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ON THE SPECTRAL TYPE OF SOME CLASS OF RANK ONE
FLOWS

E. H. EL ABDALAOUI

ABSTRACT. It is shown that a certain class of Riesz product type measure
on R is singular. This proves the singularity of the spectral types of some
class of rank one flows. Our method is based on the extension of the Cen-
tral Limit Theorem approach to the real line which gives a new extension of
Salem-Zygmund Central Limit Theorem.

AMS Subject Classifications (2010): 37A15, 37A25, 37A30, 42A05, 42A55.
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1. INTRODUCTION

The purpose of this paper is to study the spectral type of some class of rank
one flows. Rank one flows have simple spectrum and using a random Ornstein
procedure [22], A. Prikhod’ko in [26] produce a family of mixing rank one flows.
It follows that the mixing rank one flows may possibly contain a candidate for the
flow version of the Banach’s well-known problem whether there exists a dynamical
flow (9, A, i, (T})ter) with simple Lebesgue spectrum . In [25], A. Prikhod’ko
introduced a class of rank one flows called exponential staircase rank one flows
and state that in this class the answer to the flow version of Banach problem is
affirmative. Unfortunately, as we shall establish, this is not the case since the
spectrum of any exponential staircase rank one flow is singular.

Our main tools are on one hand an extension to R of the CLT method (introduced
in [1] for the torus) and on the other hand the generalized Bourgain methods [5]
obtained in [2] (in the context of the Riesz products on R).

This allows us to get a new extension of the Salem-Zygmund CLT Theorem [32]
to the trigonometric sums with real frequencies.

Originally Salem-Zygmund CLT Theorem concerns the asymptotic stochastic
behaviour of the lacunary trigonometric sums on the torus. Since Salem-Zygmund
pioneering result, the central limit theorem for trigonometric sums has been in-
tensively studied by many authors, Erdos [10], J.P. Kahane [13], J. Peyriere [24],
Berkers [4], Murai [20], Takahashi [28], Fukuyama and Takahashi [11], and many
others. The same method is used to study the asymptotic stochastic behaviour of
Riesz-Raikov sums [23]. Nevertheless all these results concern only the trigonomet-
ric sums on the torus.

Here we obtain the same result on R. The fundamental ingredient in our proof
is based on the famous Hermite-Lindemann Lemma in the transcendental number
theory [30].

Notice that the main argument used in the torus case [1] is based on the density
of trigonometric polynomials. This argument cannot be applied here since the
density of trigonometric polynomials in L'(R,w(t)dt) (w is a positive function in
LY(R)), is not verified unless w satisfies some extra-condition. Nevertheless, using
the density of the functions with compactly supported Fourier transforms, we are
able to conclude.

The paper is organized as follows. In section 2, we review some standard facts
from the spectral theory of dynamical flows. In section 3, we recall the basic
construction of the rank one flows obtained by the cutting and stacking method
and we state our main result. In section 4, we summarize and extend the relevant
material on the Bourgain criterion concerning the singularity of the generalized
Riesz products on R. In section 5, we develop the CLT method for trigonometric
sums with real frequencies and we prove our main result concerning the singularity
of a exponential staircase rank one flows.

1Ulam in his book [29, p.76] stated the Banach problem in the following form

Question 1.1 (Banach Problem). Does there exist a square integrable function f(z) and a
measure preserving transformation T'(z), —00 < x < o0, such that the sequence of functions
{f(T™(x));n =1,2,3,---} forms a complete orthogonal set in Hilbert space?
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2. BASIC FACTS FROM SPECTRAL THEORY OF DYNAMICAL FLOWS

A dynamical flow is a quadruplet (X, A, i, (T3)+er) where (X, A, ) is a Lebesgue
probability space and (T}):er is a measurable action of the group R by measure
preserving transformations. (It means that

e cach T; is a bimeasurable invertible transformation of the probability space
such that, for any A € A, u(T, *A) = u(A),

o forall s,teR, Ty 0Ty = Tsy,

e the map (¢,z) — T;(x) is measurable from R x X into X.)

