Performance

Keywords

Context-aware systems, pervasive computing, ubiquitous

computing, LBS, LBS middleware, middleware model,

publish/subscribe model, subject space model, tuple space model.

1. INTRODUCTION
A location-based service (LBS) is defined by the Open Geospatial

Consortium as “a wireless-IP service that uses geographic

information to serve a mobile user” [1]. A LBS takes into account

various user information (context information, past and present

user locations, user profile, etc.) in order to deliver information

that meets at the most the user’s needs.

The design and development of complex distributed LBS

applications always call for identifying a coordination model that

facilitates the overall design and development process. In the case

of LBS, such a coordination model should be able to facilitate

adaptive self-organization of activities, and should be

complemented by a proper middleware to support the execution

of distributed applications.

For distributed LBS applications, the two main scopes of a

coordination model and the associated supporting middleware are

to:

• Provide suitable means to promote context-awareness

(contextual knowledge)

• Promote location information both in interactions and in the

acquisition of contextual information.

This paper presents LBS characteristics and main middleware

models that support the identified LBS characteristics.

This paper is organized as follows: in section 2, basic LBS

applications are illustrated in order to extract main LBS

characteristics and the corresponding middleware requirements.

Section 3 presents the LBS communication model. LBS

middleware models are described in Section 4. Finally,

conclusion and future works are given in section 5.

2. LBS Application Characteristics
In the LBS context, the role of a middleware is to offer services,

models and abstractions implementing the coordination of mobile

users, the correlation of information, and information

dissemination [3]. LBS present specific requirements and

implications for middleware platforms, defined by the LBS

applications characteristics. Three main types of LBS applications

are presented below. The main LBS application characteristics are

identified right after.

2.1 LBS applications examples

2.1.1 Enquiry and information services
The objective of such services is to provide the user with nearby

points of interest.

A well-known example would be a service that locates the

restaurants near the user’s current location. This kind of service

must take into consideration the user’s preferences, like the type

of food he wants, the price rannge, etc.

2.1.2 Traffic telematics
Traffic telematics is a service aiming at supporting car drivers

with various services related to their vehicles.

Such LBS is intended to exploit data exchange between a service

provider and vehicles in order to enhance traffic information and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

AUPC’08, July 6, 2008, Sorrento, Italy.

Copyright 2008 ACM 978-1-60558-206-1/08/07...$5.00.

improve traffic management processes. They can deal with

navigation, diagnostics of malfunctions, warning messages, etc.

2.1.3 Fleet management and logistics
Traffic telematics deal with single, autonomous vehicles. Fleet

management applications must manage and coordinate fleets of

several vehicles. Generally, LBSs for this kind of applications

must obtain the position of a vehicle, place it on a map and

display this information to the user.

LBSs can also support each form of logistics as they allow

supporting faster transportation, different transportation modes,

and development of fallback scenarios in case of failures.

2.1.4 Others
Several other applications exist, but they won’t be presented in

this article. More information about LBS applications can be

found in [2]

2.2 LBS characteristics
From the above presentation of applications, the following LBS

characteristics can be extracted. These characteristics are

independent from each other and one application can implement

more than one characteristic. These characteristics must be taken

into account when implementing the middleware technology [3].

2.2.1 Criterion 1 – Information delivery
According to the information delivery policy, two types of

applications exist:

• Push-based applications rely on the traditional publish/subscribe

paradigm, where information is pushed to the user, based on a

given event occurrence or a given condition trigger [6].

• Pull-based applications imply that the user polls the server in

search for information updates. It is the user who must request

information from the server.

2.2.2 Criterion 2 – User profile gathering
As mentionned earlier, LBS applications benefit from the

existence of user profiles, in that they allow personnalized

services. There are two ways in which the user profile may be

gathered:

• Direct mode – the user’s profile is obtained directly from the

user.

• Indirect mode – the user’s profile is obtained from third parties

or by analyzing the user’s interaction pattern.

