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Abstract. Rupture events, as the propagation of cracks or the sliding along faults, associated with the
deformation of brittle materials are observed to obey power-law distributions. This is verified at scales
ranging from laboratory samples to the Earth’s crust, for various materials and under various loading
modes. Besides the claim that this is a universal characteristic of the deformation of heterogeneous media,
spatial and temporal variations are observed in the exponent and tail-shape. These have considerable
implications for the ability and the reliability of forecasting large events from smaller ones. There is
a growing interest in identifying the factors responsible for these variations. In this present work, we
first present observations at various scales (laboratory tests, field experiments, landslides, mining induced
seismicity, crustal Earthquakes) showing that substantial variations exist in both the slope and the tail-
shape of the rupture event size distribution. This review allows us to identify potential explanations for
these variations (incorrect statistical methods, heterogeneity, stress, brittle/ductile transition, finite size
effects, proximity to the failure). A possible link with the critical point theory is also drawn showing that
it is able to explain a part of the observed variations considering the distance to the critical point. Using
numerical simulations of progressive failure we investigate the role of mechanical properties on the power-
law distributions. The results of simulations agree with the critical point theory for various macroscopic
behaviors ranging from ductility to brittleness providing a unified framework for the understanding of
power-law variability observed in rupture phenomena.

PACS. PACS-key Failure materials, 81.40.Np – PACS-key dynamic critical behavior, 64.60.Ht

1 Introduction

The deformation of brittle materials is associated with
damage (i.e. micro-cracks nucleation and propagation) and
friction (i.e. sliding on preexisting cracks or geological
faults). These processes occur by the accumulation of dis-
crete events of size spreading over several orders of mag-
nitude. This is observed at scales varying from that of
laboratory samples to that of the Earth’s crust, including
underground excavations, quarries, cliffs, landslides and
volcanoes. Scaling invariance is observed for temporal (e.g.
the distribution of waiting time), spatial (e.g. fractal struc-
ture of the rupture) and size distributions, displaying the
complexity of the rupture dynamics. Here we focus on the
ubiquitous observation that the size distribution of the
rupture events obeys a power-law characterized by its ex-
ponent, called b-value in the Earth sciences field. Despite
the fact that the mean value of this exponent is robustly
observed to be near 1 for Earthquakes, substantial varia-
tions exist in both the slope (e.g. [39]) and the shape of
the distribution for largest events, i.e. the tail-shape (e.g.
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[29]) of the rupture event size distribution. Since the early
works of Mogi [32] and Scholz [42] on brittle rocks, there
is a constant effort to understand the origins of these fluc-
tuations and whether material properties and mechanical
loading conditions are able to explain them.

The dynamics of fracturation and damage during me-
chanical loading usually displays a power-law distribution
of rupture event sizes.

N(> s) = c.s−β (1)

where s is a measure of the rupture event size, N(> s)
is the number of events with size larger than s, c and β
are constants. N(> s) is the empirical cumulative distri-
bution function cdf . The frequency size relationship can
also be examined using the probability density function,
pdf , which is obtained by derivating the cumulative dis-
tribution function. In the case of power-law, the exponent
of the pdf equals −β − 1.

p(s) = c′.s−β−1 (2)

In numerical simulations, the rupture event size can
be estimated by the number of broken bonds during an
avalanche for fracture models, or by the area of a slip
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zone in friction models. In laboratory experiments, when
using acoustic emission (AE) monitoring for observing the
damage dynamics, s can be estimated by the signal maxi-
mum amplitude A or energy E. The absolute value of the
β exponent depends on the metrics used for characterizing
the event size s. In AE monitoring, theoretical considera-
tions, well verified empirically allows us to consider that
E scales with A2 [27], so that both N(> A) and N(> E)
obey power-law,

N(> A) = cA.A
−βA (3)

N(> E) = cE .E
−βE (4)

but the exponents will be different in the two cases, with
the scaling relationship βA = 2βE.

In a log-log representation, such power-law distribu-
tions appear linear and exponent β is given by the slope
of the line.

logN(> s) = logc− β.logs (5)

This distribution exhibits remarkable similarity with the
Gutenberg-Richter empirical relationship observed for earth-
quakes [19].

logN(> M) = a− bM (6)

Where N (> M ) is the number of earthquakes with a mag-
nitude larger than M . The magnitude M is theoretically
and empirically related to the energy E released by the
seismic rupture [20,43]

M =
2

3
logE − 11.8 (7)

where E is in ergs. So the values of b, βA and βE are
linearly related b = 3

2βE = 3
4βA. Figure 1 shows an ex-

ample of Magnitude and Energy distributions observed for
California Earthquakes with the corresponding exponents.
The former relation between the exponents is empirically
well verified.