Let us recall some classical definitions. A dynamical flow is ergodic if every
measurable set which is invariant under all the maps T} either has measure zero or
one. A number ) is an eigenfrequency if there exists nonzero function f € L?(X)
such that, for all t € R, foT; = e f. Such a function f is called an eigenfunction.
An ergodic flow (X, A, u, (T})ter) is weakly mizing if every eigenfunction is constant
(a.e.). A flow (X, A, u, (T})er) is mizing if for all f,g e L?(X),

ff o Ty(x)g(x)dp(z) —— | f(z)du(x) fﬁ(w)du(w)-

|t]—>+00

Any dynamical flow (T}):er) induces an action of R by unitary operators acting
on L?(X) according to the formula Ur,(f) = foT-;. When there will be no
ambiguity on the choice of the flow, we will denote U; = Ur,.

The spectral properties of the flow are the property attached to the unitary
representation associated to the flow. We recall below some classical facts; for
details and references see [8] or [14].

Two dynamical flows (X1, A1, 1, (Tt)ter) and (Xa, Aa, pa2, (St)ter) are metrically
isomorphic if there exists a measurable map ¢ from (X1, A1, u1) into (Xa, Az, p2),
with the following properties:

e ¢ is one-to-one,
e For all Ae Ay, pu1(¢p71(A)) = pa(A).
e S;op=q¢oT;, VteR.

If two dynamical flows (T})ter and (St)iwer are metrically isomorphic then the iso-
morphism ¢ induces an isomorphism Vj between the Hilbert spaces L?(X5) and
L?(X,) which acts according to the formula Vy(f) = f o ¢. In this case, since
VyUs, = Ur,Vy, the adjoint groups (Ur,) and (Us,) are unitary equivalent. Thus
if two dynamical flows are metrically isomorphic then the corresponding adjoint
groups of unitary operators are unitary equivalent. It is well known that the con-
verse statement is false [8].

By Bochner theorem, for any f € L2(X), there exists a unique finite Borel
measure oy on R such that

5}(15) _ f o itE daf(&) =Uf, f) = J foTy(x) T(»’C) du(x).
R X

oy is called the spectral measure of f. If f is eigenfunction with eigenfrequency A
then the spectral measure is the Dirac measure at .

The following fact derives directly from the definition of the spectral measure: let
(ax)1<k<n be complex numbers and (t;)1<k<n be real numbers; consider f € L?(X)
and denote F' = > ;ay - f oTy,. Then the spectral measure op is absolutely
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continuous with respect to the spectral measure oy and

n
k=1

Here is another classical result concerning spectral measures : let (g,) be a
sequence in L?(X), converging to f € L?(X) ; then the sequence of real measures
(04, — o) converges to zero in total variation norm.

2
dO‘F

(1) (&) =

doy

The mazximal spectral type of (Ti)wer is the equivalence class of Borel measures
o on R (under the equivalence relation p; ~ po if and only if u1 << po and
po << 1), such that oy << o for all f € L?(X) and if v is another measure for
which oy << v for all f e L*(X) then o0 << v.

The maximal spectral type is realized as the spectral measure of one function:
there exists hy € L?(X) such that oy, is in the equivalence class defining the
maximal spectral type of (T;)ier. By abuse of notation, we will call this measure

the maximal spectral type measure.

The reduced maximal type oy is the maximal spectral type of (Ut), g on L3(X) def

fel*X) : ffdu =0 p. The spectrum of (7})+r is said to be discrete (resp.

continuous, resp. singular, resp. absolutely continuous , resp. Lebesgue) if o is
discrete (resp. continuous, resp. singular with respect to Lebesgue measure, resp.
absolutely continuous with respect to Lebesgue measure).

The cyclic space of h e L?(X) is

Z(h) % span{Ush : te R}

There exists an orthogonal decomposition of LQ(X ) into cyclic spaces
[00)
(2) L*(X) =@ Z(hi), on, » ony » ...
i=1

Each decomposition (2) is be called a spectral decomposition of L*(X) (while the
sequence of measures is called a spectral sequence). A spectral decomposition is
unique up to equivalent class of the spectral sequence. The spectral decomposition
is determined by the maximal spectral type and the multiplicity function M : R —
{1,2,...} U {+00}, which is defined oy,-a.e. by M(s) = 3.7 | 1y,(s), where Y1 = R
dog, .

Tous for i > 2.

The flow has simple spectrum if 1 is the only essential value of M. The mul-
tiplicity is homogeneous if there is only one essential value of M. The essential
supremum of M is called the mazimal spectral multiplicity.

Von Neumann showed that the flow (7%):cr has homogeneous Lebesgue spectrum
if and only if the associated group of unitary operators (U;)wer satisfy the Weyl
commutation relations for some one-parameter group (V;):er i.e.

