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Fuzzy uncertainty representations of co-seismic

displacement measurements issued from SAR

imagery
Yajing Yan, Gilles Mauris, Member, IEEE, Emmanuel Trouvé, Senior Member, IEEE, Virginie Pinel

Abstract—An emerging way to reduce the geodetic parameter
uncertainty is to combine the large numbers of data provided
by satellite synthetic aperture radar (SAR) images. However, the
measurements by radar imagery are subject to both random
and systematic uncertainties. Thus, mathematical theories which
are adequate for each type of uncertainty representation and
handling have to be selected. Probability theory is known as
the adequate theory for uncertainties corresponding to random
variables, but questionable for systematic uncertainties, arising
from information incompleteness. Fuzzy theory being a gener-
alization of interval mathematics, is more adapted to such un-
certainty. Moreover it provides a bridge with probability theory
by its ability to represent a family of probability distributions.
Therefore, we consider here the conventional probability and
the fuzzy approaches for handling the random and systematic
uncertainties of D-InSAR and SAR amplitude image correlation
measurements. The applications are performed on the mea-
surement of the displacement field due to the 2005 Kashmir
earthquake. The fuzzy approach, being free from distribution and
independence hypotheses, gives the most pessimistic uncertainty
assessment, while the conventional probability approach gives
the most optimistic uncertainty assessment. As confirmed by the
Monte-Carlo simulation applied to an Earth deformation model,
the actual uncertainty should be situated between the fuzzy and
conventional uncertainties.

Index Terms—measurement uncertainty, fuzzy/possibility the-
ory, remote sensing, SAR images, ground displacement, co-
seismic observations

I. INTRODUCTION

Geodetic data, such as satellite images (radar and optic), are

important remote sensing sources of information for ground

displacement measurement with great accuracy over large area.

So far, with the increasing number of operational sensors,

large volumes of SAR images acquired in different modes,

ascending and descending passes at various incident angles

and frequencies, are available. Moreover, the launching in the

coming years of the future satellite generation Sentinel will

provide a large number of free SAR data [1]. Consequently,

using large number of geodetic measurements in order to

accurately determine the displacement field is becoming more

and more frequent in geophysics, especially to better constraint

the geophysical modeling [2] [3] [4] [5]. In this context, one
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important purpose of geodetic data processing is to reduce

parameter uncertainty by an adequate combination of all the

available measurements.

Once gross errors have been eliminated, measurement un-

certainties come from random and systematic effects. Concern-

ing the measurements by radar (SAR) imagery, the uncertain-

ties arise from noise sources of radar instrument, on the path

of radar wave propagation, at the reflecting surface, as well as

uncertainty sources introduced by data processing [4]. On one

hand, random uncertainty exists due to decorrelation noise,

since there are usually some backscattering property changes

on the ground between two subsequent SAR acquisitions. On

the other hand, systematic uncertainties can be induced by

atmospheric disturbances depending on the state of atmosphere

and the ground surface at the time of the two SAR acquisitions.

Also, it can result from the imprecision of orbit auxiliary

information, Digital Elevation Model (DEM) errors, as well as

from the imperfect corrections during data processing, which

deviate the data by a constant or a ramp from the true value.

To model such systematic uncertainties coming from limited

knowledge (called also epistemic uncertainties in many cases),

probability theory is questionable, and thus fuzzy/possibility

theory has been proposed in ([6], [7]) and further developed

by a few authors in a general measurement context [8] [9] [10]

[11], and also by a few authors in geosciences [12] [13] [14]

[15]. Thus, it is worthwhile to study the consideration of the

most suitable uncertainty theories according to the application

specificities. This paper is a first contribution to such issue for

the measurement of displacement field by a joint inversion of

D-InSAR and SAR amplitude image correlation measurements

by a least squares adjustment.

This paper is organized as follows. In section II, the

conventional probability approach and the fuzzy approach for

uncertainty representation and propagation in the linear case

are detailed. The available data in the considered application

and their associated uncertainties are described in section III.

