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This paper deals with the stability study of Partial Differential nonlinear Equation (PDE) of Saint-Venant. The proposed

approach is based on the Multi-Models concept which takes into account some Linear Time Invariant (LTI) models defined

around a set of operating points. This method allows to describe the dynamic of this nonlinear system in infinite dimension

over a wide operating range. A stability analysis of the nonlinear PDE of Saint-Venant is proposed both by the use of

Linear Matrix Inequality (LMI) and an Internal Model Boundary Control (IMBC) structures. The method is applied both

in simulations and real experimentations through a micro channel, illustrating thus the theoretical results developed in the

paper.
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1. Introduction

Irrigation channels regulation problem presents an eco-

nomic and environment interest and many research have

been done in this area. Indeed, the water is a precious

resource which has to be efficiently managed and pro-

tected. However, water losses in irrigation channels are

substantial while it is the biggest consumer of fresh water

(≃ 80%). The automation of irrigation channels have

improved the output of such process, but for irrigation

channels the loss are still around 30%, due to inefficient

management and control. In order to avoid overflows

and to satisfy specific water requirements, the level of

instrumentation (e.g. water level measurements and

motor-driven gates) and automation in open channel

networks increase (see (Mareels et al., 2005) for an

overview). On the other hand, the water request, the

ecological constraints and the necessary limitations have

become more and more important these last years. The

instrumentation and the control (by a state feedback

for example) allow to improve the management of such

systems; nevertheless it is necessary to improve them so

as to take into account in a more precise way every event

that can occur. In order to deliver water, it is important to

ensure that the water level and the flow rate in the open

channel remain at given values. The difficulty of this

control system is that only the gates positions are able to

meet performance specifications: that’s why the use of

boundary control laws satisfying the control objectives

are required. Open surface channels possess a nonlinear

complex dynamics because they couple phenomena of

transport and phenomena of delay. Those distributed

parameters systems have a dynamic represented by hyper-

bolic Partial Differential Equations (PDE), which depend

on time and space: the equations of Saint-Venant. This

problem has been previously considered in the literature

using a wide variety of technics. See the use of classical

linear control theory in (Malaterre et al., 1998; Papageor-

giou and Messmer, 1989; Weyer, 2002). Some of them

take into account the uncertainties and apply some robust

control approaches (see (Litrico and Georges, 1999)

e.g.). Others researchers have studied directly the non-

linear dynamics as in (Zaccarian et al., 2007; Litrico

et al., 2005; Dulhoste et al., 2001; Dos Santos and

Prieur, 2008). Recent approaches have considered the

distributed feature of the system. Using the Riemann’s

coordinates approach on the Saint-Venant equations,

stability results are given in (Greenberg and Li, 1984)

for a system of two conservation laws and in (Li, 1994)

for system of larger dimension. Lyapunov technics

have been used in (Coron et al., 2007; Dos Santos

et al., 2008; Dos Santos and Prieur, 2008).

In practice, process industries as mining, chemical, water

treatment processes are characterized by complex pro-
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cesses which often operate in multiple operating regimes

(Blesa et al., 2010). It is often difficult to obtain nonlinear

models that accurately describe plants in all regimes.

Also, considerable effort is required for development of

nonlinear models. Comparatively, different techniques for

linear systems identification, control and monitoring are

available. An attractive alternative to nonlinear technique

is to use a multiple linear models strategy. The concept

of the multiple models or ’Multi-Models’ are based on

the partitioning of the operating range of a system into

separated regions by applying local linear control to

each region (Murray-Smith and Johansen, 1997). The

Multi-Models structure is well adapted for nonlinear

systems because this structure allows to determine a set of

linear models defined around some predefined operating

points. Each local model (called sub-model) is defined

as a Linear Time Invariant (LTI) model dedicated to a

specific operating point. The Multi-Models philosophy is

based on weighting functions which ensure the transition

between the different locals models. These functions

represent the degree of validity of each local model. This

degree of validity is a function of the system inputs,

outputs and time. The Multi-Models approach has

often been used for modelling and control of nonlinear

systems (Porfirio et al., 2003; Athans et al., 2005) and

for fault diagnosis (Bhagwat et al., 2003; Gatzke and

Doyle, 2002; Rodrigues et al., 2008). Some authors

speak about gain scheduling strategy like in (Leith and

Leithead, 2000), or Linear Parameter Varying (LPV)

systems with the same formalism (Hamdi et al., 2011)

or interpolated controllers (Banerjee et al., 1995) or

switching controllers (Narendra et al., 1995).