UV, = e SV, U,, s,teR,

and Y; = supp

where e~%? denotes the operator of multiplication by e~%5¢.
It is easy to show that the Weyl commutation relations implies that the maxi-
mal spectral type is invariant with respect to the translations. The proof of von

Neumann homogeneous Lebesgue spectrum theorem can be found in [8].
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3. RANK ONE FLOWS BY CUTTING AND STACKING METHOD

Several approach of the notion of rank one flow have been proposed in the liter-
ature. The notion of approximation of a flow by periodic transformations has been
introduced by Katok and Stepin in [15] (see Chapter 15 of [8]). This was the first
attempt of a definition of a rank one flow.

In [9], del Junco and Park adapted the classical Chacon construction [6] to
produce similar construction for a flow. The flow obtain by this method is called
the Chacon flow.

This cutting and stacking construction has been extended by Zeitz ([31]) in order
to give a general definition of a rank one flow. In the present paper we follow this
cutting and stacking (CS) approach and we recall it now. We assume that the
reader is familiar with the CS construction of a rank one map acting on certain
measure space which may be finite or o-finite. A nice account may be founded
in [12].

Let us fix a sequence (p, )nen of integers = 2 and a sequence of finite sequences

Pn—1

of non-negative real numbers ( (sy, j)j: 1

n>0

Let By be a rectangle of height 1 with horizontal base By. At stage one divide By
into po equal parts (A; ;). Let (A} ;)% denotes the flow towers over (A1 )52,
In order to construct the second flow tower, put over each tower A; ; a rectangle
spacer of height s; ; (and base of same measure as A, ;) and form a stack of height
hi1 = po +Z§"=1 51,5 in the usual fashion. Call this second tower Bi, with B; = A,

At the k' stage, divide the base Bj_; of the tower Bj_; into py_; subsets
(Ag,;)757" of equal measure. Let (Akj)57" be the towers over (A ;)5" respec-
tively. Above each tower Ay ;, put a rectangle spacer of height s ; (and base of
same measure as Ay, ;). Then form a stack of height hy, = px—1hg—1 + 3 557" 55 ; in
the usual fashion. The new base is By = A1 and the new tower is Bj.

All the rectangles are equipped with Lebesgue two-dimensional measure that will
be denoted by v. Proceeding this way we construct what we call a rank one flow
(T})ter acting on a certain measure space (X, B, v) which may be finite or o—finite
depending on the number of spacers added at each stage.

This rank one flow will be denoted by

t def [t
(T)eer = (T@m(snﬂ,j)i;)@o)teR

The invariant measure v will be finite if and only if

+00 NPk
Z j=1 Sk+1,5 <
= Prhi

In that case, the measure will be normalized in order to have a probability.

Remarks 3.1. The only thing we use from [31] is the definition of rank one flows.
Actually a careful reading of Zeitz paper [31] shows that the author assumes that
for any rank one flow there exists always at least one time ¢y such that 73, has
rank one property. But, it turns out that this is not the case in general as proved
by Ryzhikhov in [27]. Furthermore, if this property was satisfied then the weak
closure theorem for flows would hold as a direct consequence of the King weak
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closure theorem (C(T3) < C(to) I ne WCT(Ty,) €« WCT(Ty) < C(Ty), where
C(to) is the centralizer of Ti, and WCT (Ty,) is the weak closure of Ty,).

3.1. Exponential staircase rank one flows. The main issue of this note is to
study the spectrum of a subclass of a rank one flows called exponential staircase
rank one flows which are defined as follows.

Let (mp,pn)nen be a sequence of positive integers such that m, and p, goes
to infinity as n goes to infinity. Let &, be a sequence of rationals numbers which
converge to 0. Put

En-D
Pn

mp,
wn(p) = E—Qpn(eXp( )—1) for any pe{0,---,pn —1},

and define the sequence of the spacers ((Sp+1,p)p=0,-« pn—1)nz0 DY

h’n + Sn+1,p+1 = wn(p + 1) 7wn(p), p= 07 Y £ 1,TL€ N.

