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On the spectral type of some class of rank one flows

El Houcein El Abdalaoui

Introduction

The purpose of this paper is to study the spectral type of some class of rank one flows. Rank one flows have simple spectrum and using a random Ornstein procedure [START_REF] Ornstein | On the root problem in ergodic theory[END_REF], A. Prikhod'ko in [START_REF] Prikhod'ko | Stochastic constructions of flows of rank 1[END_REF] produce a family of mixing rank one flows. It follows that the mixing rank one flows may possibly contain a candidate for the flow version of the Banach's well-known problem whether there exists a dynamical flow pΩ, A, µ, pT t q tPR q with simple Lebesgue spectrum 1 . In [START_REF] Prikhod'ko | On flat trigonometric sums and ergodic flow with simple Lebesgue spectrum[END_REF], A. Prikhod'ko introduced a class of rank one flows called exponential staircase rank one flows and state that in this class the answer to the flow version of Banach problem is affirmative. Unfortunately, as we shall establish, this is not the case since the spectrum of a large class of exponential staircase rank one flow is singular and this class contain a subclass of Prikhod'ko examples.

Our main tools are on one hand an extension to R of the CLT method (introduced in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF] for the torus) and on the other hand the generalized Bourgain methods [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] obtained in [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] (in the context of the Riesz products on R).

This allows us to get a new extension of the Salem-Zygmund CLT Theorem [START_REF] Zygmund | Trigonometric series[END_REF] to the trigonometric sums with real frequencies.

Originally Salem-Zygmund CLT Theorem concerns the asymptotic stochastic behaviour of the lacunary trigonometric sums on the torus. Since Salem-Zygmund pioneering result, the central limit theorem for trigonometric sums has been intensively studied by many authors, Erdös [START_REF] Erdös | On trigonometric sums with gaps[END_REF], J.P. Kahane [START_REF] Kahane | Lacunary Taylor and Fourier series[END_REF], J. Peyrière [START_REF] Peyrière | Étude de quelques propriétés des produits de Riesz[END_REF], Berkers [START_REF] Berkes | On the central limit theorem for lacunary trigonometric series[END_REF], Murai [20], Takahashi [START_REF] Takahashi | Probability limit theorems for trigonometric series. Limit theorems of probability theory[END_REF], Fukuyama and Takahashi [START_REF] Fukuyama | The central limit theorem for lacunary series[END_REF], and many others. The same method is used to study the asymptotic stochastic behaviour of Riesz-Raikov sums [START_REF] Petit | Le théorème limite central pour des sommes de Riesz-Raȋkov[END_REF]. Nevertheless all these results concern only the trigonometric sums on the torus.

Here we obtain the same result on R. The fundamental ingredient in our proof is based on the famous Hermite-Lindemann Lemma in the transcendental number theory [START_REF] Waldschmidt | Elliptic functions and transcendence[END_REF].

Notice that the main argument used in the torus case [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF] is based on the density of trigonometric polynomials. This argument cannot be applied here since the density of trigonometric polynomials in L 1 pR, ωptqdtq (ω is a positive function in L 1 pRq), is not verified unless ω satisfies some extra-condition. Nevertheless, using the density of the functions with compactly supported Fourier transforms, we are able to conclude.

The paper is organized as follows. In section 2, we review some standard facts from the spectral theory of dynamical flows. In section 3, we recall the basic construction of the rank one flows obtained by the cutting and stacking method and we state our main result. In section 4, we summarize and extend the relevant material on the Bourgain criterion concerning the singularity of the generalized Riesz products on R. In section 5, we develop the CLT method for trigonometric sums with real frequencies and we prove our main result concerning the singularity of a exponential staircase rank one flows. 1 Ulam in his book [29, p.76] stated the Banach problem in the following form Question 1.1 (Banach Problem). Does there exist a square integrable function f pxq and a measure preserving transformation T pxq, ´8 ă x ă 8, such that the sequence of functions tf pT n pxqq; n " 1, 2, 3, ¨¨¨u forms a complete orthogonal set in Hilbert space?

Basic facts from spectral theory of dynamical flows

A dynamical flow is a quadruplet pX, A, µ, pT t q tPR q where pX, A, µq is a Lebesgue probability space and pT t q tPR is a measurable action of the group R by measure preserving transformations. (It means that ' each T t is a bimeasurable invertible transformation of the probability space such that, for any A P A, µpT ´1 t Aq " µpAq, ' for all s, t P R, T s ˝Tt " T s`t , ' the map pt, xq Þ Ñ T t pxq is measurable from R ˆX into X.) Let us recall some classical definitions. A dynamical flow is ergodic if every measurable set which is invariant under all the maps T t either has measure zero or one. A number λ is an eigenfrequency if there exists nonzero function f P L 2 pXq such that, for all t P R, f ˝Tt " e iλt f . Such a function f is called an eigenfunction. An ergodic flow pX, A, µ, pT t q tPR q is weakly mixing if every eigenfunction is constant (a.e.). A flow pX, A, µ, pT t q tPR q is mixing if for all f, g P L 2 pXq,

ż f ˝Tt pxqgpxqdµpxq ´´´Ñ |t|Ñ`8 ż f pxqdµpxq ż gpxqdµpxq.
Any dynamical flow pT t q tPR q induces an action of R by unitary operators acting on L 2 pXq according to the formula U Tt pf q " f ˝T´t . When there will be no ambiguity on the choice of the flow, we will denote U t " U Tt .