As power-laws indicate scale invariance and because
of the similarities in the underlying physics, AE of rocks
observed in the laboratory has been considered as a small-
scale model of the seismicity of the Earth’s crust [42]. Ob-
servations of both earthquakes and AE show variations of
the b-value in time and space domains. The purpose of
this work is to identify possible origins of these variations
and to provide a physical model able to explain them. The
paper is organized as follows:
i) A review of laboratory and field observations of b-value
variations and outcomes of numerical models able to pro-
duce power-law distributions of rupture events, providing
a short list of potential explanations of the b-value varia-
tions.
ii) Detailed analysis of each potential explanation and of
their effect on b-value.
iii) Numerical modeling showing the effect of the mechan-
ical properties on both the power-law exponent and the
tail-shape. Analysis of the agreement with critical point
theory.

2 Observed variations in the power-law
distributions of rupture events

2.1 Experimental and Field observations

Mogi [32], suggested that the b-value depends on the ma-
terial heterogeneity, a low heterogeneity leading to a low
exponent. Scholz [42] observed that the b-value decreased
before the stress peak of rock specimens compressed in the
laboratory and argued for a negative correlation between
b-value and stress. The relationship between the b-value
and the fractal dimension D of AE source locations has
also been investigated in the laboratory [28] and showed
a decrease of b-value in conjunction with the strain local-
ization, i.e. to a decrease of D-value. These patterns have
been observed essentially for brittle rocks (e.g. [25,22])
and for other heterogeneous materials such as chipboard,
fiberglass [18] or paper [40] providing arguments for the
existence of a relationship between the b-value decrease to
the progressive spatial clustering of the damage.

Temporal fluctuations of the b-value have also been
observed for earthquakes leading some authors to con-
sider the b-value decrease as a precursor to major earth-
quakes being considered as macro-failure events [26,48,
53,54]. Observations of the seismicity emitted by a rock
cliff before a collapse revealed that such a decrease of the
b-value was associated with a power-law acceleration of
the event rate and of the released energy rate [7]. Con-
sidering that such a pattern fits with the critical point
theory, the authors suggested that the apparent b-value
decrease could be induced by a cut-off of increasing size
as the failure approaches rather than by a real change of
the power-law exponent.

For brittle rocks, the b-value has been reported to de-
pend on the mechanical loading conditions, i.e. type of
faulting for Earthquakes [45], the confining pressure [3], or
the roughness of sliding surfaces [41] in the laboratory. All
these observations agree with a dependence of the b-value
on friction and/or mean stress. The distinction between
these two factors remains difficult because they are ob-
served to be correlated [3], as friction decrease when the
confining pressure increases [23].

Spatial variations of the b-value have been studied by
calculating this parameter on small areas for tracking spa-
tial variations of either the stress or the mechanical prop-
erties of the Earth’s crust (e.g. [33,60,61]). A decrease of
the b-value with increasing depth has been observed for
earthquakes in California [34,16]. Similar depth depen-
dence has been observed in the western Alps [51] and for
induced seismicity related to Aswan Lake in Egypt [30]
indicating a possible relationship between b-value and the
mean stress and/or the brittle/ductile transition. Schor-
lemner et al [44] observed that the M=6 Parkfield earth-
quake fits well an area of particularly low b-value, suggest-
ing that this parameter could be used to identify areas
prone to the failure.

A few studies display variations in the shape of the
distribution tails, showing that the power-law trend is not
always respected for the largest events of the catalogue
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(e.g. [29]). The distribution tail can be characterized alter-
natively by a lack (cut-off e.g. [51] ) or by an excess (over-
sizing e.g. [10]) of large events compared with the power-
law trend. This discrepancy with the power-law trend is
of major importance regarding the ability to estimate the
probability of the largest events by extrapolation of the
observed distribution for the smaller ones.

2.2 Numerical simulations

Many studies use numerical simulation in order to recover
power-law distributions of failure events (see [2] for a re-
view). A common outcome of these simulations is that
power-law distributions emerge spontaneously from elastic
interaction within heterogeneous media [4]. Early models
based on cellular automata simulating the behavior of a
network of sliding blocks connected by springs [11,13,35]
aimed to reproduce the behavior of a fault. These models
reach a metastable state characterized by a power-law dis-
tribution of avalanches with an exponent remaining con-
stant. The value of the exponent may change depending
on the rules of interaction and of the non-conservative part
of the energy balance.

