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INTRODUCTION

Texture is a keystone of many image analysis frameworks. Whether for classication, for indexation or for segmentation applications, the importance of texture descriptors cannot be overlooked when dealing with natural images. Among such textural descriptors, pattern orientation has proved to be crucial for human image perception.

1, 2 Besides, machine vision systems have also beneted from orientation and anisotropy-based features in many domains (e.g.

).

Contact: jean-pierre.dacosta@ims-bordeaux.fr, frederic.galland@fresnel.fr 1 In particular, some papers have reported the use of pattern orientations and texture anisotropies for segmentation purposes. To mention a few, Bigün and Du Buf 6 used complex moments in Gabor space to capture the symmetries of the local image content within a quad tree segmentation approach. Rousson et al. [START_REF] Rousson | Active unsupervised texture segmentation on a diusion based feature space[END_REF] and Luis Gar- cía et al., 8 inspired by tensor-valued image analysis techniques, used the structure tensor 9, 10 as a textural feature driving level-sets segmentation frameworks. Recently, the same authors proposed a combined segmentation approach using both tensor and color information within a common minimization framework. [START_REF] De Luis-García | Texture and color segmentation based on the combined use of the structure tensor and the image components[END_REF] In prior works, Da Costa et al. [START_REF] Da Costa | Segmentation of high resolution remote sensing images : application to the automatic delineation of vine elds[END_REF][START_REF] Da Costa | Delineation of vine parcels by segmentation of high resolution remote sensed images[END_REF] have also taken advantage of texture anisotropy for the segmentation of remote-sensed images.

Anisotropy was captured either by spectral Gabor features or by spatial anisotropy descriptors, and was used either in a region growing segmentation framework [START_REF] Da Costa | Segmentation of high resolution remote sensing images : application to the automatic delineation of vine elds[END_REF] or simply in a thresholding/regularizing scheme. [START_REF] Da Costa | Delineation of vine parcels by segmentation of high resolution remote sensed images[END_REF] In the context of manuscript analysis, Grana et al. [START_REF] Grana | Describing texture directions with von mises distributions[END_REF] proposed a classication algorithm to discriminate between sub blocks of text, illustrations and background using anisotropy. Orientation distributions inside sub blocks were captured by grey level autocorrelation and modelled using mixtures of Von Mises density functions.
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In this paper, segmentation is not considered as an aim of image analysis but as a means of estimating orientations in textures. Our contribution is a segmentation-based parametric approach for the estimation of orientations in directional textures, i.e. textures exclusively composed of oriented patterns. [START_REF] Le Pouliquen | A new adaptive framework for unbiased orientation estimation[END_REF][START_REF] Michelet | Estimating local multiple orientations[END_REF] The approach relies on a rst step of local estimation of the orientations in the image using derivative techniques. [START_REF] Le Pouliquen | A new adaptive framework for unbiased orientation estimation[END_REF] The obtained orientation eld image is segmented into homogeneous regions, using the Minimum Description Length (MDL) segmentation technique formerly presented in 18 and generalized in this paper to π-periodic data modeled with circular Von Mises distributions. 15 A nal orientation estimation is performed by averaging low level orientations inside the segmented regions.

The paper is organized as follows. Section 2 is a methodological presentation dealing with orientation estimation and circular data modelling. Section 3 presents a generalization of the MDL segmentation technique to Von Mises circular data. Section 4 reports an experimental evaluation of the segmentation-based framework for orientation estimation on synthetic and real textured images. The last section provides some conclusions.

ORIENTATION AND TEXTURES

Textures of interest

As orientation relates to visual perception, dening the concept of image orientation is not trivial. The notion of orientation is often closely linked to the kind of patterns observed in the images. In this paper, only the case where a unique orientation (i.e. the orientation of the underlying oriented pattern) is present at any pixel of the image will be considered. This corresponds to the linearly symmetric model, 10 to the {i1D} case i.e. intrinsic dimensionality is 1 according to Krieger and Zetzsche's nomenclature 19 or to the mono-directional texture case mentioned by Michelet et al. [START_REF] Michelet | Estimating local multiple orientations[END_REF] The limitation to unique orientations excludes some textures where superimpositions or occlusions occur, 20 but such textures are beyond the scope of this paper.

Orientation Estimation

It is commonly accepted that anisotropy perception is closely linked to the scale at which an image is considered.

The multi-scale nature of orientation information has therefore been taken into account in many vision systems both in spectral approaches 6, 10 and in spatial approaches 5 which usually attempt to capture anisotropy properties at various scales. However, in this paper we chose to focus on local orientations only, thus restricting orientation estimation to local pixel neighborhoods. The objective is twofold. First, keeping orientation estimates local limits border eects at the boundaries of regions with dierent orientations. Secondly, as local estimates can be processed by spatial lters operating within very small pixel neighborhoods, strong dependences between orientation estimates on neighboring pixels are avoided.