Then, the two approaches are applied to the measurement

of the Earth’s surface 3D displacement field due to the

2005 Kashmir earthquake (magnitude of 7.6). The behaviours

of each uncertainty approach are highlighted through inter-

comparisons of results. In section IV, a model based reference

of the 3D displacement field is established by using a mechan-

ical Earth deformation model in order to evaluate the results

obtained previously. The interest of the fuzzy approach is

highlighted with respect to the results provided by the physical

model. Finally, some conclusions and perspectives are drawn.
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II. UNCERTAINTY REPRESENTATION

APPROACHES

In geodetic practice, there are always multiples sources

of uncertainty in the considered measurements, which leads

to complex characteristics for the associated uncertainties.

Probability theory is the adequate theory for uncertainties

corresponding to random variables, the latter being described

by one probability distribution (often a Gaussian one) or

more simply by the first two moments, i.e. the mean and the

variance. Systematic uncertainties, arising from information

incompleteness, are often described by an interval and thus

cannot be associated to one single probability distribution.

Fuzzy theory can be considered as a generalization of interval

mathematics and provides a bridge with probability theory by

its ability to represent a family of probability distributions [16].

Therefore, hereafter, we consider the conventional probability

and fuzzy approaches for handling the random and systematic

uncertainties encountered in SAR displacement measurements.

A. Conventional probability approach

The standard reference in uncertainty modeling is the Guide

to the Expression of Uncertainty in Measurement (GUM)

edited by an international consortium of legal and professional

organizations [17]. The GUM groups the occurring uncertain

quantities into Type A and Type B. Uncertainties of Type A

are determined with the classical statistical methods, while

Type B is determined by other ways, e.g. experience and

knowledge about an instrument. Both types of uncertainty can

have random and systematic components. In fact, the GUM

proposes to treat both uncertainties (random and systematic)

in a stochastic framework and considers variances to describe

them and processes them with the law of propagation of

variance, generally assuming independence. Applying this

approach to linear inversion by a least squares adjustment,

the uncertainties are propagated as follows. Let us consider U

a set of m quantities uk(x1, x2, . . . , xn) (e.g. 3D (E, N, Up)

Earth surface displacement) which are linear combinations of

the vector of n measured variables R = (r1, r2, . . . , rn) (e.g.

projections of the 3D displacement) with coefficients vector

A = (a1,k, a2,k, . . . , an,k), (k = 1, . . . ,m). Thus:

uk =

n
∑

i=1

ai,kri : U = AT R (1)

If the variance-covariance matrix of R is denoted by ΣR,

ΣR =
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(2)

then, the variance-covariance matrix ΣU of U is given by

ΣU i,j =
n

∑

k=1

n
∑

l=1

ai,kΣRk,lal,j : ΣU = AT ΣRA (3)

When R and U are related by a n × m matrix P which

represents the geometrical relationship between the measured

variables and the displacement to be determined, the inversion

by the generalized least squares method [18] [19] leads to:

AT = (PT Σ−1

R P )−1PT Σ−1

R (4)

thus the nominal value U is given by

U = (PT Σ−1

R P )−1PT Σ−1

R R (5)

and the uncertainty ΣU is given by

ΣU = (PT Σ−1

R P )−1 (6)

with ΣR the variance-covariance matrix of R.

To determine confidence intervals for the parameters, the

GUM suggests to use a Gaussian distribution (justified by

the central limit theorem), and for other distributions to apply

Monte Carlo simulations. This well known approach is fully

justified in cases of a lot of data having independent random

uncertainties but questionable for systematic uncertainties of-

ten dependent and far from a Gaussian representation. There-

fore, it generally leads to an over-optimistic assessment of the

uncertainties.

B. Fuzzy/possibility approach

The possibility theory, first introduced by L. Zadeh in

1978 [20], is associated with the theory of fuzzy sets by the

semantics of uncertainty that it gives the membership function.