Fiber bundle and lattice solids models, with of with-
out electrical-mechanical analogy, have been extensively
used for characterising the emergence of power-law in rup-
ture phenomena, particularly as the macro-failure is ap-
proached (e.g. [38,62,63]). Due to its numerical simplicity,
this type of model allowed the authors to investigate the
behavior of large size models and in particular to identify
the role of the finite size of the system and of the distance
to the critical point on the emergence of power-law dis-
tributions. They showed in particular that power-law dis-
tributions of rupture avalanches are fully developed only
in the vicinity of the critical point, i.e. the macrofailure,
as described in critical point theory [49]. Variations in the
power-law shape and tail are shown to be related to the
presence of an exponential cut-off that depends on the fi-
nite size of the model and diverges as the critical point is
approached. The finite rate of the loading has also been
proposed to induce a cut-off of the power-law distribution
for largest size events [39,36]. The evoked mechanism is
that the loading rate should be infinitely small, or small
enough, for allowing the long range interaction that per-
mits the emergence of avalanches at all scales. In the case
of a too fast loading, viscous dissipation could contradict
the full range elastic interaction, limiting the emergence
of largest rupture events. Departure from pure power-law
may also originate from avalanches that overlap.

Models including more realistic rules of stress redis-
tribution, energy dissipation, strain softening or harden-
ing (e.g. [9,15]) allow investigation of the conditions of
appearance of cut-off or characteristic size failure events.
More complex models including tensorial description of
the stress state have been proposed [3,6,52] that simulate
both the progressive damage of brittle solids, the damage
localization process and, for some of them, the power-law
distributions of rupture events. This type of model has
been shown to produce critical behavior associated with

damage localization [17]. The tensorial description of the
elastic interaction allowed to draw the connection between
the power-law distributions of rupture and the scale invari-
ance of the strain field. This argues for the importance of
long range correlation in the emergence of power-law dis-
tribution of rupture events.

2.3 Potential explanations for power-law variations

2.3.1 Incorrect statistical methods

The main statistical bias is obviously related to the num-
ber of events, i.e. the size of the catalogue, used for calcu-
lating the exponent of the power-law distribution. Many
studies, essentially field works, estimated the b-value on
samples as small as a few hundred events. This is gen-
erally due to the difficulty of reaching a large number of
well-identified seismic events in certain field conditions.
Systematic tests based on random sampling from power-
law distribution [37] have shown that the confidence of
the b-value estimated by least squares regression decreases
as the sample size increases. It becomes lower than 0.1
for a sample larger than 200. We should note that stud-
ies performed in the framework of statistical physics are
generally based on several thousand events thus avoiding
sampling biases.

The second bias is related to the method used for
fitting a power-law trend onto the event size distribu-
tion. In the framework of statistical physics, the power-
law trend is generally estimated by a linear regression in
a log-log plane. When restricted to the power-law trend,
this method provides an objective estimation of the expo-
nent giving the same weight to all the size classes, without
taking into account the number of events in each class.
More elaborate methods combining maximum-likelihood
fitting methods with goodness-of-fit tests based on the
Kolmogorov-Smirnov statistics have been proposed to es-
timated both the exponent and the range of the power-law
trend [14].
In the field of Earth Sciences the maximum likelihood
method (MLM) proposed by Utsu and Aki [1,55] is fre-
quently used for estimating the b-value.

b =
log10e

< M > −Mmin
(8)

Where < M > and Mmin are the arithmetic mean and
the minimum magnitude of the catalogue. As it uses the
mean magnitude, this method provides an estimate con-
trolled essentially by smallest events, i.e. the most numer-
ous. Hence it is less sensitive to the occurrence of largest
events than the least squares method. The essential as-
sumption for the validity of the MLM estimate is that
Mmin is above the completeness magnitude [59] (i.e. the
magnitude above which the events are detected without
sampling biases e.g. regarding the distance to sensors),
and that a power-law trend is observed in the full range
of magnitudes. In the case where a cut-off exists for the
largest events (e.g. in Fig. 2), this method leads to an
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underestimation of the b-value. The MLM is often asso-
ciated with the so-called Utsu’s test [56] for determining
if the difference in b-value observed between two samples
is significant. Recently authors [8] used statistical tests to
compare least squares and maximum likelihood methods
on both natural and synthetic catalogues for estimating
biases related to the sampling. They concluded that the
Utsu’s test gives a biased indication of the significance of a
difference in b-value between two catalogues. In particular
for small size samples, this test provides a too easy ac-
ceptance of the difference as significant. They considered
that many previous studies associated the Utsu’s test with
catalogues of insufficient numbers of events, leading erro-
neously to consider insignificant variations of the b-value
to be significant. According to their study, a sample size
of 500 events is the minimum for identifying variations in
b-value of about 0.1 with a good statistical reliability.