2.2.3 Criterion 3 – Interaction scenarios
The interactions between the user and the service provider depend

on whether these are mobile or stationnary entities. A stationary

entity has a well-defined and invariant location. Four interaction

scenarios are possible:

• Both the user and the service provider are mobile – this applies

in the case of mobile ad-hoc location-based applications, notably

for friend finder applications.

• Only the user is mobile – notably in vehicle tracking

applications and targeted adevrtising.

• Only the service provider is mobile – for example for an

automatic airport check-in.

• Both the user and the service provider are stationnary – in this

case no dynamic management is needed for location information.

2.2.4 Criterion 4 – Statefulness of interaction
There are two types of interaction depending on whether previous

locations of the user are saved or not:

• Stateful interactions characterize applications in which the LBS

maintains state across multiple service requests [6].

• Stateless interactions chracterize applications where each

request is processed independently from other requests [6].

2.2.5 Criterion 5 – Sources of information
An LBS integrates information from different sources. There are

mainly two types of information sources:

• Static information sources mostly concern POI databases or

traditional GIS.

• Dynamic information sources vary acording to user’s position,

the time of day. One may cite traffic information or wheather

forecasts.

2.2.6 Criterion 6 – Sources and accuracy of location

information
Figure 1 illustrates the main existing positioning techniques,

depending on two main criterions [4, 7]:

• The site performing measurments and position calculus,

1. Network-based positioning – the network performs position

calculus.

2. Terminal-based positioning – the terminal performs position

calculus.

3. Terminal-assisted positioning – the terminal only performs

measurements and then forwards the results to the network, which

performs position calculus.

• The type of network on which they are implemented and

operated.

1. The satellite infrastructures cover large geographical areas

and are achieved by stand-alone infrastructures of several

satellites. Satellite positionning is always terminal-based.

2. The cellular infrastructures refer to cellular networks (GSM,

GPRS, etc.). Cellular networks operators use several methods to

obtain the position of a mobile device.

3. The indoor infrastructures are based on radio, infrared or

ultrasound systems, deployed in indoor environments and having

limited communication range.

Figure 1. Existing positioning techniques [4].

2.3 LBS Middleware characteristics
Based on the above criterions, the following requirements apply

for LBS middleware platforms:

• Support disconnected operations due to user’s mobility;

• Support dynamic network topology;

• Allow to take into account a large number of content providers;

• Support various content formats (images, videos, texts, etc.) ;

• Support various notification channels and delivery protocols;

• Support user privacy.

3. LBS Middleware Characteristics
An LBS middleware serves as an interface between users with

mobile devices, the Internet and network operators. It offers a

single location-based application portal, which means several

individually customizable services. An LBS middleware must

hide all aspects concerning the operating system, the network

protocols, the interacting sub-systems, etc.

As defined in [5], we consider that an LBS has three parts, each of

them characterizing a type of data:

• Location data part,

• Geographic data part,

• Bussiness data part.

Based on this assumption, we define the communication model.

This model includes the following layers:

• The location information layer

• The middleware layer

• The business-specific layer

The location information layer integrates location and geographic

data in order to compute the location of the user’s mobile device.

Location data is integrated by means of a Position Determination

Equipement (defined in [9]). Geographic data is integrated by

means of a Geographic Information System (defined in [5]).

The business-specific layer integrates business-specific and user-

specifc data in order to deliver highly targeted and detailed

information to the user [5]. The ability to provide this user-

specific, contextual content is a “key service differentiator” [8].

A middleware’s role is to reduce “the complexity and the

heretogeneity of distributed infrastructures” by providing an

easier programming environment [7]. Therefore, the middleware

layer comes between the two previous layers, as it serves as an

interface between these layers. The LBS integration is therefore

easier. The middleware layer is connected to the network by

means of a communication module and manages the user’s LBS.