A possibility distribution π is a mapping from a set to the

unit interval such that π(x) = 1 for some x belonging to the

set of reals (Fig. 1). A possibility distribution π1 is called

more specific (i.e. thinner in a broad sense) than π2 as soon

as ∀x ∈ ℜ, π1(x) ≤ π2(x) (fuzzy set inclusion). The more

specific π is, the more informative it is. If for one x, π(x) = 1
and for all y 6= x, π(y) = 0, then π is totally specific (fully

precise and certain knowledge). If for all x, π(x) = 1, then π

is totally non specific (complete ignorance) (Fig. 1).

1

0.5

0

π(x)

xa b c d

Possibility distribution representing the total ignorance

full width at half maximum
          (α-cut  of level 0.5)

Possibility distribution 
representing the total precision

π
1
(x)<π

2
(x)

Fig. 1: Example of fuzzy possibility distributions.

In fact, a numerical degree of possibility can be viewed as an

upper bound to a probability degree [16]. Namely, with every

possibility distribution π one can associate a non-empty family

of probability measures dominated by the possibility measure:

P(π) = {P,∀A, P (A) ≤ Π(A)}. This provides a bridge
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between probability and possibility. There is also a bridge with

interval calculus. Indeed, a unimodal numerical possibility

distribution may also be viewed as a nested set of coverage

intervals, which are the α-cuts of π: [xα, xα] = {x, π(x) ≥
α}. Obviously, the confidence intervals built around the same

point x0 are nested. It has been proven in [21] that stacking

the coverage intervals of a probability distribution F on top

of one another leads to a possibility distribution (denoted

πx0 having x0 as modal value). In fact, in this way, the α-

cuts of πx0 are identified with the confidence interval I⋆
β of

probability level β = 1 − α around the nominal value x0.

In this way a probability distribution can be represented by

an equivalent possibility distribution. Moreover, a possibility

distribution can be used to represent a family of probability

distributions by taking the largest 1 − α confidence intervals

obtained from each probability distribution of the family. This

is useful to represent uncertainty when only partial probability

knowledge is available. For example if the measured variable

r is known to be bounded and unimodal (with mode r0) and

with σr as standard deviation, then the maximum specific

possibility distribution is a triangular possibility distribution

with the mode r0 as vertex and with [r0−
√

3σr, r0+
√

3σr] as

support [7]. To represent the uncertainty in the fuzzy approach

by a single parameter (in a way similar to the variance in

the probability approach), the full width at half maximum

(denoted h0.5) of the possibility distribution which corresponds

to a α-cut level of 0.5, is commonly used. In summary, a

possibility distribution can model both random and systematic

uncertainties in a unified modeling. Afterwards, the possibility

distributions are propagated in the least squares adjustment

using fuzzy arithmetic based on Zadehs extension principle

[20]:

U = (PT Σ−1

R P )−1PT Σ−1

R ⊗ R (7)

where ⊗ is the fuzzy multiplication matrix operation in which

the conventional sum and scalar product are replaced by the

corresponding fuzzy operations [22].

In this principle, the variables are considered as non in-

teractive variables; this corresponds somehow to consider a

total dependence between variables. Consequently, uncertainty

propagation by the fuzzy approach leads to an over-pessimistic

assessment of the uncertainties.

C. Displacement uncertainty analysis by the two approaches

In this article, to combine the available measurements,

we apply the Generalized Least Squares (GLS) method [18]

[19] which gives the nominal displacement value and its

corresponding variance from the variances of the measure-

ments provided by the SAR image processing. For the fuzzy

approach, we use the same GLS matrix AT to obtain the

forward model. But we build the possibility distributions

of the displacement from the value r0 and their associated

uncertainty σr0
, considering that σr0

contains both random

and systematic components. Moreover, the measurements are

considered as bounded (this is the case in the considered

context), thus we represent them by a symmetric triangular

fuzzy distribution with support [r0 −
√

3σr0
, r0 +

√
3σr0

].
Therefore, the full width at half maximum is

√
3σr0

. Let us

remark that with a Gaussian assumption of standard deviation

σr0
, the value corresponding to the 0.5 α-cut the width of the

Gauss equivalent possibility distribution is equal to 1.35 σr0
,

i.e. the width of the 50% confidence interval of a Gaussian

distribution with σr0
as standard deviation.