The spectral properties of the flow are the property attached to the unitary representation associated to the flow. We recall below some classical facts; for details and references see [START_REF] Cornfeld | Ergodic theory[END_REF] or [START_REF] Katok | Spectral Properties and Combinatorial Constructions in Ergodic Theory[END_REF].

Two dynamical flows pX 1 , A 1 , µ 1 , pT t q tPR q and pX 2 , A 2 , µ 2 , pS t q tPR q are metrically isomorphic if there exists a measurable map φ from pX 1 , A 1 , µ 1 q into pX 2 , A 2 , µ 2 q, with the following properties:

' φ is one-to-one, ' For all A P A 2 , µ 1 pφ ´1pAqq " µ 2 pAq. ' S t ˝φ " φ ˝Tt , @t P R. If two dynamical flows pT t q tPR and pS t q tPR are metrically isomorphic then the isomorphism φ induces an isomorphism V φ between the Hilbert spaces L 2 pX 2 q and L 2 pX 1 q which acts according to the formula V φ pf q " f ˝φ. In this case, since V φ U St " U Tt V φ , the adjoint groups pU Tt q and pU St q are unitary equivalent. Thus if two dynamical flows are metrically isomorphic then the corresponding adjoint groups of unitary operators are unitary equivalent. It is well known that the converse statement is false [START_REF] Cornfeld | Ergodic theory[END_REF].

By Bochner theorem, for any f P L 2 pXq, there exists a unique finite Borel measure σ f on R such that

x σ f ptq " ż R e ´itξ dσ f pξq " xU t f, f y " ż X f ˝Tt pxq ¨f pxq dµpxq.
σ f is called the spectral measure of f . If f is eigenfunction with eigenfrequency λ then the spectral measure is the Dirac measure at λ.

The following fact derives directly from the definition of the spectral measure: let pa k q 1ďkďn be complex numbers and pt k q 1ďkďn be real numbers; consider f P L 2 pXq and denote F " ř n k"1 a k ¨f ˝Tt k . Then the spectral measure σ F is absolutely continuous with respect to the spectral measure σ f and

p1q dσ F dσ f pξq " ˇˇˇˇn ÿ k"1
a k e it k ξ ˇˇˇˇ2 .

Here is another classical result concerning spectral measures : let pg n q be a sequence in L 2 pXq, converging to f P L 2 pXq ; then the sequence of real measures pσ gn ´σf q converges to zero in total variation norm.

The maximal spectral type of pT t q tPR is the equivalence class of Borel measures σ on R (under the equivalence relation µ 1 " µ 2 if and only if µ 1 ăă µ 2 and µ 2 ăă µ 1 ), such that σ f ăă σ for all f P L 2 pXq and if ν is another measure for which σ f ăă ν for all f P L 2 pXq then σ ăă ν.

The maximal spectral type is realized as the spectral measure of one function: there exists h 1 P L 2 pXq such that σ h1 is in the equivalence class defining the maximal spectral type of pT t q tPR . By abuse of notation, we will call this measure the maximal spectral type measure.

The reduced maximal type σ 0 is the maximal spectral type of pU t q tPR on L 2 0 pXq

def " $ & % f P L 2 pXq : ż f dµ " 0 , .
-. The spectrum of pT t q tPR is said to be discrete (resp. There exists an orthogonal decomposition of L 2 pXq into cyclic spaces p2q L 2 pXq "

8 à i"1
Zph i q, σ h1 " σ h2 " . . . 2) is be called a spectral decomposition of L 2 pXq (while the sequence of measures is called a spectral sequence). A spectral decomposition is unique up to equivalent class of the spectral sequence. The spectral decomposition is determined by the maximal spectral type and the multiplicity function M : R Ñ t1, 2, . . .u Y t`8u, which is defined σ h1 -a.e. by M psq "

Each decomposition (

ř 8 i"1 1 Yi psq, where Y 1 " R and Y i " supp dσx i dσx 1 for i ě 2.
The flow has simple spectrum if 1 is the only essential value of M . The multiplicity is homogeneous if there is only one essential value of M . The essential supremum of M is called the maximal spectral multiplicity.

Von Neumann showed that the flow pT t q tPR has homogeneous Lebesgue spectrum if and only if the associated group of unitary operators pU t q tPR satisfy the Weyl commutation relations for some one-parameter group pV t q tPR i.e.

U t V s " e ´ist V s U t , s, t P R,
where e ´ist denotes the operator of multiplication by e ´ist . It is easy to show that the Weyl commutation relations implies that the maximal spectral type is invariant with respect to the translations. The proof of von Neumann homogeneous Lebesgue spectrum theorem can be found in [START_REF] Cornfeld | Ergodic theory[END_REF].