The use of Multi-Models representation for stability study

of systems described by nonlinear PDE is something new

in the literature for such systems; but some researchers

like (Wang et al., 2011) have recently developed a

control strategy by Takagi-Sugeno models for PDE

nonlinear systems with a stability study. More generally,

common approaches are based on a finite dimensional

approximation of the nonlinear PDE and adaptive control.

The stability and the control of such systems in infinite

dimension is still an open problem.

In this paper, an analysis of the stability of the nonlinear

PDE of Saint-Venant is proposed by the use of the

Multi-Models and Internal Model Boundary Control

(IMBC) structures. The stability study is performed

by Linear Matrix Inequality (LMI) due to the effec-

tiveness for calculating a unique gain solution for

multiple models (Lopez-Toribio et al., 1999; Rodrigues

et al., 2007; Dos Santos Martins and Rodrigues, 2011).

The paper is organized as follows: firstly, the Saint-Venant

equations are presented as well as the control problem.

The Internal Model Boundary Control is explained and the

physical constraints are given. Secondly, the linearized

systems are developed around a set of equilibrium which

depend on the space variable. Their insertion into the LMI

formalism are also described into this second part. The

third part of the paper is dedicated to the design of an in-

tegral feedback gain by LMI which ensures the stability

of the system: an integral controller is designed and im-

plemented using a ”Lyapunov-LMI” approach. The last

section is dedicated to the simulations and the experimen-

tations. The data used are the one of the water channel

of Valence. Comparisons between initial experimental re-

sults using a PI-controller (done some years ago) and sim-

ulations with the presented integral controller using theo-

retically tuned gain, are realized. New experimentations

have been implemented too with these theoretical gains

found by the LMI synthesis.

2. Problem statement about channel regula-

tion

Let us consider the following class of water channels

represented on the figures (1) and (2), i.e. a reach of

an open channel delimited by underflow and/or overflow

gates where:

• Q(x, t) is the water flow rate,

• Z(x, t) is the height of water channel,

• L is the length of the reach taken between the up-

stream xup = 0 and the downstream xdo = L,

• Uup = U0(t), Udo = UL(t) are the opening of the

gates at upstream and downstream.

Fig. 1. Channel scheme: upstream underflow and downstream

overflow gates

The regulation problem concerns the stabilization of the

water flow rate and/or the height of the water around an

equilibrium for a reach denoted by (Ze(x), Qe(x)). A

linear model with varying coefficients can be deduced

from the nonlinear PDE, in order to describe the variation
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Fig. 2. Channel scheme: two underflow gates

of the water level and flow for an open channel. Let recall

these models.

2.1. A model of a reach.

The channel is supposed to have a sufficient length L such

that one can consider that the lateral movement is uniform.

Nonlinear PDE of Saint-Venant, which describe the flow

on the channel, are the following (Georges, 2002):

∂tZ = −∂x
Q

b
, (1)

∂tQ = −∂x

(
Q2

bZ
+

1

2
gbZ2

)
+ gbZ(I − J), (2)

Z0(x) = Z(x, 0), Q0(x) = Q(x, 0), (3)

∀x ∈ Ω = (xup, xdo) = (0, L), t > 0, where I is the

slope, b is the channel width, g is the constant gravity.

J is the friction slope from the formula of Manning-

Strickler and R is the hydraulic radius. J and R are de-

fined such that:

J =
n2Q2

(bZ)2R4/3
, R =

bZ

b + 2Z
. (4)

The different limits conditions bring us to consider two

control cases, ∀ x ∈ Γ = ∂Ω:

Case a Single variable control, spillway case:

The equation of the upstream condition of the reach (x =
xup) is given by

Q(xup, t) = Uup(t)Ψ1(Z(xup, t)), (5)

with Ψ1(Z) = K1

√
2g(Zup − Z). The downstream con-

dition of the reach (x = xdo) is given by the spillway

equation (figure (1)):

Z(xdo, t) = Ψ2(Q(xdo, t)), (6)

where

Ψ2(Q) =

(
Q2

2gK2

)1/3

+ hs.

Zup is the water height at upstream of the gate, Ki is the

product of the channel width with the water flow rate co-

efficient of the gate n0i, Uup(t) is the upstream control.

hs is the height of the spillway considered constant in this

case. Let denote that the variable to control is the height

Z(xdo). So, in this case xup = 0, xdo = L, Uup = U0

(cf. figure (1)).

Case b Multi-variable control :

The upstream condition equation is still the equation (5).