A third bias can exist when comparing cumulative
(cdf) and discrete (pdf) event size distributions. In the
case of a pdf following a pure power-law, the integration
preserves the power-law shape with an exponent shifted
by -1 (see equ. 1 and 2). To be correct the pdf must be
calculated by dividing the number of events in each bin by
the bin width. Thus the pdf is independent of the binning,
whether log or linearly spaced. A potential problem may
arise when calculating the pdf for magnitude frequency
and referring to the Gutenberg-Richter law (equ. 6). As
the Gutenberg-Richter law corresponds to a linear trend
in a semilog plot, the corresponding cdf is often calculated
with a linearly spaced binning of the magnitude. Because
the bin width, measured in magnitude, is constant, the
division by the bin width preserve the b-value (see Fig. 1).
If the comparison between pdf and cdf is necessary, this
problem can be avoided by converting Magnitude into En-
ergy using equ. 7 and treating the frequency distribution
as a power-law. Figure 1 presents an illustration of the
difference between cumulative or discrete distribution for
either Magnitude or Energy. For Magnitudes the distribu-
tion are expressed in event number (N(> M) and N(M)
respectively) respecting the usage in Earth Science (e.g.
[45]). It appears clearly that for magnitude the b-value is
the same for the cumulative and discrete distributions. On
the contrary, for the Energy the difference of -1 between
the exponents of the cdf and the pdf is respected.

In the case where a discrepancy with a power-law ap-
pears, e.g. cut-off due to the lack of largest events, the
integration induces a curvature in the whole distribution
that can mask the real power-law segment. This can be
seen on fig. 2 where the power-law trend of the pdf ap-
pears only between the completeness level, for smallest
events, and the cut-off, for largest event (103 > E > 108).
These two limits of the power-law trend appear less clearly
on the cdf and are shifted toward smaller values. The pdf
is preferable in such a case to avoid associated errors in
the estimation of the power-law range.

2.3.2 Finite size effect

The emergence of a pure power-law (i.e. without cut-off) is
theoretically possible only within a system of infinite size.
In natural conditions such a hypothesis is obviously not
found to be true, even if in some cases (e.g. for the whole
Earth’s crust) the size is large enough to be considered
as infinite. In the case of a finite size system, the occur-
rence of the largest events is constrained by the size of
the system. As a consequence the power-law distribution
is affected by a exponential tail. Thus the equ. 2 describ-
ing the pdf (or equ. 1 if the cdf is considered) should be
modified for taking into account the cut-off, e.g. using an
exponential decay”.

p(s) ∝ s−β−1exp(−s/s0) (9)

Where s is the size of the event and s0 is the cut-off size. It
has been proposed that the cut-off size s0 scales with the
size of the system L obeying a power law s0 ∝ Lδ [2,17,
49]. The value of exponent δ depends on the dimension-
ality and on the dynamics of the system. It can be easily
determined in the case of numerical simulations by chang-
ing the system size L and analysing the size dependence
of s0. In the case of natural systems, the identification of
the finite size effect is more difficult as it can be confused
with the cut-off related to divergence towards the failure
(see section 2.3.3) or the one related to the finite loading
rate (see section 1). Mining-induced seismicity provides a
good example of cut-off probably induced by finite size
effect of by finite loading rate. In particular if the data
set includes all the events related to the collapse process,
the effect of distance to the failure can be excluded (see
the section 2.3.3). Figure 2 presents microseimic events
recorded in a French coal mine (see [47] for more details)
for all events recorded during the excavation process up
to and including the final rupture induced by the mine
collapse. According to the critical behavior expected for
this type of brittle failure process, the distribution of the
whole catalogue should obey a pure power-law [49]. The
cut-off for largest events is more likely to be due to the
finite size of the mine that can not induce events as large
as determined by the extension of the power-law trend.
Alternatively, the loading induced by the cutting at the
front of the excavation can be considered as fast enough
for activating viscous dissipation inducing a cut-off related
to finite loading rate [36,39].