Rank one flows by Cutting and Stacking method

Several approach of the notion of rank one flow have been proposed in the literature. The notion of approximation of a flow by periodic transformations has been introduced by Katok and Stepin in [START_REF] Katok | Approximations in ergodic theory. (Russian) Uspehi Mat[END_REF] (see Chapter 15 of [START_REF] Cornfeld | Ergodic theory[END_REF]). This was the first attempt of a definition of a rank one flow.

In [START_REF] Del Junco | An example of a measure-preserving flow with minimal self-joinings[END_REF], del Junco and Park adapted the classical Chacon construction [START_REF] Chacon | Approximation of transformations with continuous spectrum[END_REF] to produce similar construction for a flow. The flow obtain by this method is called the Chacon flow.

This cutting and stacking construction has been extended by Zeitz ([31]) in order to give a general definition of a rank one flow. In the present paper we follow this cutting and stacking (CS) approach and we recall it now. We assume that the reader is familiar with the CS construction of a rank one map acting on certain measure space which may be finite or σ-finite. A nice account may be founded in [START_REF] Friedman | Replication and stacking in ergodic theory[END_REF].

Let us fix a sequence pp n q nPN of integers ě 2 and a sequence of finite sequences of non-negative real numbers ´ps n,j q pn´1 j"1 ¯ną0 .

Let B 0 be a rectangle of height 1 with horizontal base B 0 . At stage one divide B 0 into p 0 equal parts pA 1,j q p0 j"1 . Let pA 1,j q p0 j"1 denotes the flow towers over pA 1,j q p0 j"1 . In order to construct the second flow tower, put over each tower A 1,j a rectangle spacer of height s 1,j (and base of same measure as A 1,j ) and form a stack of height h 1 " p 0 `řp0 j"1 s 1,j in the usual fashion. Call this second tower B 1 , with B 1 " A 1,1 . At the k th stage, divide the base B k´1 of the tower B k´1 into p k´1 subsets pA k,j q p k´1 j"1 of equal measure. Let pA k,j q p k´1 j"1 be the towers over pA k,j q p k´1 j"1 respectively. Above each tower A k,j , put a rectangle spacer of height s k,j (and base of same measure as A k,j ). Then form a stack of height h k " p k´1 h k´1 `řp k´1 j"1 s k,j in the usual fashion. The new base is B k " A k,1 and the new tower is B k .

All the rectangles are equipped with Lebesgue two-dimensional measure that will be denoted by ν. Proceeding this way we construct what we call a rank one flow pT t q tPR acting on a certain measure space pX, B, νq which may be finite or σ´finite depending on the number of spacers added at each stage. This rank one flow will be denoted by pT t q tPR def " ´T t ppn,psn`1,j q pn j"1 qně0 ¯tPR The invariant measure ν will be finite if and only if

`8 ÿ k"0 ř p k j"1 s k`1,j p k h k ă `8.
In that case, the measure will be normalized in order to have a probability.

Remarks 3.1. The only thing we use from [START_REF] Zeitz | The centralizer of a rank-one flow[END_REF] is the definition of rank one flows. Actually a careful reading of Zeitz paper [START_REF] Zeitz | The centralizer of a rank-one flow[END_REF] shows that the author assumes that for any rank one flow there exists always at least one time t 0 such that T t0 has rank one property. But, it turns out that this is not the case in general as proved by Ryzhikhov in [START_REF] Ryzhikhov | Mixing, rank and minimal self-joining of actions with invariant measure[END_REF]. Furthermore, if this property was satisfied then the weak closure theorem for flows would hold as a direct consequence of the King weak closure theorem (CpT t q Ă Cpt 0 q J.King " W CT pT t0 q Ă W CT pT t q Ă CpT t q, where Cpt 0 q is the centralizer of T t0 and W CT pT t0 q is the weak closure of T t0 ).

3.1. Exponential staircase rank one flows of type I. The main issue of this note is to study the spectrum of a subclass of a rank one flows called exponential staircase rank one flows of type I which are defined as follows.

Let pm n , p n q nPN be a sequence of positive integers such that m n and p n goes to infinity as n goes to infinity. Let ε n be a sequence of rationals numbers which converge to 0. Put

ω n ppq " m n ε 2 n p n ´exp `εn .p p n ˘´1 ¯for any p P t0, ¨¨¨, p n ´1u,
and define the sequence of the spacers pps n`1,p q p"0,¨¨¨,pn´1 q ně0 by h n `sn`1,p`1 " ω n pp `1q ´ωn ppq, p " 0, ¨¨¨, p n ´1, n P N.

In this definition we assume that (1) m n ě ε n .h n , for any n P N.

(

) logpp n q m n ´´´Ñ nÑ8 0 if p n ě mn εn (3) logpp n q m n ´´´Ñ nÑ8 0 and logpp n q p n ď ε n if p n ă mn ǫn 2 
We will denote this class of rank one flow by pT t q tPR def " ´T t ppn,ωnqně0 ¯tPR .