Another control can appear at the downstream of the

reach, i.e. in x = xdo (figure (2)):

Q(xdo, t) = Udo(t)Ψ3(Z(xdo, t)),

where Ψ3(Z) = K2

√
2g(Z − Zdo) and Udo(t) is the

downstream control of the reach, Zdo is the water height

downstream of the gate (cf. figure (2)).

• Upstream and downstream depend of the considered

reach, it is the same thing for abscissa and gates.

• The case b is considered, i.e. the multi-variable con-

trol case.

2.2. A regulation model.

An equilibrium state (∂t(.) ≡ 0) of the system verifies the

following equations:

∂xQe = 0 (7)

∂xZe = gbZe
I − Je

gbZe − Q2
e/bZ2

e

, (8)

Remark 1. The fluvial case is considered and it follows

that:

Ze > 3

√
Q2

e/(gb2). (9)

Let denote that Qe is constant but that ze depends of

space variable. The linearized model around an equilib-

rium point (Ze(x) Qe(x))t is, with

ξ(t) = (z(t) q(t))t

The linearized state variables are:

∂tξ(x, t) = A1(x)∂xξ(x, t) + A2(x)ξ(x, t) (10)

= A(x)ξ(x, t)

ξ(x, 0) = ξ0(x)

q(xup, t) = Uup,e∂zΨ1(Ze(xup, t))z(xup, t)

+uup(t)Ψ1(Ze(xup, t)) (11)

q(xdo, t) = Udo,e∂zΨ3(Ze(xdo, t))z(xdo, t)

+udo(t)Ψ3(Ze(xdo, t)) (12)
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where Uup,e, Udo,e are the openings gates for the upstream

and downstream at the equilibrium and uup(t), udo(t) are

the variations of these openings gates to be controlled.

The matrices A1(x), A2(x) are given by:

A1(x) =

(
0 −a1

−a2(x) −a3(x)

)
, (13)

A2(x) =

(
0 0

a4(x) −a5(x)

)
(14)

with a1 = 1/b, a2(x) = gbZe(x) −
Q2

e

bZ2
e
(x) ,

a3(x) = 2Qe

bZe(x) , a4(x) = gb(I + Je(x) +
4

3
Je(x)

1+2Ze(x)/b ),

a5(x) = 2gbJe(x)Ze(x)
Qe

.

The control problem is to find the variations of uup(t) at

extremity x = xup and udo(t) at the extremity x = xdo of

the reach such that downstream water level, z(xdo, t) =
z(L, t) (measured variables), tracks a reference signal

r(t).
The reference signal r(t) is chosen for all cases: constant

or non-persistent (a stable step answer of a non-oscillatory

system).

In this paper, the control scheme based on the Inter-

nal Model Boundary Control (IMBC) (Dos Santos, 2004;

Dos Santos et al., 2005) is adopted as illustrated on fig-

ure (3). This control strategy integrates the process model

in real time and allows to regulate the water height in all

the points of the channel by taking into account the error

between the linearized model and the real system (or the

nonlinear model for the simulations).

• Mf is the linear filtering model of finite di-

mension which aims at filtering the error signal

e(t) = ys(t) − y(t).

• Mr is the pursuit model which allows to put a dy-

namic by regards of the fixed reference r(t).

Fig. 3. IMBC structure: Internal Model Boundary Control

2.3. Stability of the system.

The equation (10) describes the dynamic of the system in

open loop. In this representation, the state vector ξ(x, t)

is not explicitly linked with the boundary control. In or-

der to design an output feedback and to study the closed-

loop stability, an operator D of distribution of the bound-

ary control is introduced. It is a bounded operator such

that Im(D) ⊂ Ker(A) and Du ∈ D(A) and (Dos San-

tos, 2004; Touré and Rudolph, 2002; Sakawa and Mat-

sushita, 1975):

ξ(x, t) = ϕ(x, t) + Du(t). (15)

This operator is naturally null in the domain of A(x) as

it is active only on the boundary of the domain. This

change of variables allows to get a Kalman representa-

tion of the system (Touré and Rudolph, 2002; Sakawa and

Matsushita, 1975; Alizadeh Moghadam et al., 2011):

∂tϕ(x, t) = A(x)ϕ(x, t) − Du̇ (16)

ϕ(x, 0) = ϕ0(x) = ξ0(x) − Du(0). (17)

It has been proved that the open-loop system described be-

low is exponentially stable (Dos Santos, 2004; Dos San-

tos and Toure, 2005), as the operator of the linearized

system in infinite dimension generates an exponentially

stable C0-semigroup. Moreover, under a PI control

u(t) = αiκi

∫
ε(s)ds + αpκpε(t) ∈ U = R

n, u ∈
Cα([0,∞], U) 1, conditions on the tuning parameters are

also given to ensure the stability of the closed-loop nonlin-

ear system using the IMBC structure and the properties of

stability of the closed-loop linearized system, figure (3).