In this definition we assume that m,, > &,.h,, for any n € N. We will denote this
class of rank one flow by

Ten (Tt ) .
( )tER (anwn)nzo teR

In [2] it is proved that the spectral type of of any rank one flow (T

(pnv(5n+l,j)f:1)n20
is given by some kind of Riesz-product measure on R. To be more precise, the au-

thors in [2] proved the following theorem

)te]R

Theorem 3.2 (Maximal spectral type of rank one flows). For any s € (0,1], the
spectral measure o, is the weak limit of the sequence of probability measures

n

[ [ 1P K (6) do,

k=0

where

1 pe—1 o . J
Pk(H) _ \/ﬁ ( Z ezG(]thrSk(J))) , gk(]) — Z Sk41,s gk(o) = 0.
1=1

Jj=0

and

sin(22 2
KS(Q):%.< ;2)>.

In addition the continuous part of spectral type of the rank one flow is equivalent

: -k
to the continuous part of ,;1 2 0,1
>

The theorem above gives a new generalization of Choksi-Nadkarni Theorem [7],
[21]. We point out that in [3], the author generalized the Choksi-Nadkarni Theorem
to the case of funny rank one group actions for which the group is compact and
Abelian.

We end this section by stating our main result.
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Theorem 3.3. Let (T%)cg = (T(tp on) 0) be a exponential staircase rank one
nsWn Jn= teR

flow associated to
En-P

m
wn(p) = E—;pneXp( ), p=0,,pn—1.

n Pn

Then the spectrum of (T})gr is singular.

4. ON THE BOURGAIN SINGULARITY CRITERIUM OF GENERALIZED RIESZ
PRODUCTS ON R

In this section, for the convenience of the reader we repeat the relevant material
from [2] without proofs, thus making our exposition self-contained. Let us fix
s€(0,1) and denote by us the probability measure of density K on R, that is,

d:us (9) = K&(e) do

We denote by o the spectral measure of 15— given as the weak limit of the following

s

generalized Riesz products

N
— _ : 2
(3) do =W~ lim kr:[l | Pe[*dpss,

1 pe—1 o J
Pk(H) _ - ( Z ezG(]thrSk(J))) , gk(]) — Z Sk+41,s gk(o) = 0.
\/ZT]C j=0 1=1

Let us recall the following Bourgain criterion established in [2].
Theorem 4.1 (Bourgain criterion). The following are equivalent

(i) o is singular with respect to Lebesgue measure.

L
(ii) inf H|Pw|dus:L€N, n<ng <...<nr, =0.
R 4=1

As noted in [2] to prove the singularity of the spectrum of the rank one flow it is
sufficient to prove that a weak limit point of the sequence (‘ |P|? — 1‘) is bounded
by below by a positive constant. More precisely, the authors in [2] established the
following proposition.

Proposition 4.2. Let E be an infinite set of positive integers. Suppose that there
exists a constant ¢ > 0 such that, for any positive function ¢ € L?(R, u,),

liminff gi)||Pm|2 - 1| dps = cf @ dps.
"mel” Jr R

The proof of the proposition 4.2 is based on the following lemma.

Then o is singular.
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Lemma 4.3. Let E be an infinite set of positive integers. Let L be a positive
integer and 0 < m; < ng <--- < nr be integers. Denote Q) = Hle | Py, |- Then

2
1

limsupr | P | dps < f@ dps — 3 liminfo ‘|Pm|2 - 1‘ dps

m—s+00 m—+x0

meE
For sake of completeness we recall from [2] the proof of the proposition 4.2.

Proof of Proposition 4.2.

L

Let 8 = inf JQduS : Q=H|PW|,L€N,O<H1<n2<~~~<nL . Then,
=1

for any such @, we have

JQ dus = 8 and liminfo|Pm| dus = 0.
Thus by Lemma 4.3 and by taking the infimum over all Q) we get

1
B<B—- 5(05)2
It follows that
B =0,

and the proposition follows from Theorem 4.1. (I

5. THE CLT METHOD FOR TRIGONOMETRIC SUMS AND THE SINGULARITY OF
THE SPECTRUM OF EXPONENTIAL STAIRCASE RANK ONE FLOWS

The main goal of this section is to prove the following proposition

Proposition 5.1. Let (T%)cr = (Tt

(Prsom) ) be a exponential staircase rank
PnsWn)n=0 /) 1cp

one flow associated to
m En-P
wn(p) = —pnexp (—=), p=0,---,pp— 1.
E’n, pn

Then, there exists a constant ¢ > 0 such that, for any positive function f in
L2(R, us), we have

Jiminf f SO 1Pa )2 =1 dus(t) > ¢ J F(t) dps ().
R R

The proof of the proposition 5.1 is based on the study of the stochastic behaviour
of the sequence |P,,|. For that, we follow the strategy introduced in [1] based on
the method of the Central Limit Theorem for trigonometric sums.