It is easy to see that this class of flows contain a large class of examples introduced by Prikhodko [START_REF] Prikhod'ko | On flat trigonometric sums and ergodic flow with simple Lebesgue spectrum[END_REF]. Indeed, assume that h β n ě p n ě h 1`α n , β ě 2 and α Ps0, 1 4 r. Then, by assumption (1), we have

logpp n q m n ď β logph n q ε n h n , Taking β " ε n `th δ n u `1˘, 0 ă δ ă 1, we get logpp n q m n ´´´Ñ nÑ8 0.
In [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] it is proved that the spectral type of of any rank one flow pT t ppn,psn`1,jq pn j"1 qně0 q tPR is given by some kind of Riesz-product measure on R. To be more precise, the authors in [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] proved the following theorem Theorem 3.2 (Maximal spectral type of rank one flows). For any s P p0, 1s, the spectral measure σ 0,s is the weak limit of the sequence of probability measures

n ź k"0 |P k pθq| 2 K s pθq dθ,
where

P k pθq " 1 ? p k ˜pk ´1 ÿ j"0 e iθpjh k `s k pjqq ¸, sk pjq " j ÿ i"1 s k`1,i , sk p0q " 0.
and

K s pθq " s 2π ¨˜sinp sθ 2 q sθ 2
¸2.

In addition the continuous part of spectral type of the rank one flow is equivalent to the continuous part of ÿ kě1 2 ´kσ 0, 1 k .

The theorem above gives a new generalization of Choksi-Nadkarni Theorem [START_REF] Choksi | The maximal spectral type of rank one transformation[END_REF], [START_REF] Nadkarni | Spectral theory of dynamical systems[END_REF]. We point out that in [START_REF] El Abdalaoui | Thése d'habilitation[END_REF], the author generalized the Choksi-Nadkarni Theorem to the case of funny rank one group actions for which the group is compact and Abelian.

We end this section by stating our main result.

Theorem 3.3. Let pT t q tPR " ´T t ppn,ωnqně0 ¯tPR be a exponential staircase rank one flow of type I associated to

ω n ppq " m n ε 2 n p n exp `εn .p p n ˘, p " 0, ¨¨¨, p n ´1.
Then the spectrum of pT t q R is singular.

4. On the Bourgain singularity criterium of generalized Riesz products on R

In this section, for the convenience of the reader we repeat the relevant material from [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] without proofs, thus making our exposition self-contained. Let us fix s P p0, 1q and denote by µ s the probability measure of density K s on R, that is,

dµ s pθq " K s pθq dθ
We denote by σ the spectral measure of 1 1 B0,s given as the weak limit of the following generalized Riesz products

dσ " W´lim N Ñ`8 N ź k"1 |P k | 2 dµ s , p3q 
where

P k pθq " 1 ? p k ˜pk ´1 ÿ j"0 e iθpjh k `s k pjqq ¸, sk pjq " j ÿ i"1 s k`1,i , sk p0q " 0.
Let us recall the following Bourgain criterion established in [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF].

Theorem 4.1 (Bourgain criterion). The following are equivalent (i) σ is singular with respect to Lebesgue measure.

(ii) inf

$ & % ż R L ź ℓ"1 |P n ℓ | dµ s : L P N, n 1 ă n 2 ă . . . ă n L , .
-" 0.

As noted in [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] to prove the singularity of the spectrum of the rank one flow it is sufficient to prove that a weak limit point of the sequence `ˇ| P m | 2 ´1ˇˇ˘i s bounded by below by a positive constant. More precisely, the authors in [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] established the following proposition. Proposition 4.2. Let E be an infinite set of positive integers. Suppose that there exists a constant c ą 0 such that, for any positive function φ P L 2 pR, µ s q, lim inf

mÝÑ`8 mPE ż R φ ˇˇ|P m | 2 ´1ˇˇd µ s ě c ż R φ dµ s .
Then σ is singular.

The proof of the proposition 4.2 is based on the following lemma.

Lemma 4.3. Let E be an infinite set of positive integers. Let L be a positive integer and 0 ď n

1 ă n 2 ă ¨¨¨ă n L be integers. Denote Q " ś L ℓ"1 |P n ℓ |. Then lim sup mÝÑ`8 mPE ż Q |P m | dµ s ď ż Q dµ s ´1 8 ¨lim inf mÝÑ`8 mPE ż Q ˇˇ|Pm| 2 ´1ˇˇˇd µ s '2 .
For sake of completeness we recall from [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] the proof of the proposition 4.2.

Proof of Proposition 4.2.

Let β " inf $ & % ż Q dµ s : Q " L ź ℓ"1 |P n ℓ | , L P N, 0 ď n 1 ă n 2 ă ¨¨¨ă n L , .
-. Then, for any such Q, we have

ż Q dµ s ě β and lim inf ż Q|P m | dµ s ě β.
Thus by Lemma 4.3 and by taking the infimum over all Q we get

β ď β ´1 8 pcβq 2
It follows that β " 0, and the proposition follows from Theorem 4.1.