In the case of mono-directional textures, the use of local derivatives 21, 22 is a natural approach for orientation estimation. In this paper we use the formerly proposed 16 gradient operator GOP. Similar to standard 3 × 3 operators (e.g. Sobel lter), GOP is part of a panel of lters designed to limit both bias and noise sensitivity while keeping the estimation process as local as possible. Local texture orientation is orthogonal to the orientation of the gradient. It is dened within an interval of width π, for instance ] -π 2 , π 2 ], as two values that are π apart refer to the same orientation. Such orientation data are called axial data 15 i.e. π-periodic circular data.

Nevertheless, in the case of noisy images, orientation estimations are very scattered and cannot be used directly. For example, the estimation of orientations inside the textured image of g. 1.a is shown on g. 1.b, using the GOP operator. In order to reduce the noise in these images, a classical solution consists in averaging the orientations in a small neighborhood V (x, y) around (x, y). In this paper, V (x, y) is dened as a sliding square window containing N V = d × d pixels and centered on pixel (x, y). Let θ(x, y) be the orientation estimated at pixel (x, y). Thus the double angle α(x, y) = 2θ(x, y) is a 2π-periodic variable. Its averaging α can be computed inside V (x, y) as suggested by Mardia and Jupp: 15

2θ(x, y) = α(x, y) = tan -1 S(x, y) C(x, y) (1) 
where

   C(x, y) = 1 N V (u,v)∈V (x,y) cos α(u, v) S(x, y) = 1 N V (u,v)∈V (x,y) sin α(u, v) (2)
with N V the number of pixels in V (x, y). In equations 1-2, angular values are replaced by unit vectors (cos α(u, v), sin α(u, v)) which are averaged within V (x, y). This avoids erroneous estimations provided by classical averaging when angular data close to the limits of the orientation interval occur (-π or π for instance). The resulting orientation provided by this averaging technique (denoted AGOP in the following for Averaged GOP operator) is closely related to the orientation of the rst eigen vector of the structure tensor 9,10 which is another classical approach to get a regularized orientation estimation.

The averaging θ(x, y) = α(x, y)/2 of the orientation image of g. 1.b obtained using squared sliding windows V (x, y) with dierent side sizes d (and thus N V = d × d pixels) are reported on g. 1.c (d=7) and g. 1.d (d=11).

It is notably shown on the left part of g. 3 that the Mean Average Deviation (MAD) between the averaged estimated orientation {θ(x, y)} (x,y) and the true orientation {θ GT (x, y)} (x,y) (GT for Ground Truth) used to generate the data (see g. 1.h), is minimal for d=7, using the following denition for the MAD:

M AD = 1 N (x,y)∈Image min(|θ GT (x, y) -θ(x, y)|, π -|θ GT (x, y) -θ(x, y)|) ( 3 
)
where N is the number of pixels in the image. Of course, the value d which minimizes the MAD, denoted d M AD in the following, highly depends on the image considered and on the noise level. For instance, d M AD =11 when the noise level is increased by a factor 2 (σ = 100) as shown in g. 2.

In real applications, where the ground truth is unknown and thus quality criteria such as the MAD cannot be calculated, the estimation of the size of this sliding window is a dicult problem. In this paper, instead of trying to nd the best window size, it is proposed to directly recover the dierent homogeneous regions in the image by decomposing the orientation eld into a patchwork of regions with homogeneous orientations. Inside each homogeneous region, the whole pixels can then be used to rene the orientation estimation. The estimation of the orientation is thus averaged on the biggest homogeneous sample of pixels, but without being corrupted by the presence of inhomogeneities near borders.

PARTITION INTO REGIONS WITH HOMOGENEOUS ORIENTATIONS

Let θ = {θ(x, y), (x, y) ∈ [1, N x ] × [1, N y ]} be an image of orientations composed of N = N x × N y pixels. This image is assumed to be composed of a patchwork of R homogeneous regions Ω r (r ∈ [1, R]).
In other words, the pixel orientations in each region Ω r are assumed to be independent realizations of a probability density function (PDF) P [βr] , where β r denotes the parameter vector of the PDF. A partition is dened with the rule

(x, y) ∈ Ω r =⇒ θ(x, y) ∼ P [βr]
. The goal of image partitioning is then to retrieve the underlying partition w(x, y), so that w(x, y) = r ⇐⇒ (x, y) ∈ Ω r . The main diculty of such a task is that the PDF P In this section, the approach proposed in 18 (initialy devoted to the segmentation of Synthetic Aperture Radar (SAR) images) is generalized to the segmentation of orientation eld images. It relies on the minimization of a MDL criterion, [START_REF] Rissanen | Modeling by shortest data description[END_REF][START_REF] Rissanen | Stochastic Complexity in Statistical Inquiry[END_REF] and it has been demonstrated 18, 25 that in the case of Gaussian, Gamma, Poisson or Bernoulli PDFs, it can lead to ecient techniques to obtain a decomposition of the image into statistically homogeneous regions. In the present case of orientation images, such approaches have to be extended to circular data.