This methods takes advantage of the following classical expansion

2

exp(iz) = (1 +iz)exp ( — % + T(:L')),

where |r(x)| < |z|?, for all real number = 2, combined with some ideas developed

in the proof of martingale central limit theorem due to McLeish [19]. Precisely, the
main ingredient is the following theorem proved in [1].

2this is a direct consequence of Taylor formula with integral remainder.
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Theorem 5.2. Let {X,; : 1 < j < kp,n > 1} be a triangular array of random
variables and t a real number. Let

kn
S = > Xy,
j=1

En
H 1+ itX,;),
and
t2 kn kn,
i=1 i=1
Suppose that

(1) {75} is uniformly integrable.
(2) E(Tn) 1.

2 R 1 in probability.

(4) 121]1222 |an| — 0 in probability.

2
Then E(exp(itS,,)) — exp(—%).

We remind that the sequence {X,,,n > 1} of random variables is said to be
uniformly integrable if and only if

c—>+00

lim J |Xn|d]P’ =0 uniformly in n.
{\X \>c}

and it is well-known that if

(4) sup (E(|Xn|1+8)> <+,

neN

for some ¢ positive, then {X,,} is uniformly integrable.

Using Theorem 5.2 we shall prove the following extension to R of Salem-Zygmund
CLT theorem, which seems to be of independent interest.

Theorem 5.3. Let A be a Borel subset of R with us(A) > 0 and let (my,, pn)nen
be a sequence of positive integers such that m,, and p, goes to infinity as n goes to
infinity. Let €, be a sequence of rationals numbers which converge to 0 and

. m En-J .
wn () = —5Pn exp (;—j) for any je{0,---,p, —1}.
n n

Then, the distribution of the sequence of random variables Wi Z "o o1 cos(wn (5)1)
converges to the Gauss distribution. That is, for any real number z, we have

ﬁu {teA \/i Ay j x}

COS(wn(J)t) <
(5) T Von f Pt N (=0, 2]) .

We start by proving the following proposition.
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Proposition 5.4. There exists a subsequence of the sequence <’|Pn(9)|2 -1

)nZN

which converges weakly in L?(R, us) to some non-negative function ¢ bounded
above by 2.

In the proof of Proposition 5.4 we shall need the following lemma proved in [2].

Lemma 5.5. The sequence of probability measures |P,(0)[*?K,(0)df converges
weakly to K(0) d6.

Proof of Proposition 5.4. Since for all n , we have HPnHiQ(#S) = 1. Therefore, the

sequence (‘ |Pn|2 — 1D is bounded in L? (]R, us), thus admits a weakly convergent
neN

subsequence. Let us denote by ¢ one such weak limit function. Let f be a bounded
continuous function on R. We have

Jf"'Pn|2_1’dﬂs < ff'|Pn|2dﬂs+deuS'

By Lemma 5.5 we get

lim Jf-‘|Pn|2—1‘dus<2ffdus.
n—-+aw

Hence, for any bounded continuous function f on R, we have

ff%ﬁdus <2deus.

which proves that the weak limit ¢ is bounded above by 2. (I

Let us prove now that the function ¢ is bounded by below by a universal positive
constant. For that we need to prove Proposition 5.1. Let n be a positive integer
and put

W, = {Em-wn(j) : mé{*lvl}vfc{ov”"p”’l}}'

jeI

The element w = »,,_; njwn(j) is called a word.

We shall need the following two combinatorial lemmas. The first one is a classi-
cal result in the transcendental number theory and it is due to Hermite-Lindemann.

Lemma 5.6 (Hermite-Lindemann, 1882). Let a be a non-zero algebraic num-
ber. Then, the number exp(«) is transcendental.

We state the second lemma as follows.
Lemma 5.7. For any n € N*. All the words of W,, are distinct.