For example, some of those conditions are taken for the

tuned parameters of the PI-control:

0 ≤ αi < αi,max = min
λ∈Γ

(a‖R(λ;Ae)‖ + 1)−1 (18)

0 ≤ αp < αp,max = (sup
λ∈Γ

a‖R(λ;A)‖)−1 (19)

where Ae is a part of the series development of the closed

loop operator (Dos Santos and Toure, 2005), and R(λ; K)
is the resolvent operator of K, a a constant which depend

on Ae.

Those theoretical results have been coupled with simula-

tions and experimentations which have been confirmed

this approach (Dos Santos, 2004; Dos Santos and

Toure, 2005).

Those experimentations have risen up the limitations due

to the linearization around an equilibrium state and a first

attempt of a multi-models experimentations have been

successfully realized (figure (10)) but it was not optimal

and no theoretical proof has been given. The aim of this

paper is to develop a first step for this proof.

In order to control the water level over a wide operating

range, a set of local models are considered around judi-

cious operating points: each model is an approximation

1Regularity coefficient is generally taken as α = 2.
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of the process in a small interval of the operating range

and a control is synthesized and activated on this interval

when the system goes trough it. The idea here, is to de-

fine necessary conditions to preserve the stability of this

system all along the operating range.

2.4. A Multi-Models representation of Saint-Venant’s

Equations.

The Multi-Models structure like (Rodrigues et al., 2008;

Hamdi et al., 2011), allows to control the system over a

wide operating range because it takes into account the dif-

ferent sub-models which can be activated under different

operating regimes (Murray-Smith and Johansen, 1997).

The representation of Saint-Venant’s PDE around N op-

erating points by the Multi-Models approach is defined by

the following equations:

∂tξ(x, t) =

N∑

i=1

µi(ζ(t))Ai(x)ξ(x, t) (20)

Ai(x) = A1,i(x)∂x + A2,i(x) (21)

ξ0(x) = ξ(x, 0)

• Ai(x) is the operator which corresponds to the ith

equilibrium state.

• ζ(t) is a function depending of some decision vari-

ables directly linked with the measurable states vari-

ables and eventually to the input.

• µi(ζ(t)) is the weighting functions that are based on

the output height of the process zL and determine

which sub-model is used for the control law.

A Multi-Models approach can be developed and made

possible the study of the stability by the Lyapunov second

method.

In the following paragraph, the synthesis of a control law

by LMI technics is developed. An output feedback is con-

sidered under an integral control and the synthesis of the

gain by LMI technics ensures the stability of the system.

3. Stability study by LMI

In this part, the closed-loop structure (figure (3)) is studied

under an integral feedback. The pursuit model (Mr) and

filtering model (Mf ) are not considered. The choice of an

integrator can be justified by the fact that the derivative of

the control u̇ appears in the state equation (16).

3.1. Closed-loop structure for an integral feedback.

For a control with an output feedback, K is defined as the

gain, u (t) = K
∫

ε(t)dt , it follows that (Dos Santos,

2004):

ε(t) = r(t) − y(t) (22)

u(t) = K

∫
[r(τ) − y(τ)]dτ (23)

with y(t) = C(ξ(x, t) + Eq(x, t)) where Eq(x, t) =∑N
i=1 µi(ζ(t))(ze,i(x) qe,i)

t the equilibrium state and for

example CEq(x, t) =
∑N

i=1 µi(ζ(t))ze,i(L) if the aim is

to regulate the water level at x = L. From equation (15),

one deduces:

y(t) = Cϕ(x, t) + CEq(x, t) + CDu(t) (24)

and by replacing y(t) into the control equation:

u(t) = K

∫
[r(τ) − CEq(x, τ)

−Cϕ(x, τ) − CDu(τ)] dτ

⇒ u̇(t) = K [r(t) − CEq(x, t) − Cϕ(x, t) − CDu(t)]

and u̇ into the equation (16), the closed-loop expression is

then

∂tϕ(x, t) =

N∑

i=1

µi(ζ(t))
[
Ai(x)ϕ(x, t)