4. Middleware Models for LBS
As presented earlier, there is no unique middleware model. Each

LBS middleware differs from the others in that it offers different

services to the end user. In this section, we present different

middleware models, each of them showing evidence of a wide

spectrum of different characteristics.Subsections

4.1 Publish/Subscribe Models
Publish/subscribe models rely on the following principle:

producers publish events and consumers subscribe to the events

they are interested into [10]. The main component of the model is

the event broker for it manages subscriptions and forwards events

to subscribers.

Several data models exist for publish/subscribe systems. The data

model depends on the subscription language implemented. Here is

a non-exhaustive list of existing data models [6]:

• Topic-based models define subscriptions as classes of events

groupped by subjects or themes. The publication of an event is

directly associated to a subscription by means of tags.

• Content-based models define subscriptions as predicates (or

event filters or constraints). A publication is a list of attributes. A

publication matches a subscription if the associated predicate

matches an attribute value.

• Type-based models define subscriptions as procedure/function

calls allowing recording user’s subjects of interest.

• Subject spaces models make no difference between

subscriptions and publications. Moreover these models are

stateful. This is why these models will be discussed separately

below.

The publish/subscribe models have the following characteristics

[10]:

• Asynchronous – the event broker ensures that subscribers and

publishers operate in an asynchronous way.

• Multipoint – all subscribers with the same interests receive the

same publications.

• Anonymous – publishers and subscribers do not need to know

each other’s identity.

• Implicit – the list of event receivers is implicitly determined by

event subscriptions.

• Stateless – an event doesn’t last in the system after its

publication.

This type of model allows the deployment of applications where

information data is matched acording to a given set of constraints.

In order to apply this model to LBS applications, one must

integrate location information of both publishers and subscribers.

4.2 Subject Space Models
Subject space models structure information into system metadata

spaces, called subject spaces [11]. Each subject space represents

the metadata of a publish/subscribe system. A subject space

allows describing values and relationships between publications

and subscriptions. This allows classifying publications and

subscriptions into categories, as subject spaces group similar

publications and subscriptions.

4.2.1 Subject space representation
Each subject space is represented as a tuple:

σ = (Dσ dimensions of σ, Vσ value set allowed inside σ)
Each dimension is also defined as a tuple:

Dσ = (Dimension ID, Data type of the dimension)

The data types allowed for a given dimension form the

dimension’s domain of values, dom(Dσ).

4.2.2 Subject space regions
A subject space is therefore multi-dimensional with several data

regions [11]. A subject space region is also a tuple:

R = (CR set of constraints for R, Vσ, R Values of R in subject space

σ)
The subject space model defines two types of regions:

• Interest regions – a subscriber’s set of interest values in a given

subject space.

• Object regions – values provided by a publisher in a given

subject space.

4.2.3 Subscriptions and publications
Interest regions and object regions are used to define

subscriptions and publications [11].

A subscription is defined by constraints. The subject space model

represents it through a tuple:

S = (IS Interest regions for S, fS subscription filter defining the

object regions corresponding to the constraints)

The constraints for the subscription S are the interest regions for

S.

A publication aims at delivering content to a group of subscribers.

The subject model represents it through a tuple:

P = (OP Object regions for P, fP publication filter defining the

interest regions corresponding to the constraints)

The constraints for the publication P are the object regions for P.

4.2.4 Matching a publication to a subscription
In order to match a publication P to a subscription S, two

conditions must be met [11]:

• Some object regions of P must satisfy fS,

• Some interest regions of S must satisfy fP.

4.2.5 Subject space modelling for LBS
Applied to LBS, subject space models define the content

providers as publishers and the end users as subscribers. A user’s

profile and preferences are articulated as subscriptions.

The user profile information is represented as a user profile

subject space σuser_profile having the following dimensions’ tuple:

Duser_profile = {(last_name, string), (first_name, string), (gender,

string), (profession, string), (age, integer)}

Therefore, the user profile subject space is:

σuser_profile = {(last_name, Dupont), (first_name, Robert), (gender,

Male), (profession, Teacher), (age, 37)}

The user preferences are also represented as a user preferences

subject space σuser_preferences:

σuser_preferences = {(food, Chinese), (lunch_time, 2PM),

(lunch_budget, 25), (min_fuel_level, 10), (music, rock)}

The subject space of a restaurant, σrestaurant, has a price dimension

that gives the price of a lunch menu, for example.