Proof. Let w,w' € W,,, write
jel

w' = Z n;wn(])

jer
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Then w = w’ implies

S en() — 3 () =

jel Jer’
Hence
27]] exp( —] 2 7]] exp =0
jel jel’

But Lemma 5.6 tell us that 65"/ Pn is a transcendental number. This clearly forces
I = I’ and the proof of the lemma is complete. O

Proof of Theorem 5.3. Let A be a Borel set with p5(A) > 0 and notice that for any
positive integer n, we have

L‘\/;pj Cos(wn( )t )’ dus(t) < 1.

Therefore, applying the Helly theorem we may assume that the sequence

\/5 pn—1
( cos(wn (i)t))

N
converge in distribution. As is well-known, it is sufficient to show that for every
real number z,

n=0

1 V2P 22
—_— exp{ —ir—— cos(w d — exp(——).
| e st ) o)
To this end we apply theorem 5.2 in the following context. The measure space is
the given Borel set A of positive measure with respect to the probability measure

ps(A)

and the random variables

s on R equipped with the normalised measure

are given by

2
cos(wn(j)t), where 0<j<p,—1, nelN.
\/DPn

It is easy to check that the variables {X,,;} satisfy condition (4). Further, condition
(3) follows from the fact that

pnfl 2 2
E X2, —1| dus(t) —— 0.
n—0o0

It remains to verify condltlons (1) and (2) of Theorem 5.2. For this purpose, we
set

Xpj =

—pnil fizﬁ cos(wn (7
Ou(z.1) ]_[ (1~ i costn 1)
=1+ Z po™ () cos(wt),

weW,

and
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Hence

1
prn—1 2 2
2x
o] < {1 (14 29)}
0 Pn
But, since 1 + u < e*, we get
2

(6) ’@n(z,t)‘ <ev.

This shows that the condition (1) is satisfied. It still remains to prove that the
variables {X,;} satisfy condition (2). For that, it is sufficient to show that

™ J ]_[ 2 costn)0) i) ——— (A,

7=0

Observe that

J O (. 1)djus () = p1a(A) + D Jwew, pu™ () f cos(wt)dp, (1)
A A

and for w = 37, wn(g;) € Wy, we have

ol=r|p
pu @) < 2L
pn
hence
TP P pu—)
weW,, pg n—0o0

We claim that it is sufficient to prove the following

(®) fqbl__[(

for any function ¢ with compactly supported Fourier transforms. Indeed, assume
that (8) holds and let € > 0. Then, by the density of the functions with compactly
supported Fourier transforms [16, p.126], one can find a function ¢, with compactly
supported Fourier transforms such that

HXA-KS — P

n—o0

(@ai)t))dt —— | oat,
R

<€,
L'(R)

where y 4 is indicator function of A. Hence, according to (8) combined with (7),
for n sufficiently large, we have

\J On(a,t)dpis (t) — p(A)] = \J O, t)dps (t) - f Oz, ) (t)dt +
A A R
J On(, )b (t)dt — f be(t)dt + f be(t)dt — ps(A)| < €€ + 2.

R R R
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The proof of the claim is complete. It still remains to prove (8). But, since

Z |J- e~ "' ¢(t)dt| is bounded, we deduce
wew YR

‘ 2 Pw(”)(x)J @(t) cos(wt)dt| < |—ﬁ| 2 ‘f e Wt (t)dt — 0.
R R

weW, p'r2z weW
This finishes the proof of the theorem. (]

Proof of Proposition 5.3. Let A be a Borel subset of R, and z €]1, +[, then, for
any positive integer m, we have

J ’|Pm(9)|2 _ 1’@5(9) > J ’|Pm(9)|2 _ 1’dus(9)
A (A |Pn(0)|>x)

> (2? — 1)M5{9 €A : |Pn(0)] > x}

> (22 — 1)MS{9 €A : [R(Pn(0) > z}
Let m goes to infinity and use Theorem 5.3 and Proposition 5.4 to get

f 6 dp > (2 — {1 N([~vZe, V2] s (A).
A

Put K = (z — 1){1 — N([-v2z,+/22])}. Hence

J ¢ dps = Kpus(A),
A

for any Borel subset A of R. This end the proof of the proposition. (I

Now, we give the proof of our main result.

Proof of Theorem 3.3. Follows easily from the proposition 5.1 combined with propo-
sition 4.2. 0

Remark. It is shown in [2] that the spectrum of the Ornstein rank one flows is
singular and in the forthcoming papers we shall extended the classical results of
Klemes [17] and Klemes-Reinhold [18]. This allow us to ask the following question

Question 5.8. Does any rank one flow have singular spectrum?
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