5. the CLT method for trigonometric sums and the singularity of the spectrum of exponential staircase rank one flows of type I

The main goal of this section is to prove the following proposition Proposition 5.1. Let pT t q tPR " ´T t ppn,ωnqně0 ¯tPR be a exponential staircase rank one flow of type I associated to

ω n ppq " m n ε 2 n p n exp `εn .p p n ˘, p " 0, ¨¨¨, p n ´1.
Then, there exists a constant c ą 0 such that, for any positive function f in L 2 pR, µ s q, we have

lim inf mÝÑ`8 ż R f ptq ˇˇ|P m ptq| 2 ´1ˇˇd µ s ptq ě c ż R f ptq dµ s ptq.
The proof of the proposition 5.1 is based on the study of the stochastic behaviour of the sequence |P m |. For that, we follow the strategy introduced in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF] based on the method of the Central Limit Theorem for trigonometric sums.

This methods takes advantage of the following classical expansion exppixq " p1 `ixq exp

´´x 2 2 `rpxq ¯,
where |rpxq| ď |x| 3 , for all real number x2 , combined with some ideas developed in the proof of martingale central limit theorem due to McLeish [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF]. Precisely, the main ingredient is the following theorem proved in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF].

Theorem 5.2. Let tX nj : 1 ď j ď k n , n ě 1u be a triangular array of random variables and t a real number. Let

S n " kn ÿ j"1 X nj , T n " kn ź j"1 p1 `itX nj q, and 
U n " exp ˜´t 2 2 kn ÿ j"1 X 2 nj `kn ÿ j"1 rptX nj q ¸.
Suppose that (1) tT n u is uniformly integrable.

(2) EpT n q ´´´Ñ nÑ8 1.

( for some ε positive, then tX n u is uniformly integrable. Using Theorem 5.2 we shall prove the following extension to R of Salem-Zygmund CLT theorem, which seems to be of independent interest. Theorem 5.3. Let A be a Borel subset of R with µ s pAq ą 0 and let pm n , p n q nPN be a sequence of positive integers such that m n and p n goes to infinity as n goes to infinity. Let ε n be a sequence of rationals numbers which converge to 0 and

) kn ÿ j"1 X 2 nj ´´´Ñ nÑ8 1 in probability. ( 3 
ω n pjq " m n ε 2 n p n exp `εn .j
p n ˘for any j P t0, ¨¨¨, p n ´1u.

Assume that (1) m n ě ε n .h n , for any n P N.

(

) logpp n q m n ´´´Ñ nÑ8 0 if p n ě mn εn (3) logpp n q m n ´´´Ñ nÑ8 0 and logpp n q p n ď ε n if p n ă mn ǫn . 2 
Then, the distribution of the sequence of random variables ? 2 ? pn ř pn´1 j"0 cospω n pjqtq converges to the Gauss distribution. That is, for any real number x, we have

1 µ s pAq µ s # t P A : ? 2 ? p n pn´1 ÿ j"0 cospω n pjqtq ď x + ´´´Ñ nÑ8 1 ? 2π ż x ´8 e ´1 2 t 2 dt def " N ps´8, xsq . p5q
We start by proving the following proposition.

Proposition 5.4. There exists a of the sequence

´ˇˇ| P n pθq| 2 ´1ˇˇˇ¯n
ěN which converges weakly in L 2 pR, µ s q to some non-negative function φ bounded above by 2.

In the proof of Proposition 5.4 we shall need the following lemma proved in [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF].

Lemma 5.5. The sequence of probability measures |P n pθq| 2 K s pθq dθ converges weakly to K s pθq dθ.

Proof of Proposition 5.4. Since for all n , we have }P n } 2 L 2 pµsq " 1. Therefore, the sequence

´ˇˇ| P n | 2 ´1ˇˇˇ¯n
PN is bounded in L 2 `R, µ s ˘, thus admits a weakly convergent subsequence. Let us denote by φ one such weak limit function. Let f be a bounded continuous function on R. We have

ż f ¨ˇˇ| P n | 2 ´1ˇˇˇd µ s ď ż f ¨|P n | 2 dµ s `ż f dµ s .
By Lemma 5.5 we get lim nÑ`8

ż f ¨ˇˇ| P n | 2 ´1ˇˇˇd µ s ď 2 ż f dµ s .
Hence, for any bounded continuous function f on R, we have

ż f ¨φ dµ s ď 2 ż f dµ s .
which proves that the weak limit φ is bounded above by 2.

Let us prove now that the function φ is bounded by below by a universal positive constant. For that we need to prove Proposition 5.1. Let n be a positive integer and put

W n def " ! ÿ jPI η j ω n pjq : η j P t´1, 1u, I Ă t0, ¨¨¨, p n ´1u
) .

The element w " ř iPI η j ω n pjq is called a word.

We shall need the following two combinatorial lemmas. The first one is a classical result in the transcendental number theory and it is due to Hermite-Lindemann. Lemma 5.6 (Hermite-Lindemann, 1882). Let α be a non-zero algebraic number. Then, the number exppαq is transcendental.

We state the second lemma as follows.