The user’s location luser and the restaurant’s location lrestaurant are

represented as regions of a location subject space σlocation.

In order to receive an alert when, at lunch time, the user comes

near a Chinese restaurant which menus cost less than 25€, the

following subscription S must be formulated:

S = (IS, fS), where:

IS = {luser, iuser_preferences}, where luser and iuser_preferences are interest

regions in σlocation and σuser_preferences respectively. The set of

constraints for the iuser_preferences interest region are:

Ciuser_preferences = {food = Chinese, price<25}

fS = {Object region O | � lrestaurant , ouser_preferences � O: |luser -

lrestaurant| < min_distance AND ouser_preferences enclose iuser_preferences}

A region A encloses a region B when all values of B are enclosed

by region A:

Vσ, A ∩ Vσ, B = Vσ, A

A restaurant that would like to send alerts to people in its vicinity

must make the following publication:

P = (OP, fP), where:

OP = {lrestaurant, orestaurant, ouser}, where lrestaurant, iuser_preferences are

interest regions in σlocation and σrestaurant respectively. The set of

constraints for the user’s and the restaurant’s object regions are:

Couser = {food = Chinese, price<25}

Corestaurant = {food = Chinese, price=15}

fP = {Interest region I | � luser, iuser_preferences � I: |luser - lrestaurant| <

min_distance AND iuser_preferences overlap orestaurant}

A region A overlaps a region B when: Vσ, A ∩ Vσ, B ≠ �

As presented above, the subject space model provides flexible

semantics that make it very easy to apply to a large panel of LBS

application scenarios. This model proves to be better suited for

LBS modelling than the previous publish/subscribe model in that

it allows stateful interactions.

4.3 Tuple space model

4.3.1 Model presentation
A tuple is defined as vector of typed values/fields. A tuple is a

shared, associatively-addressed memory space.

A tuple space is a logically shared memory used for data

exchange and synchronization control among the interactive

components of a program.

Accessing the tuples on the tuple space is done in an association

manner: tuples are associatively addressed by pattern matching

through templates.

The following operations can be performed on tuples [12]:

• Place a given tuple into a given tuple space through a “write”

primitive.

• A tuple is read from a tuple space through a “read” primitive.

• A tuple is extracted from a tuple space through a “extract”

primitive.

The main advantages of tuple space models are [6]:

• Destination uncoupling – an agent needs no knowledge of the

future use of a tuple it just created.

• Time uncoupling – tuples have their own life span.

• Flexibility – a tuple space doesn't restrict the format of the data

it stores.

• Scalability – tuple operations are completely anonymous.

The tuple space model was originally introduced by Linda, which

is a shared data space model of coordination and communication,

once very popular in parallel programming. This model is now

gaining interest in the domain of distributed computing and multi

agent systems. The Linda model allows process communication

through a repository of elementary data structures, which is called

tuple space [12].

A tuple is a generic “array” that can hold an arbitrary number of

arbitrary objects. Each tuple is defined as a sequence of fields.

The operations available for tuples have been presented above.

A tuple is extracted from a tuple space through a “extract”

primitive. Still as tuples are anonymous [12], their selection is

done through templates/patterns, which are the argument of the

“extract” primitive. The fields of a template/pattern can contain

[12]:

• Actuals, which are values;

• Formals, which must be matched to actuals in order to select a

given tuple from the tuple space.

The tuple retrieval primitives can be blocking or non-blocking:

• When no matching tuple is found in the tuple space, blocking

primitives are suspended until a tuple matching the given

template/pattern is found,

• When no matching tuple is found in the tuple space, non-

blocking primitives return a “tuple not found” value.

The following figure illustrates the communication pattern

defined by the tuple space model.

Figure 2. Tuple space model communication pattern.