−DK (r(t) − CEq(x, t) − Cϕ(x, t) − CDu(t))
]

=

N∑

i=1

µi(ζ(t))
[
(Ai(x) + DKC) ϕ(x, t)

+DK (CDu(t) + CEq(x, t) − r(t))
]

(25)

Let define:

K̃ = DK (26)

The equation (25) can be written as

∂tϕ(x, t) =

N∑

i=1

µi(ζ(t))[(Ai(x) + K̃C)ϕ(x, t)

+K̃(CDu(t) + CEq(x, t) − r(t))] = Mi(x, t).(27)

The stability conditions are ensured by using a quadratic

Lyapunov function as in (Rodrigues et al., 2007; Hamdi

et al., 2011) in order to guarantee the convergence of the

water height to the reference r(t) over the widest operat-

ing range.

3.2. Stability study with a quadratic Lyapunov func-

tion.

Let us consider:

V (ϕ(x, t), t) =< ϕ(x, t), Pϕ(x, t) > (28)

where < ., . > is the inner product considered. The Multi-

Models representation of the linearized PDE of Saint-

Venant defined by equation (27) is asymptotically stable
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if there exists a matrix/operator P > 0 such that1:

For finite dimension systems:

V̇ (ϕ(x, t), t) < 0, (29)

⇔< ϕ̇, Pϕ > + < ϕ, P ϕ̇ >< 0, (30)

For infinite dimension systems:

< ϕ̇, Pϕ > + < Pϕ, ϕ̇ >= − < ϕ,ϕ > (31)

Remark 2. As told previously, the authors want to give

first elements of a proof of the stability using LMI technics

usually defined for finite dimension systems but applied

to infinite dimension systems in this paper. The authors in

(Hante and Sigalotti, 2010) have worked on the stability of

switching systems in infinite dimension and they are still

working to link those mathematical results to the LMI ap-

proach. The tools for LMI technics developed in infinite

dimension have not been found by the authors and we try

to developed them making a parallel with known technics.

The authors (Wang et al., 2011) have also used LMI tech-

nics for the stability study.

The previous results, like in the example part, can be

put in parallel with the following theorem (Curtain and

Zwart, 1995):

Theorem 1. (S)uppose that A is the infinitesimal gener-

ator of the C0-semigroup T (t) on the Hilbert space Z.

Then T (t) is exponentially stable if and only if there exists

a positive operator P ∈ L such that (with ż = Az)

< Az, Pz > + < Pz, Az >= − < z, z >,∀z ∈ Z.
¤

The main difference here between this stability result in

finite and infinite dimension, is located in the inequal-

ity of the Lyapunov function for finite dimension system

and equality for infinite one. This equality complexity

can be removed in some cases: for example for opera-

tors with compact resolvent (Triggiani, 1975; Dos San-

tos, 2004; Curtain and Zwart, 1995) and in this case the

same inequality from finite dimension is a sufficient and

necessary condition for the infinite dimension case. In-

deed, the inequality from finite dimension can not be

transposed directly in infinite dimension because the spec-

tral growth assumption is not satisfied in general (it is, in

finite dimension) i.e. an operator A generator of a C0-

semigroup TA(t) satisfies the spectral growth assumption

if:

sup{R(λ);λ ∈ σ(A)} = w0(A) := inf
t>0

‖TA(t)‖

t

So, if the spectral growth assumption is satisfied, and if

there exists a positive operator P ∈ L such that (with

ż = Az)

< Az, Pz > + < Pz,Az > < 0,∀z ∈ Z (32)

1We suppose that ∂tψ = ψ̇ whatever the function ψ.

then T (t) is exponentially stable.

For the Saint-Venant equations, it has been shown that

the operator has a compact resolvent (Dos Santos and

Toure, 2005; Dos Santos, 2004) so it satisfies the spectral

growth assumption.