2.3.3 Proximity of failure

Since the work of Scholz [42], the applied stress is the main
factor evoked for explaining the change in b-value. This is
based on the common laboratory observation where the in-
crease of the applied stress is accompanied by the b-value
decrease [3,18,27,31,42], the minimal value being reached
just before the macrofailure. This dependency has been
used as a proxy for estimating the stress in the Earth’s
crust, in particular in studies analysing the spatial vari-
ability of the b-value [16,44,54,60,61,34].
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Considering that the b-value decreases before the macro-
failure, several authors have used this parameter for fore-
casting failure events in natural conditions [7,48,53,57,
58]. In the case of objects for which the macrofailure can
be defined clearly, e.g. landslides, cliffs or volcanoes, this
approach is relevant as the collapse can be considered as
the end of the progressive failure process. More problem-
atic is the case of earthquakes that can be instead consid-
ered as part of a marginally stable process that never ends.
Here the analysis needs to distinguish the macro-events,
i.e. the so-called characteristic earthquakes, from the back-
ground seismic activity [53]. The Gutenberg-Richter law,
when faithfully respected, contradicts this distinction as
no breakdown appears in the scaling law. So there is no
reason to distinguish events of a particular size. Alterna-
tively, if a characteristic size appears in the magnitude dis-
tribution, the former approach could make sense. The case
of the California catalogue presented in fig. 1 provides a
possible application of such separation between large and
small events as a characteristic size appears on the magni-
tude distribution for M larger than 6. We calculated the
b-value for successive earthquakes sequences occurring in
California in the 1990-2010 period (117100 events). We
used a sufficiently large number of events (1000) contained
in moving windows to allow a robust estimate of the b-
value regarding the sampling bias. Figure 3 shows that
significant temporal variations of the b-value exist. In or-
der to verify if this decrease may be considered as a fore-
runner of large earthquakes, we identify the largest events
considering different magnitude thresholds (M>7, M>6,
M>5.5). One may first observe that the three M>7 events
are preceded by a substantial decrease of the b-value. This
could be considered as a promising result as the rate of
detection is good. But several times there is a decrease of
the b-value without the occurrence of such a large event so
that the rate of false alarms is not negligeable. When de-
creasing the threshold for large events to M>6, the rate of
false alarms decreases but the rate of detection too. This
effect is enhanced when considering events of M>5.5. The
rate of detection failure and false alarms is so high that the
forecast ability of the b-value decrease becomes doubtful.
An interesting point is that the magnitude distribution
(Fig. 1) for events larger than M=6, displays a slight dis-
crepancy compared to the power-law. So that these larger
events could be considered as characteristic earthquakes.
This could explain why a precursory behavior appears be-
fore these events, but does not explain the occurrence of
false alarms. The observed decrease of the b-value before
large events has been alternatively explained by epidemic
models showing that foreshocks, with decreasing b-value,
can result from cascades of triggered earthquakes [21]. But
the characteristic size we observe is not explained by this
kind of model.

The stress applied on the material has been early pro-
posed to be an explanative parameter for the b-value de-
crease observed before the failure [42]. Indeed the failure
occurs when the stress is increased up to the strength
of the material. So the stress has been considered as a
measure of the remaining distance before the failure. The

absolute value of the material strength may vary strongly
depending on the considered material. Therefore for allow-
ing comparisons between various materials, the absolute
value of the stress should be normalized by the strength
(i.e. the stress value at failure) of each material. The crit-
ical point theory rationalizes this statement by defining a
control parameter normalizing the distance to the failure.
The event size distribution can be expressed as a function
of the size s and of the control parameter Δ.

p(s,Δ) ∝ s−τ .exp(−s/s0) (10)

With Δ = σc−σ
σc

for stress controlled loading or Δ = εc−ε
εc

for strain controlled loading. σc and εc are the stress and
strain at the critical point, i.e. the macro-failure. In this
description, power-law distribution of the rupture events
is associated with an exponential cut-off. According to
the critical point theory, the cut-off should diverge when
approaching the critical point, whereas the β exponent
should remain constant. The cut-off s0 divergence when
Δ → 0 has been proposed to be well described by a power
law s0 ∝ Δ−γ [2,17,49, chap.9].

Including the exponential tail in the range used for
fitting the power-law trend, as Δ decreases, could display
an apparent decrease of the exponent (see e.g. [7]). This
could be the origin of the numerous observations of the
apparent b-value decrease before the failure. Considering
the mechanism of sweeping an instability, Sornette [50]
has analytically demonstrated that the distribution of the
whole population of events, i.e. including the progressive
evolution of the control parameter toward zero, obeys a
power-law conforming to the Equ. 9 (see section 4 for a
thorough explanation). In such a case, the cut-off is only
related to finite size effect.

2.4 Summary

Summarizing the preceding review, excluding incorrect
statistics methods, a few candidates arise for explaining
variations of the power-law distribution of rupture events
observed in natural conditions, experimental and numeri-
cal studies.
- Heterogeneity: based on theoretical considerations of the
probability of failure in a heterogeneous material, Mogi
[32] has proposed that the b-value should increase as the
heterogeneity increases.
- Stress: Scholz [42] has first observed a decrease of the b-
value when increasing the stress applied on rock samples.
- Proximity of failure: following the previous statement,
the b-value decrease has been considered to be a forerun-
ner of the failure. This behavior has been observed prior
to some large failure events but remains controversial for
large earthquakes.
- Finite size effect: the size of the largest event is con-
strained by the finite size of the object concerned by the
failure. This has been widely and essentially investigated
by numerical models of various size. The finite value of
loading rate as also been proposed to induce such a cut-
off.
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- Divergence of the cut-off toward the failure: the exponen-
tial tail of power-law is characterized by a cut-off whose
size diverges as the failure approaches, the failure is con-
sidered to be a critical point.
The latter two points can lead to a biased estimate of
the b-value if the range used for estimating it includes the
exponential tail.