Lemma 5.7. For any n P N ˚. All the words of W n are distinct.

Proof. Let w, w 1 P W n , write w " ÿ jPI η j ω n pjq,

w 1 " ÿ jPI 1 η 1 j ω n pjq. Then w " w 1 implies ÿ jPI η j ω n pjq ´ÿ jPI 1 η 1 j ω n pjq " 0 Hence ÿ jPI η j expp ε n p n jq ´ÿ jPI 1 η 1 j expp ε n p n jq " 0
But Lemma 5.6 tell us that e ε n {p n is a transcendental number. This clearly forces I " I 1 and the proof of the lemma is complete.

Proof of Theorem 5.3. Let A be a Borel set with µ s pAq ą 0 and notice that for any positive integer n, we have

ż R ˇˇ? 2 ? p n pn´1 ÿ j"0 cospω n pjqtq ˇˇ2dµsptq ď 1.
Therefore, applying the Helly theorem we may assume that the sequence ´?2 ? p n pn´1 ÿ j"0 cospω n pjqtq ¯ně0 converge in distribution. As is well-known, it is sufficient to show that for every real number x,

1 µ s pAq ż A exp # ´ix ? 2 ? p n pn´1 ÿ j"0 cospω n pjqtq + dµ s ptq ´´´Ñ nÑ8 expp´x 2 2 q.
To this end we apply theorem 5.2 in the following context. The measure space is the given Borel set A of positive measure with respect to the probability measure µ s on R equipped with the normalised measure µ s µ s pAq and the random variables are given by

X nj " ? 2 ?
p n cospω n pjqtq, where 0 ď j ď p n ´1, n P N.

It is easy to check that the variables tX nj u satisfy condition (4). Further, condition The proof of the claim is complete. It still remains to prove [START_REF] Del Junco | An example of a measure-preserving flow with minimal self-joinings[END_REF]. For that, let us compute the cardinality of words of length r which can belong to the support of φ.

By the well-known sampling theorem, we can assume that the support of φ is r´Ω, Ωs, Ω ą 0. First, it is easy to check that for all odd r, |w prq n | ´´´Ñ nÑ8 `8. It suffices to consider the words with even length. The case r " 2 is easy, since it is obvious to obtain the same conclusion. Moreover, as we will see later, it is sufficient to consider the case r " 2 k , k ě 2. We argue that the cardinality of words of length 2 k , k ě 2 which can belong to r´Ω, Ωs is less than Ω.

p k n plogpp n qq k´1 m n ε k´2 n . Indeed, for k " 2. Write w p4q n " η 1 ω n pk 1 q `η2 ω n pk 2 q `η3 ω n pk 3 q `η4 .ω n pk 4 q, with η i P t´1, 1u and k i P t0, ¨¨¨, p n ´1u, i " 1, ¨¨¨, 4, and put e n ppq " exp `εn p n .p ˘, p P t0, ¨¨¨, p n ´1u.

If ř 4

i"1 η i ‰ 0 then there is nothing to prove since ˇˇw p4q n ˇˇ´´´Ñ nÑ8 `8. Therefore, let us assume that ř 4 i"1 η i " 0. In this case, without loss of generality (WLOG), we will assume that k 1 ă k 2 ă k 3 ă k 4 . Hence

w p4q
n " η 1 ω n pk 1 q `η2 ω n pk 2 q `η3 ω n pk 3 q `η4 ω n pk 4 q " m n ǫ 2 n p n e n pk 1 q ´η1 `η2 e n pα 1 q `η3 e n pα 2 q `η4 e n pα 3 q where, α i " k i`1 ´k1 , i " 1, ¨¨¨, 3. At this stage, we may assume again WLOG that η 1 `η2 " 0 and η 3 `η4 " 0. It follows that

w p4q n " m n ǫ 2 n
p n e n pk 1 q ´η2 `en pα 1 q ´1˘`η 4 e n pα 2 q `en pα 1 1 q ´1˘¯w ith α 1 1 " α 3 ´α2 .

Consequently, we have two cases to deal with.

' Case 1:

η 2 " η 4 . Then ˇˇw p4q n ˇˇě m n ǫ 2 n p n e n pk 1 q ´en pα 1 q ´1ě m n ǫ 2 n p n ε n p n ´´´Ñ nÑ8 `8.
' Case 2: η 2 " ´η4 . We thus get

w p4q n " m n ǫ 2 n p n .e n pk 1 qη 4 ´en pα 2 q `en pα 1 1 q ´1˘´`e n pα 1 q ´1˘H ence ˇˇw p4q n ˇˇ" m n ǫ 2 n
p n e n pk 1 q ˇˇenpα2q `en pα 1 1 q ´1˘´`e n pα 1 q ´1˘ˇˇŤ herefore, we have three cases to deal with.