Then, taking account of (27)-(32), it follows that one has

to prove this inequality:

< Mi, Pϕ > + < ϕ, PMi > < 0 (33)

The development of this inequality leads us to consider an

inequality for each sub-system of index i such that:

< [Ai(x) + K̃C]ϕ(x, t), Pϕ(x, t) >

+ < K̃(CDu(t) − r(t) + CEq(x, t)), Pϕ(x, t) >

+ < ϕ(x, t), P K̃(CDu(t) − r(t) + CEq(x, t)) >

+ < ϕ(x, t), P [Ai(x) + K̃C]ϕ(x, t) >< 0 (34)

In the inequality (34), which defines the stability condi-

tion of the system, the control parameter u appears in this

inequality and it is a difficulty for the design of the gain

K̃. Let us consider the following equality deduced from

(15):

CDu(t) − r(t) = Cξ(x, t) − r(t) − Cϕ(x, t) (35)

Proposition 1. (I) f there exists a matrix P positive def-

inite, a matrix W and a scalar α such that the following

statements hold true:

a) < ϕ, PK̃ (CDu(t) + CEq(x, t) − r(t)) > (36)

≤ αϕT PK̃Cϕ,

b) AT
i P + PAi + WC + CT WT < 0, (37)

with K̃ = 1
1+αP−1W . Then, the system (16) with an

integral control input (23) is stable. ¥

Proof. Let consider the quadratic Lyapunov function

V (ϕ(x, t), t) =< ϕ,Pϕ >= ϕT Pϕ

then, one can wrote V̇ (t) < 0 such that (34) can be upper

bounded. Indeed inequality (36) implies that

ϕT P
[
(Ai + K̃C)ϕ + K̃(CDu − r)

]

≤ ϕT P
[
(Ai + K̃C)ϕ + αK̃Cϕ

]

≤ ϕT P
[
Aiϕ + K̃Cϕ(1 + α)

]
(38)

So with the last consideration, the inequality (34) can be
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then upper bounded by:

ϕT (x, t)[Ai(x) + K̃C]T Pϕ(x, t)

+ϕT (x, t)P [Ai(x) + K̃C]ϕ(x, t)

+[K̃(CDu(t) − r(t) + CEq(x, t))]T Pϕ(x, t)

+ϕT (x, t)P [K̃(CDu(t) − r(t) + CEq(x, t))]

≤ ϕT (x, t)
{

[Ai(x) + (1 + α)K̃C]T P

+P [Ai(x) + (1 + α)K̃C]
}

ϕ(x, t) (39)

= ϕT
[
AT

i P + PAi + WC + CT WT
]
ϕ < 0

with K̃ = 1
1+αP−1W . Now, let discuss about the in-

equality (36);

ϕT PK̃ (CDu(t) + CEq(x, t) − r(t)) ≤ αϕT PK̃Cϕ.

Let remember that the system is exponentially stable in

open-loop and for a PI-controller in closed-loop, with

gains correctly tuned (Dos Santos, 2004; Dos Santos and

Toure, 2005) for a time t well chosen, so one can assume

that ∃ k > 0 such that

| Cξ(x, t) + CEq(x, t) − r(t) |≤ k | Cϕ(x, t) | . (40)

Let pose εf(t) = sign(f(t)), then

CDu(t) − (r(t) − CEq(x, t))

= Cξ(x, t) − (r(t) − CEq(x, t)) − Cϕ(x, t)

| CDu − r + CEq(x, t) |≤| Cξ − (r − CEq) | + | Cϕ |

That is to say that one can bound (CDu − r) by:

−(k + 1)ε(Cϕ)Cϕ ≤ CDu − r ≤ (k + 1)ε(Cϕ)Cϕ

−(k + 1)ε(Cϕ)ε(ϕT PK̃)ϕ
T PK̃Cϕ ≤ ϕT PK̃ (CDu − r)

≤ (k + 1)ε(Cϕ)ε(ϕT PK̃)ϕ
T PK̃Cϕ

and

⇒ ϕT PK̃ (CDu − r) ≤ (k + 1)ε(ϕT PK̃Cϕ)ϕ
T PK̃Cϕ

So, the inequality (36) is proved and

ϕT P [Ai + K̃C]ϕ + ϕT P [K̃(CDu − r)ϕ (41)

≤ ϕT P
[
Ai + (1 + (k + 1)ε(ϕT PK̃Cϕ))K̃C

]
ϕ

then, one get the gain K̃ = 1
1+αP−1W as

ϕT P [Ai + K̃C]ϕ + ϕT P [K̃(CDu − r)ϕ




≤ ϕT P
[
Ai + (k + 2)K̃C

]
ϕ

if ε(ϕT PK̃Cϕ) = 1, with α = k + 1

≤ ϕT P
[
Ai + kK̃C

]
ϕ

if ε(ϕT PK̃Cϕ) = −1, with α = −k.

(42)

¥

Remark 3. The solution of Proposition (1) may lead to

a conservatism due to the fact that a unique gain has been

determined for all the models. However, it is here a first

attempt into infinite dimension and the use of LMI applied

to such PDE systems is very recent.