4.3.2 Tuple space modelling for LBS
In an LBS application, the content providers and the end user

publish and extract tuples from one or more tuple spaces. The

tuple space model is well adapted to the characteristics of LBS

pervasive deployment environments because:

• Tuple-based models allow temporal and spatial decoupling of

communication processes, in other words they support

spontaneous interactions and coordination activities [6].

• Tuple space models can store both application data and

contextual data; therefore tuple-based models can be seen as a

unified programming interface that allows accessing both data

types.

• Tuple space models allow stateful interactions [6].

Still, the tuple space models have several specifications that don't

fit the characteristics of LBS pervasive deployment environments.

The two main lacks are:

• Tuple-based models only allow matching semantics that

compare exact values of tuple fields. LBS pervasive deployment

environments need applications that can deal with uncertain

queries, like “find restaurants near me”.

• LBS pervasive deployment environments also imply

aggregation of data from multiple sources, with different formats

and different levels of abstraction. The tuple-based models only

allow storing raw data into tuple spaces.

Therefore, the tuple space model must be “upgraded” to support

LBS pervasive deployment environments' characteristics [12].

5. Conclusion and future work
The main goal of this article was to extract LBS application

characteristics and illustrate the related middleware models. LBS

applications require coordination and interaction of multiple users

with location information correlated entities. LBS pervasive

deployment environments rely on push-based models, where the

service activty isn’t initiated by the end user but by the service

provider.

LBS applications that need the maintenance of state across

interactions imply middleware models as subject space or tuple

space models. LBS applications that are stateless may rely on

traditional publish/subscribe middleware models.

As no standard middleware exists today, one must take into

account the interoperability standards defined by the Open

Geospatial Consortium in order to define a standard compliant

middleware model. Coordination and interaction issues remain the

most important research challenges in the context of LBS

middleware.

6. Acknowledgements
This work has been supported by the European Project ASSET

(Advanced Safety and Driver Support for Essential Road

Transport).

7. REFERENCES
[1] http://www.opengeospatial.org/ogc/glossary/l accessed on

May 7, 2008.

[2] http://uc.gpsworld.com/gpsuc/article/articleDetail.jsp?id=502

585&sk=&date=&pageID=3 accessed on May 7, 2008.

[3] http://lbs.gpsworld.com/gpslbs/article/articleDetail.jsp?id=31

1566&pageID=1&sk=&date= accessed on May 7, 2008.

[4] A. Roxin, J. Gaber, M. Wack, A. Nait-Sidi-Moh, Survey of

Wireless Geolocation Techniques, IEEE Globecom 2007,

IEEE Workshop on Service Discovery and Composition in

Ubiquitous and Pervasive Environments (SUPE).

[5] A. Roxin, C. Dumez, J. Gaber, M. Wack, Standards and

Models for LBS in Pervasive Road Environments, Research

Report.

[6] J. Schiller, A. Voisard, Location-based Services, Elsevier

2004.

[7] A. Küpper, Location-based Services – Fundamentals and

Operation, John Wiley & Sons Ltd. 2005.

[8] Openwave Location Services, Developing New Revenue

Streams from Location-Enriched Mobile Applications,

available online at:

http://www.openwave.com/docs/products/location/location_s

ervices_ds.pdf

[9] Position determination equipment, United States Patent

4357833, available online at:

http://www.freepatentsonline.com/4357833.html accessed on

May 7, 2008.

[10] H. A. Jacobsen, F. Lirbat, Publish and Subscribe Tutorial

Proposal, International Conference on Data Engineering

2001.

[11] H. K. Y. Leung, I. Burcea, H.-A. Jacobsen, Modelling

Location-based Services with Subject Spaces, © IBM

Canada 2003.

[12] G. P. Picco, D. Balzarotti, P. Costa, LighTS: A Lightweight,

Customizable Tuple Space Supporting Context-Aware

Applications, SAC’05, March 13-17, 2005, Santa Fe, New

Mexico, USA.