In the next section we use numerical modeling to eval-
uate the pertinence of some of the stated potential ex-
planations for the observed variability of power-laws in
failure phenomena. In particular we focus on the effect of
mechanical properties and on the proximity of the failure.

3 Numerical modeling of progressive damage

3.1 Model features

The model we use here has demonstrated interesting fea-
tures for investigating power-law emergence in the pro-
gressive failure process[3,5,6,17]. It includes elastic inter-
action within a heterogeneous material with simple dam-
age rules. It is based on progressive isotropic elastic dam-
age. The effective elastic modulus, Eeff , is expressed
as a function of the initial modulus E0 and damage D:
Eeff = E0(1 −D). Such a relation works when the con-
sidered volume is large compared with the defect size, such
as cracks, and then can be considered as a mesoscale re-
lationship. The damage parameter D has been proposed
to be related to crack density (see [24] for a review). The
simulated material is discretized using a 2D finite element
method with plane strain hypothesis. The loading consists
of increasing the vertical displacement of the upper model
boundary. When the stress in an element exceeds a given
damage threshold, its elastic modulus is multiplied by a
factor (1 −D), D being constant and small compared to
1 (here we used D=0.1). Because of the elastic interac-
tion, the stress redistribution around a damaged element
can induce an avalanche of damages that we call an event.
The total number of damaged elements during a single
loading step is the avalanche size s, which is comparable
to the acoustic emission event amplitude observed in lab-
oratory experiments. The Mohr-Coulomb criterion is used
as a damage threshold:

σS = μ.σN + C (11)

where σS is the shear stress; σN is the normal stress;
C is the cohesion; and μ is the internal friction coefficient.
This criterion reflects that the maximum shear stress σS

the material can sustain increases linearly with the normal
stress. Thus it applies well for so-called frictional brittle
materials as rocks or ice [23,46]. To obtain macroscopic
behaviors differing from those of the elements, damage lo-
calization and avalanches size spreading over several mag-
nitude orders, it is necessary to introduce heterogeneity.
To simulate material strength heterogeneity, the cohesion
of each element, C, is randomly drawn from a uniform
distribution. Previous studies have shown that the abso-
lute value of strength doesn’t influence the behavior of

the model but only changes the scale of the stress/strain
relationship. On the opposite, the internal friction μ has
a strong influence on the damage localization, the brit-
tle/ductile type of macroscopic behavior and the distri-
bution of avalanches size [5]. Figure 4 shows the macro-
scopic strain-stress relationship obtained for simulations
with internal friction μ ranging from 0 to 1. The macro-
scopic behavior changes from ductile to brittle, as ob-
served in laboratory experiments for materials character-
ized by low/high friction. The effect of the friction on the
macroscopic behavior has been discussed in depth in pre-
vious works [4–6] and has been shown to be related to the
interaction geometry between defects that become more
anisotropic as the friction increases. This induces a more
localized damage (Fig. 5). In the following we focus on the
effect of μ on the avalanches distribution.

3.2 Effect of friction on the rupture events size
distributions

For the purpose of the present work we carried out simu-
lations with various internal friction values focusing essen-
tially on their impact on the avalanches size distribution.
Mechanical parameters have been chosen to correspond
to rocks. The used parameters are the following: initial
elastic modulus = 50 GPa, Poisson’s ratio = 0.25, co-
hesion ranging from Cmin= 25 MPa to Cmax=50 MPa,
internal friction ranging from 0 to 1. The model size was
128x256 elements. Loading was strain-controlled, i.e. the
upper boundary displacement was progressively increased.

Figure 4 shows the macroscopic behavior obtained by
numerical simulations with internal friction varying from
0 to 1. The corresponding damage state at the end of the
simulation is shown on Figure 5, for μ=0, 0.5 and 1 respec-
tively. Increasing the internal friction μ induces a progres-
sive change from ductile to brittle behaviour characterised
by the occurrence of a macroscopic stress drop of increas-
ing size. In the case of internal friction very low, i.e. near
zero, the stress reaches a metastable value without ap-
pearance of a particular point corresponding to the stress
peak. So no macro-failure can be individuated in this case.
We consider that the macro-failure corresponds to the oc-
currence of the largest stress drop when it is large enough
for affecting significantly the stress-strain curve. In this
case it corresponds to the stress peak. The macro-failure
associated with the macro-scale stress drop is considered
as a critical point in the following.