Now, the gain K̃ has been implemented into the dis-

cretized model of simulations so as to verify the stabil-

ity of the system. The results have been obtained for

a single reach with two underflow gates. The aim is to

compare the simulations and experimentations curves ob-

tained with this method and the ones obtained experimen-

tally by Dos Santos Martins in previous works (Dos San-

tos, 2004; Dos Santos et al., 2005).

4. Simulations and experimentations results

Firstly, let’s describe the benchmark used for the simula-

tions and the experimentations which are presented in the

second and third subsections respectively.

4.1. Configuration and data of the channel.

An experimental validation has been performed on the Va-

lence micro-channel, figures (4) and (5), Tab.1. This pi-

lot channel is located at ESISAR 2 /INPG 3 engineering

school in Valence (France). It is operated under the re-

sponsibility of the LCIS 4 laboratory. This experimental

channel (total length=8 meters) has an adjustable slope

and a rectangular cross-section (width=0.1 meter). The

channel is ended at its downstream by a variable overflow

spillway and equipped with three underflow control gates

(figures (4) and (5)). Ultrasound sensors provide water

level measurements at different locations of the channel

(figure (6)). Note that water flow is deduced from the gate

equations and has not been measured directly.

parameters B(m) L (m) K (m1/3.s−1)
values 0.1 7 97

parameters µ0 µL slope (m.m−1)
values 0.6 0.73 1.6 0/00

Table 1. Parameters of the channel of Valence

For all numerical simulations, the Chang and Cooper

theta-scheme of order 2 is used (Cordier et al., 2004).

To validate this numerical discretization, comparisons

between the numerical simulations with real data and

with numerical simulations using the Preissmann scheme

(which is used in other works dealing with the control of

flows (Litrico and Georges, 1999; Ouarit et al., 2003))

were done in (Dos Santos and Prieur, 2008). They val-

idated the numerical discretization and the identification

2École Supérieure d’Ingénieurs en Systèmes industriels Avancés

Rhône-Alpes
3Institut National Polytechnique de Grenoble
4Laboratoire de Conception et d’Intégration des Systèmes
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Fig. 4. Pilot channel of Valence

Fig. 5. Pilot channel of Valence

Fig. 6. Pilot channel of Valence: gate and ultrasound sensors

of the parameters. It also has been done for the micro-

channel (figure (7)).

0 50 100 150 200 250 300 350 400 450 500
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Water levels at downstream

Time (s)

dm

system

equilibrium 2

equilibrium 1

Fig. 7. Pilot channel of Valence: open loop identification

The experimental data depicted below have been filtered

to get a better idea of the experimentation results. One

reach has a length of 0.7m, the water level at upstream of

the first gate is Zup = 0.172m and at downstream of the

second gate Zdo = 0.085m (theoretical values).

For this study, the following set of parameters from

the practical Valence’s channel (figure (5)) is considered

where the data are defined such that:

• n = 20 is the number of the discretizated points,

• ZL is the water height to regulate.

In this single reach with two gates, the regulation of the

water height ZL at x = L, is done by controlling the

openings U0(t) and UL(t) of the gates at upstream and

downstream respectively: it is a multi-variable control (Cf

figure (2)).

The equilibria profiles have been chosen such that the cal-

culated control law from the local models can be efficient

over all the operating range of the water height (Dos San-

tos, 2004). Let notice that it has been experimentally ver-

ified that a local model is valid around ±20% of a water

level equilibrium profile, i.e. the model and the data have

the same behavior and values. In order to assign refer-

ences which are included between 0.06m and 0.2m, the

operating points at x = 0 are the following:

Table 2. Initial set points for the simulations and the experimen-

tations

Simulations Experimentations

ze1(x = 0) 0.062m
ze2(x = 0) 0.077m
ze3(x = 0) 0.099m
ze4(x = 0) 0.135m
ze5(x = 0) 0.18m

ze1(x = 0) 0.062m
ze2(x = 0) 0.094m
ze3(x = 0) 0.141m
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The efficiency of the computer managing the D-Space

card can not bear more than three equilibrium states as

it is working on a Windows 95 version. So the numbers of

them towards the simulations had to be reduced.

In this application, the weighting function µi(ζ(t)) is

equal to 1 if the output’s height is included into the va-

lidity domain of the model, otherwise it is equal to 0. The

parameter ζ(t) exclusively depends on the output which is

the only one variable of decision in this precise case.