III. DISPLACEMENT MEASUREMENTS DUE TO

THE 2005 KASHMIR EARTHQUAKE

A. Description of the available data

The sub-pixel image correlation and the differential inter-

ferometry (D-InSAR) are two conventional techniques used to

extract displacement measurements from SAR data. The sub-

pixel image correlation computes the offsets in range (line of

sight) and azimuth (along the trajectory of satellite) directions

on amplitude images, with a sub-pixel accuracy. It is widely

used to measure the displacement of great magnitude [23] [24]

[25]. The D-InSAR, using the phase information, provides

the displacement in range direction with an uncertainty in the

order of centimeter, even millimeter [26] [19]. This technique

is usually applied to measure the displacement of small

magnitude. In case of a strong earthquake induced by a rupture

of a fault, in near field of the fault, the measurements from

sub-pixel image correlation can provide reliable displacement

information. While in far field of the fault, the measurements

from D-InSAR are taken as accurate sources [23].

In this article, a series of co-seismic ENVISAT images from

October 2004 to June 2006 are used to map the deformation

due to the 2005 Kashmir earthquake. 22 measurements from

sub-pixel image correlation and 5 measurements from D-

InSAR, are available respectively. In near field of the fault,

because of coherence loss, phase information cannot be ex-

tracted by D-InSAR, thus there is no D-InSAR measurements

available in this area. These measurements can be classified in

four families according to their acquisition geometry: ascend-

ing range (Asc. Rg), ascending azimuth (Asc. Az), descending

range (Des. Rg) and descending azimuth (Des. Az). In each

family, in first approximation, all the measurements are consid-

ered as corresponding to the same displacement (in the same

direction) because the incident angle is the same for all the

measurements.

For measurements from sub-pixel image correlation, the

uncertainty parameter is the so called ”pseudo-variance” pro-

vided by the ROIPAC software [27]. In fact, this pseudo-

variance includes both random and systematic components and

thus it is not a conventional statistical variance. The random

part comes from the decorrelation noise present in the data,

while the systematic part comes from the default of correlation

method and the DEM error estimation. However, the possible

systematic uncertainty due to the imperfect data processing is

not included in the pseudo-variance.

For measurements from D-InSAR, the uncertainty parame-

ter corresponds to the variance of the phase value estimated

from the coherence [28]. It characterizes only random vari-

ations in the phase value. However, systematic uncertainty

due to phase unwrapping errors, atmospheric impact, etc., is

probably present in the measurement, but has not yet been

taken into account in our approach.
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Fig. 2: Examples of displacement measurements. Red: dis-

placements estimated by sub-pixel image correlation. Green:

displacements estimated by D-InSAR

Fig. 2 shows two examples of the measurements issued

from both sub-pixel image correlation and D-InSAR. The two

profiles are issued from displacement images. The first profile

(Fig. 2 (a)) is located in an area far from the fault and the

second profile (Fig. 2 (b)) passes across the fault. In theory,

the same displacement values should be found by these two

techniques where both measurements are available, as they

measure exactly the same quantity of displacement. How-

ever, with the presence of uncertainty in both measurements,

a discrepancy of displacement values is observed on both

profiles. On one hand, a more or less significant fluctuation

of displacement value is observed in the sub-pixel image

correlation measurements, which complies with the presence

of random uncertainty. Near the fault, the fluctuation is small.

While in the area far from the fault where the displacement

magnitude is small, the fluctuation becomes significant. On

the other hand, there is a small shift between the displace-

ment values estimated by both techniques. Consequently, it is

probable that systematic uncertainty is also present in one or

the other measurement. However, it seems that the random

uncertainty is more important than the systematic uncertainty

in the considered measurements.