Regarding the events size distribution including the
whole simulation (Fig. 6), one may observe that the in-
ternal friction influences both the exponent (β in Equ. 9)
of the power-law trend and the tail shape. The exponent
increases with the friction, whereas the tail shape progres-
sively evolves from a cut-off, i.e. lack of large events, to an
oversizing, i.e. occurrence of extreme events out of scale.
Hence the macro-failure event generally does not scale
with the power-law trend. It is over- or under-estimated
depending on the ductile/brittle type of behaviour. In or-
der to characterise the discrepancy between the maximum
event size extrapolated from the power-law trend and that
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occurring during the simulation, we calculated the ratio

R = max(sobs.)
max(sPL) , max(sobs.) being the maximal observed

size during the simulation and max(sPL) being the maxi-
mal size estimated by the power-law considering the same
probability of occurrence. Table 1 shows the values of β
and R obtained for the different values of μ. β slightly de-
pends on μ which could explain spatial variations of the
b-value observed for earthquakes. More pronounced is the
impact of μ on R that varies from values smaller than 1,
corresponding to a cut-off, to values larger than 1, corre-
sponding to extreme event compared with the power-law
trend. Only in the case of μ=0.5, does the power-law trend
provide a good estimate of the maximum event size, as R
is close to 1. An interesting point is that the mean value
of friction for the Earth’s crust material is estimated to
be in the range 0.5-0.6 for seismogenic conditions [12], in-
cluding the former value. This could explain why cut-off
or oversizing are rarely observed for earthquakes. To this
concern, earthquakes can be considered as predictable in
size.

3.3 Critical behavior toward the failure

In order to characterize how the events size distribution
evolves toward the macro-failure, we calculated p(s) for
successive bins of the control parameter Δ. As the simula-
tion are realized under strain control condition, Δ = εc−ε

εc
,

εc being the strain at the macro-failure. The binning has
been equally spaced in a log scale and sized for ensuring a
large enough number of avalanches in each bin. For each
bin the representative value of the control parameter has
been calculated as the center of the bin in a log scale.
For ensuring good statistical representativity we stacked
20 simulations for each configuration. Figure 7 shows the
distribution obtained for different values of Δ in the case
μ=0.5. One can observe that the distributions are affected
by a cut-off whose size increases with decreasing control
parameter. The power-law trend appears fully only for the
smallest value ofΔ. The τ exponent (see Equ. 10) has been
estimated for the smallest value of the control parameter
Δ to be 1.5±0.05. In order to characterize the evolution
of the cut-off on approaching the failure, we performed
a data collapse conforming to Equ. 10. The best collapse
has been obtained for τ = 1.45± 0.05 and γ = 2± 0.1. We
realized the same data collapse for simulations performed
with different values of the internal friction. We excluded
the value μ=0 as no macroscopic failure can be distin-
guished on the strain-stress curve for this value (see Fig.
4) so no critical point can be defined. The values of the
exponents resulting from this analysis are summarised in
Table 1. We observed a slight change for the τ exponent,
ranging from 1.4 to 1.55. The impact is more pronounced
for the γ exponent, as it varies from 2.5 to 1.3.

This demonstrates the good agreement between the
simulations results and the critical point theory. Accord-
ingly the change of events size distribution toward the
failure can be fully explained by the divergence of the
cut-off as the the failure is approached. But this behavior

can be confused with a decrease of the τ exponent if the
exponential tail is included in the estimation of the expo-
nent. The discrepancy with the often observed decrease of
the b-value, at least for natural objects, may originate in
methodological biases. The analysis we developed requires
a large number of events, especially near the failure. This
can be difficult to obtain in natural conditions. In the
case of catalogues of limited size (i.e. a few hundreds)
the identification of the exponential tail can be hard to
achieve (e.g. [7]). Moreover, this kind of analysis requires
the definition of a well identified control parameter. In the
case of natural objects, the control parameter can be dif-
ficult to define as the failure may occur under conditions
mixing strain and stress (e.g. for crustal earthquakes) or
under constant stress (e.g. static fatigue for landslides or
rock collapse). When focusing on the short period prior to
the failure, the power-law fit provides directly an estimate
of the τ exponent (see fig. 7). In our analyze we observed
that this exponent is slightly dependent on the mechanical
properties of the material. This could explain the spatial
variations of the b-value observed in numerous studies by
variations of material properties, when focusing on events
occurring just before the macro-failure.