4.2. Simulations.

These results are obtained from an IMBC Control and a

Multi-Models approach with a LMI gain previously cal-

culated in the previous section. The figure (8) shows that

the output Z(L) converges to the reference even if this one

strongly varies (variations > 100%). The reference tracks

a slow dynamic and one can see that the convergence of

the output is good.

0 200 400 600 800 1000 1200

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

(d
m

)

Reference
Non linear system

Fig. 8. Variations of the reference greater than 100%

The curves that describe the upstream and downstream

gates openings of the reach are given by the figure (9).

The convergence of the output to the reference is ensured

even when the reference is decreasing or increasing.

Next simulations are a first comparison between simu-

lations using the theoretical gain obtains through LMI

approach with the first tests realized some years ago

by (Dos Santos et al., 2005), using an experimental

Multi-Models gain, without any theoretical study. The

figure (10) represents the dynamic evolution of the

simulated system and the experimental data. Note that

the references curves are equals, the experimental one

stands for the signal v(t), the simulation one stands for

the signal r(t) after the reference model Mr (cf. figure

(3)). The figure (11) compares the dynamic of the gate

openings. The dynamic of the gates as of the water level

0 200 400 600 800 1000 1200
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (s)

(d
m

)

Upstream gate
Downstream gate

Fig. 9. Gates opening

are similar and so are promising.
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m

)

Comparison of the downstream                                
water level measured in the Valence channel vs simulated one

Reference from the simulation
Non linear system (I−LMI simulation)
Water level data (PI experimentation)
Reference from the experimentation

Fig. 10. Comparison of the downstream water level measured

in the Valence channel with the first Multi-Models ap-

proach in 2004 versus the simulated one with the LMI

approach

One can observe on figure (10), that the convergence are

better than the one obtained experimentally and the over-

shoot is less too. But the rising time is obviously slowly

(at time t = 120 − 200s example given) with the inte-

gral controller (simulation) versus the PI controller (ex-

perimentation). The next step is to design a new PI con-

troller using LMI, to compare it to the experimental PI. It

is actually under study.

Remark 4. The reference level of the channel is limited

by physical constraints: the minimum is obtained with the
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Fig. 11. Gates opening

maximum between the water height of the downstream

reach and the fluvial condition, obtained from the initial

model (9). The maximum from the size of the channel it-

self. In these simulations, the critical water height from

fluvial constraint is zec = 0.0369m.

4.3. Experimentations.

These experimentations have been realized into the Va-

lence channel (figure (5)) with a Multi-Models approach

and a gain calculated via the LMI approach. In the ex-

perimentations figures (12)-(13), the wide range of the

accessible water level is attempt. Let remark that some

problems appear with the gates as sometimes they stay

jammed because of the friction (e.g. here at times t = 50s,

t = 120s, t = 550s and t = 625s). Those problems act

like perturbations and the integral controller try to com-

pensate them.

50 100 150 200 250 300 350 400 450 500

Downstream water

Time (s)
  550 600 650 700 750 800 850

reference
data

Fig. 12. Valence micro channel: Downstream water level
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Gate opening

Time (s)
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downstream
upstream 

Fig. 13. Valence micro channel: Gates openings

The convergence of the downstream water level is ensured
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in spite of the perturbations, but it necessary to improve

the controller to take them into account.

Those experimental results are relevant and promising to-

wards the applicability of our approach. Nevertheless,

some improvements have to be done and a first step is to

extend first results to a PI controller, then to get the ro-

bustness by this way.

5. Acknowledgments

Thanks to professor E. Mendes and the LCIS for allowing

us to realize our experimentations on the micro-channel.

6. Conclusion

First attempts of a multi-models approach on irrigation

channels control, through an IMBC structure, have been

realized some years ago (Dos Santos, 2004; Dos Santos

et al., 2005). Good experimental results, but without

theoretical approach, were obtained and have shown

promising results. In this paper, the authors have for-

malized a LMI approach of the problem and given first

theoretical results in order to tune the new feedback gain

trough LMI in the case of an integral controller. Simula-

tions have shown the improvements realized towards the

initial multi-models approach and new experimentations

have confirmed the new theoretical tuning of the gain.

This paper has allowed to find some stability results

of infinite dimension systems with LMI tools for finite

dimension systems.

Extensions to a PI-controller are actually in study and

preliminary results have been published (Dos Santos

Martins and Rodrigues, 2011). The complexity is here

located in the fact that it is a boundary control and by

its distribution on the state, that the control appears in a

derivative form. Further experimentations are planned for

a new PI-controller and thus comparisons with the same

controller have been and are already performed.
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