B. 3D Displacement field retrieval by linear inversion

The different measurements from sub-pixel image correla-

tion and D-InSAR are different projections of the 3D displace-

ment at the Earth’s surface (E, N, Up) in the SAR image range

and azimuth directions. Consequently, the 3D displacement

field can be constructed from at least 3 different projections by

a linear inversion. In this case, R corresponds to different mea-

surements from sub-pixel image correlation and D-InSAR. P

corresponds to the projection vectors matrix. U denotes the 3D

displacement with 3 components E, N, Up. To solve this linear

inverse problem, the GLS method is used. In order to highlight

the behaviours of conventional and fuzzy approaches, three

levels of comparisons are considered: between displacement

values, between uncertainty parameter values and between

possibility distributions. Moreover, the effect of uncertainty

reduction due to adding D-InSAR measurements is analyzed.

Regarding the nominal displacement value, the result ob-

tained with D-InSAR measurements is shown in Fig. 3 (a). In

fact, the results in cases with and without D-InSAR measure-

ments are globally consistent, with an average difference in

the order of millimeter. Regarding the uncertainty parameter

values, σ and h0.5, 4 cases are considered: with and with-

out D-InSAR measurements in both conventional and fuzzy

approaches. The evolution of these values varies from one

case to another (Fig. 3 (b) and (c)). Uncertainty parameter

values in the fuzzy approach are always larger than those

in the conventional approach. Adding measurements from D-

InSAR reduces the uncertainties in both conventional and

fuzzy approaches. In order to understand the spatial evolution

of uncertainty in both approaches, the ratio ( 1.35σ
h0.5

) of the

conventional uncertainty (Fig. 3 (b)) on the fuzzy uncertainty

(Fig. 3 (c)) is shown in Fig. 4. A geographic effect is observed

and it corresponds to the distribution of the number of avail-

able measurements. In the darker area, the difference between

the two uncertainty parameters is large, because in this area,

there are more measurements available. In the conventional

approach, the output uncertainty is reduced. In the fuzzy

approach, on the contrary, the output uncertainty remains

constant or increases slightly. Consequently, the difference

between the two uncertainty parameters increases in this area.

Fig. 4 provides a summarized vision of the relationship

between the two uncertainty parameters. For each point, the

comparison is also perfomed between distributions: possibil-

ity distribution corresponding to the fuzzy uncertainty and

equivalent possibility Gaussian distribution corresponding to

the conventional uncertainty. Fig. 5 shows un example of

possibility distributions for the point B. As expected, the

conventional possibility distribution is more specific than the

fuzzy based one.
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Fig. 3: (a) 3D displacement values (b) conventional uncertainty parameter values (σ) (c) fuzzy uncertainty parameter values

(h0.5) estimated in the linear case. The profile illustrated in (a) Up component, is used to compare the displacement values and

uncertainties obtained in both linear and nonlinear case (Fig. 6). Point B and C are used for possibility distribution analysis

(Fig. 5, Fig. 7).

1.0

0

Fig. 4: Example of ratio of conventional and fuzzy uncertainty

parameter values for the East component.

IV. COMPARISON WITH A MODEL BASED 3D

DISPLACEMENT

Since there is no ground truth available to validate the

results obtained in the previous section, we compare them with

a model based reference of the 3D displacement constructed

by means of a well known mechanical deformation model.

Fig. 5: Comparison of possibility distributions on point B.

Blue: fuzzy approach. Red: conventional approach. The black

line represents the width of the 0.5 α-cut, the uncertainty

parameter used in the fuzzy approach.
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Indeed, this model is widely used since many years by geo-

physicists [29] [30] [31] [32] [23] [33]. Thus it is worthwhile

to confront the corresponding results with the ones obtained

with our approaches.