-Case 1:

α 1 1 ą α 1 . In this case, ˇˇw p4q n ˇˇ" m n ǫ 2 n
p n e n pk 1 q ´en pα 2 q `en pα 1 1 q ´1˘´`e n pα 1 q ´1˘ě

m n ǫ 2 n p n `en pα 1 1 q ´en pα 1 q ě m n ǫ 2 n p n `en pα 1 1 ´α1 q ´1˘´´´Ñ nÑ8 ` 8. 
-Case 2:

α 1 1 ă α 1 . Write α 1 " α 1 1 `β. Thus ˇˇw p4q n ˇˇ" m n ε 2 n
p n e n pk 1 q ˇˇenpα2q `en pα 1 1 q ´1˘´`e n pα 1 1 `βq ´1˘ˇˇě

m n ε 2 n p n ˇˇenpα 1 1 `α2 q ´en pα 2 q ´en pα 1 1 `βq `1ˇˇě m n ε 2 n p n ˇˇ`enpα2q ´1˘`e n pα 1 1 q ´1˘´e n pα 1 1 q `en pβq ´1˘ˇˇě m n ε 2 n p n ε n βα 1 1 p n ´en pα 1 1 q `en pβq ´1ε n βα 1 1 pn
´`e n pα 2 q ´1˘`e n pα 1 1 q ´1ε

n βα 1 1 pn ě m n ε n βα 1 1 ´en pα 1 1 q `en pβq ´1ε n βα 1 1 pn
´`e n pα 2 q ´1˘`e n pα 1 1 q ´1ε

n βα 1 1 pn

But

for any x P r0, logp2qr, we have x ď e x ´1 ď 2x. Therefore `en pα 2 q ´1˘`e n pα 1 1 q ´1ε

n βα Repeated the same argument as above we deduce that the only words to take into account at the stage k " 3 are the form

w p8q n " m n ε 2 n
p n e n pαq ´pe n pα 1 q ´1qpe n pα 2 q ´1q `η.e n pα 3 qpe n pα 4 q ´1qpe n pα 5 q ´1q ¯,

where η " ˘1. In the case η " 1, it is easy to see that ˇˇw p8q n ˇˇě

m n ε n p 2 n α 3 Ă α 1 Ă α 2 ,
where r α i " infpα i , α 3`i q.

For η " ´1, write ˇˇw p8q n ˇˇ"

m n ε 2 n
p n e n pαq ˇˇpenpα1q ´1qpe n pα 2 q ´1q ṕe n pα 3 q ´1qpe n pα 4 q ´1qpe n pα 5 q ´1q ´pe n pα 4 q ´1qpe n pα 5 q ´1q ˇˇ.

Using the following expansion e n pxq " 1 `εn .x p n `op1q, p12q we obtain, for a large n, ˇˇw p8q n ˇˇě

m n ε n p 2 n α 3 Ă α 1 Ă α 2 .
We deduce that the cardinality of words of length 8 which can belong to r´Ω, Ωs is less than

Ω.p n . p 2 n m n ε n ÿ Ă α1, Ă α2 1 Ă α 1 Ă α 2 ď Ω. p 3 n m n ε n plogpp n qq 2 .
In the same manner as before consider the words of length k in the following form

w p2 k q n " m n ǫ 2 n
p n e n pαq ´pe n pα 1 q ´1q ¨¨¨pe n pα k q ´1q ¯. One can apply Lagrangian method to show that α is strictly less than two. Furthermore, to ensure that the assumption p13q holds, it suffices to take p n " n, ε n " 1 n 2 and m n " h n n 2 . Proof of Proposition 5.3. Let A be a Borel subset of R, and x Ps1, `8r, then, for any positive integer m, we have 

Therefore ˇˇw p2 k q n ˇˇě m n ǫ 2 n p n . ´εn p n ¯k.α 1 .α 2 ¨¨¨α k . ě m n p k´1 n ε k´2 n α 1 .α 2 ¨¨¨α k We conclude that ˇˇÿ wPWn ρ w pnq pxq ż R φptq cospwtqdt| ď Ω.|x|. logpp n q m n ÿ r even 4ďrďpn 1 p `r 2 ´2tlog 2 prqu` 2 n ´´´Ñ nÑ8 0 .` 8 , 1 η

 21112081 This finishes the proof, the other case is left to the reader.Remark. Let us point out that ifh n for any k ě 1. p13qThen the spectrum of the associated exponential staircase flow is singular. Indeed, j e n pk j q a word of length r. If W prq n ‰ 0. Then, by Lemma 5.6, there exists α ě 1 such that r ÿ a Taylor expansion of e n and assuming that all the terms of degree less than α are 0, we have

µ s pθq ě px 2

 2 ´1qµ s ! θ P A : |P m pθq| ą x ) ě px 2 ´1qµ s ! θ P A : |ℜpP m pθqq| ą x ) Let m goes to infinity and use Theorem 5.3 and Proposition 5.4 to get ż A φ dµ s ě px ´1qt1 ´N pr´?2x, ? 2xsquµ s pAq. Put K " px ´1qt1 ´N pr´?2x, ? 2xsqu. Hence ż A φ dµ s ě Kµ s pAq, for any Borel subset A of R. This end the proof of the proposition.