4 Discussion and Conclusion

We first reviewed observations showing that a large vari-
ability exists in the size distribution of rupture events.
Many of these reports concern natural observations of
Earthquakes, at different scales and in different condi-
tions, and acoustic emissions recorded at the laboratory.
The variability concerns essentially the power-law expo-
nent that has been observed to decrease before the failure,
essentially at the laboratory but also before some large
Earthquakes. Spatial variability of the exponent has been
also observed. This has been interpreted as the result of
variation of either the material properties, as friction and
heterogeneity, or of stress. Some rare studies also stated
variations in the tail shape identifying either cut-off or
oversizing. Besides possible methodological biases, a few
potential explanations raised from this review for explain-
ing the observed variability of power-laws.

Theoretical considerations referring to both critical point
theory [2] and sweeping of an instability [50] leads to con-
sider that the events size distribution of the rupture event
should be fully described using three exponents instead
of a single one. The b-value referring to the Gutenberg-
Richter law could be related to different theoretical expo-
nents depending on how it is calculated.

Critical point theory refers to two exponents τ and γ
describing the power-law distribution and the divergence
of the cut-off size toward the failure, respectively. These
two exponents as supposed to be constant for a given ma-
terial and loading mode. The b-value could be related to
the exponent τ only in the vicinity of failure when the
value of the exponential tail becomes large enough to not
alter the real power-law trend. The decrease of the b-value
often observed before the failure should be then considered
as an artifact related to the exponential tail of increasing
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size that is included in the power-law fit. However this
apparent decrease provides precursory patterns before the
failure useful for the risk assessment. The numerical sim-
ulations carried out in Section 3 have shown that τ and
γ could depend on the mechanical properties of the ma-
terial. In particular we displayed the effect of the internal
friction that controls the brittleness of the macroscopic
behaviour.

The mechanism of sweeping of an instability [50] al-
lows to explain that summing the entire set of events of
the progressive failure sequence, i.e. including the com-
plete divergence of the exponential cut-off, a power-law
distribution is recovered conforming to Equation 1 or 9,
with the relation β = τ − 1 + 1/γ (note that the term
-1 comes from the fact that β is related to the cdf , con-
trarily to the original work of [50]). The former relation is
well respected by the exponents estimated for numerical
simulations (see Tab. 1). Thus, when considering a large
set of events including a notable variation of the control
parameter (e.g. a long temporal serie of earthquakes or
the full set of AE events recorded during an experiment)
the b-value can be related to the β exponent. In this case,
the numerical simulation outcomes showed that the β ex-
ponent depends also on the mechanical properties of the
considered material. This could explain the spatial vari-
ations of the b-value observed in different sites (e.g. [60])
and also the variability of the β observed at the laboratory
(e.g. [36]).

Moreover, the simulations displayed a dependence be-
tween the β exponent and the brittleness of the behaviour.
The change in β is associated with a shift from a cut-off to
an oversizing characterized by the occurrence of extreme
events. The intermediary case for which it is possible to
forecast the largest event using the power-law trend of
the smallest ones is obtained for μ=0.5 what corresponds
roughly to the mean friction value for the Earth’s crust.
This suggests that earthquakes could be in the range of
predictable events in size. For high internal friction cor-
responding to highly brittle behavior the largest event,
i.e. the size of the macro-failure, is out of scale compared
with the power-law trend, we characterized by a high value
of the R ratio. Referring to the topic of this special is-
sue, the ductile-brittle transition could be considered as
the progressive appearance of Dragon-Kings, i.e. extreme
events. Despite their unpredictability in size, considering
they obey the critical point theory, these particular events
remain predictable in time, at least if a temporal evolution
of the control parameter is known, as they emerge from
the divergence of the failure process.

The author thanks L. Girard and the two anonymous review-
ers whose critical remarks helped to clarify this work, and H.
Dyer for improvements of the manuscript. All (or most of)
the computations presented in this paper were performed at
the Service Commun de Calcul Intensif de lObservatoire de
Grenoble (SCCI-CIMENT).

μ β R τ γ τ − 1 + 1/γ
±0.05 ±0.05 ±0.1 ±0.15

0 0.85 0.004 - - -
0.25 0.95 0.055 1.4 2.5 0.8
0.5 1 1.06 1.45 1.7 0.95
0.75 1.2 8.7 1.55 1.6 1.15
1 1.3 20.9 1.6 1.3 1.3

Table 1. Exponents characterizing the event size distribution
for various internal friction μ determined form numerical sim-
ulations outcomes. β is the exponent characterising the size
distribution of the whole set of events during the simulation.
R is the oversizing ratio as defined in section 3.2. τ and γ are
the exponents characterizing the critical behavior toward the
failure (see equ. 10). τ − 1 + 1/γ is given for comparison with
β.
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