A. Construction of a model based reference

For the model based reference, the 3D displacement is

deduced by 2 steps. First, the fault geometry parameters are

optimised by nonlinear inversion of a mechanical deformation

model describing the surface displacement field induced by a

fault rupture in depth, by looking for a global minimum misfit

with the surface measurements from the same input data sets

as used in the previous section. At this step, the input data

sets are subsampled by quadtree algorithm, thus the number

of points in each measurement is greatly reduced in order

not to burden the inversion. As a result, each point used in

the inversion represents the deformation in an area more or

less large. Second, the 3D displacement is derived from the

fault geometry parameters obtained at the first step through

the forward deformation model [34]. In this method, all the

points used in the inversion contribute in a joint way and the

fault geometry parameters correspond to a global deformation

model, which is quite different from the method used in the

previous section. Therefore, the displacement field obtained

here is very smooth, which reveals the global deformation

behaviour. By contrast, in the previous section, the neighboring

points are independent, the retrieved 3D displacement reveals

essentially the local deformation behaviour and is sensitive to

noise.

Because of the complexity of the nonlinear inversion of

the deformation model, we cannot propagate uncertainties

associated with input measurements through the deformation

model directly. In order to estimate the uncertainty associated

with the derived 3D displacement, synthetic noise is simulated

and added to the input measurements. Measurements from sub-

pixel image correlation are mainly influenced by white gaus-

sian noise, while measurements from D-InSAR are essentially

influenced by spatially correlated noise due to atmospheric

impact [4]. The characteristics of these two types of noise

are estimated from preseismic data sets using both sub-pixel

image correlation and D-InSAR on pairs of images without

deformation. Then, 1000 simulations of white gaussian noise

or spatially correlated noise with the same characteristics

are carried out for each measurement according to the data

type. 1000 sets of fault geometry parameters are obtained,

from which 1000 values of the 3D displacement are retrieved

for each pixel. Then the mean and the standard deviation

are calculated, and the corresponding triangular possibility

distribution is built for each pixel according to the way

described in Section II-B.

The fuzzy uncertainty is used in the model based reference

in order to take into account the lack of complete probability

knowledge in modeling. Although the model used in this

section is not perfect, it is commonly used and validated by

most of the geophysicists since more than 20 years. Therefore,

the results obtained in the previous section are worthwhile to

be compared to the results obtained by this method.

B. Comparison with the model based reference

In order to facilitate the comparison, a profile, crossing the

fault, as shown in Fig. 3 (a), is performed and the comparison

is realised along this profile. The results are plotted in Fig. 6.

The uncertainty (1.35σ for the conventional approach, h0.5 for

the fuzzy approach and the model based reference) is here rep-

resented by uncertainty bar and the jumping of displacement

value (at about 23.5 km from the reference point A) indicates

the position of the fault rupture.

According to Fig. 6, there is a good agreement between the

results obtaind in the previous section and the model based

reference. For most of the pixels, there is a good superposition,

especially in the field far from the fault. Near the fault, for

the model based reference, the maximal displacement is under

estimated, which results in the shift of nominal displacement

value with respect to that retrieved in the previous section.

However, taking into account the uncertainty associated with

the nominal displacement value, the difference is small. Thus,

the good agreement, especially with the fuzzy approach, allows

validating the results obtained in the previous section. It is

highlighted that the uncertainty in the conventional approach

is optimistic, while the uncertainty in the fuzzy approach is

pessimistic but closer to the model based reference in this

comparison.

Moreover, in order to make use of the richness of the

possibility distribution, possibility distributions obtained in

the previous section and with the model based reference are

compared. Here, besides point B, we consider another point C

situated on the fault (as shown in Fig. 3 (a)). The possibility

distributions are shown in Fig. 7.

In Fig. 7 (a), there is a good intersection between the

possibility distributions obtained in the previous section and

with the model based reference. In particular, the intersection

with the possibility distribution of the fuzzy approach (blue)

is more significative than with the equivalent Gaussian dis-

tribution (red). Therefore, the possibility distribution of the

fuzzy approach is more relevant than the equivalent Gaussian

distribution. Fig. 7 (b) confirms this conclusion. In this case,

the difference of results with respect to the model based

reference is larger, thus there is no significative intersection

with the equivalent Gaussian distribution, but a small one with

the possibility distribution of the fuzzy approach.