  follows from the fact that This shows that the condition (1) is satisfied. It still remains to prove that the variables tX nj u satisfy condition[START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF]. For that, it is sufficient to show that with compactly supported Fourier transforms. Indeed, assume that (9) holds and let ǫ ą 0. Then, by the density of the functions with compactly supported Fourier transforms[16, p.126], one can find a function φ ǫ with compactly

	ż R for any function φ supported Fourier transforms such that ˇˇp n ´1 ÿ j"0 X 2 nj ´1ˇˇˇ2 It remains to verify conditions (1) and (2) of Theorem 5.2. For this purpose, we dµ s ptq ´´´Ñ nÑ8 0. › › ›χA.Ks ´φǫ › › › ă ǫ, L 1 pRq set Θ n px, tq " pn´1 ź j"0 ´1 ´ix ? 2 ? p n " where χ A is indicator function of A. Hence, according to (9) combined with p7q, for n sufficiently large, we have cospω n pjqt 1 `ÿ wPWn ρ w pnq pxq cospwtq, ˇˇż A Θ n px, tqdµ s ptq ´µs pAq ˇˇ" ˇˇż A Θ n px, tqdµ s ptq ´żR Θ n px, tqφ ǫ ptqdt p10q ż
	and p11q	R	Θ n px, tqφ ǫ ptqdt	´żR	r ď `żR W n " φ ǫ ptqdt φ ǫ ptqdt ´µs pAq| ă e x 2 W prq n ,	ǫ `2ǫ.
	where W prq n is the set of words of length r. Hence
								ˇˇΘnpx, tq ˇˇď	# pn´1 ź j"0	´1	p n `2x 2	¯+ 1
	p7q			ż	A	pn´1 ź j"0	ˆ1 ´ix	? ? p n 2	cospω n pjqtq ˙dµ s ptq ´´´Ñ nÑ8	µ s pAq.
	Observe that ż					ż
	and for w " p8q	A ř r Θ n px, tqdµ s ptq " µ s pAq j"1 ω n pq j q P W n , we have `ÿ wPWn |ρ w pnq pxq| ď 2 1´r |x| r ρ w pnq pxq p r 2 n ,	A	cospwtqdµ s ptq
	hence							max wPWn	|ρ w	pnq pxq| ď	|x| p 1 2 n	´´´Ñ nÑ8	0.
	We claim that it is sufficient to prove the following ż R φ pn´1 ź j"0 ´1 ´ix ? 2 ? p n cospω n pjqtq ¯dt ´´´Ñ nÑ8 p9q	ż R	φdt,

2

.

But, since 1 `u ď e u , we get ˇˇΘnpx, tq ˇˇď e x 2 . p6q

  But the cardinality of pα 1 , α 2 q such that α 2 .α 1 ď Ω

	From this, we have		
		ˇˇw p4q n ˇˇě ě	m n ǫ 2 n m n p n	p n . α 2 .α 1 ´εn p n	¯2.α 2 .α 1 .
	It follows that	ˇˇw p4q n ˇˇď Ω ùñ α 2 .α 1 ď	p n m n	.Ω.
	p n m n This gives that the cardinality of words of length 4 which can belong to is less than Ω p n m n logpp n q. r´Ω, Ωs is less than Ω p 2 n m n logpp n q.
			pn	1 1	ď 4ε n .
	Hence	ˇˇw p4q n ˇˇ´´´Ñ nÑ8	`8
	-Case 3: α 1 1 " α 1 . In this case, we get ˇˇw p4q n ˇˇě m n ǫ 2 n p n ´en pα 2 q ´1¯´e n pα 1 q	´1¯.

 

this is a direct consequence of Taylor formula with integral remainder.
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which yields as above that the cardinality of words of length 2 k which can belong to r´Ω, Ωs is less than

Now, if r is any arbitrary even number. Write r in base 2 as r " 2 ls `¨¨¨`2 l1 with l s ą ¨¨¨ą l 1 ě 1.

and write w prq n " w p2 ls q n `¨¨¨`w p2 l 1 q n , with w p2 l j q n " η pjq 1 ω n pk pjq 1 q `¨¨¨`η pjq 2 l j ω n pk pjq lj q, j " 1, ¨¨¨, s, and

Observe that the important case to consider is the case

Using again p12q we obtain for a large n that

Hence, the cardinality of words of length r which can belong to r´Ω, Ωs is less than 

The last inequality is due to the fact that for a large n we may assume that logpp n q m n is strictly less than 1. In addition, since p n ě 2, ÿ r even 4ďrďpn 1 p `r 2 ´2tlog 2 prqu`2 n is convergent. Now, we give the proof of our main result.

Proof of Theorem 3.3. Follows easily from the proposition 5.1 combined with proposition 4.2.

Remark. It is shown in [START_REF] El Abdalaoui | Spectral disjointness in some class of rank one flows[END_REF] that the spectrum of the Ornstein rank one flows is singular and in the forthcoming papers we shall extended the classical results of Klemes [START_REF] Klemes | The spectral type of staircase transformations[END_REF] and . This allow us to ask the following question Question 5.8. Does any rank one flow have singular spectrum?