V. CONCLUSION

In this article, two approaches based respectively on the

probability and fuzzy theories have been applied to represent

uncertainty in measurement of the 3D displacement field due

to the 2005 Kashmir earthquake. The 3D displacement field

is estimated by a least squares based linear inversion using

the measurements from sub-pixel image correlation and D-

InSAR. The uncertainty is propagated in the conventional

approach and in the proposed fuzzy approach respectively.

The results are compared with a model based reference issued

from a nonlinear inversion of a well known mechanical Earth

deformation model.

According to the foundations of probability and fuzzy

theories, the uncertainty in the considered probability approach
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(a)

(b)

(c)

Fig. 6: Profile of displacements and uncertainties obtained by

linear inversion and with the model based reference (a) East

component (b) North component (c) Up component.

(Point B)

(Point C)

Fig. 7: Comparison of possibility distributions. blue: fuzzy

approach. red: conventional approach. black: reference.

is under estimated, while the uncertainty in the proposed

fuzzy approach is over estimated. In the context of our mea-

surements, the actual uncertainty should be situated between

these two uncertainties. The more the assumptions of Gaussian

distribution and independence on uncertainties associated to

input measurements, the closer to the conventional uncertainty

it is. Otherwise, it is closer to the fuzzy uncertainty. Although

the proposed fuzzy approach is pessimistic in uncertainty as-

sessment, it is more robust against the assumptions of Gaussian

distribution and independence on uncertainties made in the

conventional approach. In fact, the fuzzy and conventional
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approaches provide respectively the most pessimistic and the

most optimistic uncertainty assessment from almost similar

simple analytical computations. Monte-Carlo simulations ap-

plied to the Earth deformation model provide a more relevant

assessment, but with much more computational complexity

and they are extremely time consuming.

In order to improve the uncertainty analysis, the part of

systematic uncertainties not yet taken into account in the

SAR measurements has to be identified and represented in an

appropriate way. Besides this subject, the fusion of the results

of the direct SAR measurements with the ones provided by

the mechanical deformation model, is also a part of ongoing

works.
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[28] E. Trouvé, J. Nicolas, and H. Maitre, “Improving Phase Unwrapping

Techniques by the Use of Local Frequency Estimates,” IEEE Transaction

on Geoscience and Remote Sensing, vol. 36, no. 6, 1998.
[29] P. Clarke, D. Paradissis, P. Briole, P. England, B. Parsons, H. Billiris,

G. Veis, and J. Ruegg, “Geodetic investigation of the 13 May 1993
Kozani - Grevena (Greece) earthquake,” Geophysical Research Letters,
vol. 24, no. 6, 1997.

[30] T. Wright, B. Parsons, J. Jackson, M. Haynes, E. Fielding, P. England,
and P. Clarke, “Source parameters of the 1 October 1995 Dinar (Turkey)
earthquake from SAR interferometry and seismic body wave modelling,”
Earth and Planetary Science Letters, vol. 172, 1999.

[31] S. Jónsson, H. Zebker, P. Segall, and F. Amelung, “Fault Slip Dis-
tribution of the 1999 Mw7.1 Hector Mine, California, Earthquake,
Estimated from Satellite Radar and GPS Measurements,” Bulletin of

the Seismological Society of America, vol. 92, no. 4, 2002.
[32] G. J. Funning, B. Parsons, and T. J. Wright, “Surface displacements

and source parameters of the 2003 Bam (Iran) earthquake from Envisat
advanced synthetic aperture radar imagery,” Journal of Geophysical

Research, vol. 110, no. B09406, 2005.
[33] S. Atzori, I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami,

S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi, “Finite fault
inversion of DInSAR coseismic displacement of the 2009 L’Aquila
earthquake (central Italy),” Geophysical Research Letters, vol. 36, no.
L15305, 2009.

[34] Y. Okada, “Surface deformation due to shear and tensile faults in a half-
space,” Bulletin of the Seismological Society of America, vol. 75, no. 4,
1985.