[βr] , r ∈ [1, R] are unknown.
3.1 The Von Mises PDF for circular data Among all the PDF proposed in the literature to model 2π-periodic circular data, 26 a lot of interest has been devoted to the Von Mises PDF, 15 which has also been used for image processing to model orientation data in textures. [START_REF] Grana | Describing texture directions with von mises distributions[END_REF][START_REF] Péron | Joint linear-circular stochastic models for texture classication[END_REF] This PDF is unimodal and symmetric and is entirely dened by two parameters: its mean orientation and its concentration. In this paper, the π-periodic PDF of the orientation θ(x, y) will be directly derived from this model, by considering that α(x, y) = 2θ(x, y) is distributed according to the standard 2πperiodic Von Mises PDF, leading to

P [µr,κr] (α) = 1 2πI 0 (κ r )
e κr cos(α-µr) .

(

) 4 
where I 0 is the modied Bessel function of the rst kind and order 0, and where µ r ∈] -π, π] and κ r ≥ 0 are respectively the mean orientation and the concentration of α inside Ω r . The mean orientation of θ = α/2 is thus equal to µ r /2 (modulo π).

In the following, the purpose will thus be to generalize the MDL-based partitioning technique proposed in [START_REF] Galland | Minimum description length synthetic aperture radar image segmentation[END_REF][START_REF] Galland | Multicomponent image segmentation in homogeneous regions by stochastic complexity minimization[END_REF] to such circular data.

Determination of the MDL criterion adapted to Von Mises data

According to 18, 25 the MDL criterion ∆(θ, w), which represents the code length needed to encode the whole image using the partition w, is the sum of three terms:

∆(θ, w) = ∆ G (w) + ∆ P (β|w) + ∆ L (θ|w, β) (5) 
where ∆ G is the code length needed to encode the partition w, ∆ P is the code length needed to encode the PDF parameters β r in each region Ω r dened by w, and ∆ L is the code length needed to encode the pixel orientation

θ(x, y) inside each region Ω r knowing β = {β r } r∈[1,R] .
Let us now detail the expression of these three terms, as a function of the partition w.

Following 18 it is proposed to model the partition w with a polygonal grid, i.e. a set of nodes linked by segments to dene the dierent regions Ω r . In this case, the code length ∆ G needed to encode a given partition w can be approximated with 18 ∆ G (w) = n(log N + log p) + log p + 2p + p log(4 dx dy )

where p is the number of segments of the polygonal grid, n the minimum number of Eulerian graphs needed to describe the grid, and dx and dy the mean lengths of the horizontal and vertical projections of the grid segments and N the number of pixels of the image (see 18 and 28 for details).

The code length needed to encode the PDF parameters β r inside each region can be approximated with: 24 ∆ P (β|w

) = R r=1 card(β r ) 2 log(N r ) (7) 
where N r is the number of pixels inside region Ω r and where card(β r ) is the size of the parameter vector β r , i.e.

the number of PDF parameters that need to be encoded. In the present case, the parameter vector of the Von Mises PDF is β r = (µ r , κ r ), and thus card(β r ) = 2.

The last term ∆ L represents the code length needed to describe the pixel orientation θ(x, y) inside each region using an entropic code:
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∆ L (θ|w, β) = R r=1 -L(Ω r |β r ) (8) 
where L(Ω r |β r ) is the log-likelihood of the sample {α(x, y), (x, y) ∈ Ω r }, knowing the PDF parameter β r . In the case of Von Mises PDF, one directly obtains: 15

L(Ω r |β r ) = N r log 2π + κ r R r cos(α r -µ r ) -log I 0 (κ r ) (9) 
where

α r = tan -1 Sr Cr R r = C r 2 + S r 2 (10) 
and

   C r = 1 N (x,y)∈Ωr cos α(x, y) S r = 1 N (x,y)∈Ωr sin α(x, y) (11) 
Since β r = (µ r , κ r ) is generally unknown, it has to be estimated. Following 15 the parameters µ r and κ r of the Von Mises PDF can be estimated in the Maximum Likelihood (ML) sense, leading to the following ML estimates µ r and κ r :

µ r = α r κ r = A -1 (R r ) (12)
where A(κ) = I 1 (κ)/I 0 (κ) and I 1 (κ) = I 0 (κ). In the following, for numerical computation, the approximation

A -1 (R r ) ≈ (1.28 -0.53R r
2 ) tan(πR r /2) proposed in 30 (with maximum relative error of 0.032) will be used.

When replacing β r by its ML estimates β r = ( µ r , κ r ) in the log-likelihood of eq. 9, the following generalized log-likelihood L θ (Ω r | β r ) is obtained:

L(Ω r | β r ) = N r log 2π + κ r R r -log I 0 ( κ r ) (13) 
The MDL criterion associated to a given partition thus contains neither unknown PDF parameter, nor tuning parameter to balance between its dierent terms. It is then required to nd the partition which minimizes this criterion. Following the optimization process proposed in, 18 starting from an initial regular thin grid delimiting 8×8 pixel regions (as shown in g. 6.c and 7.c), the algorithm consists in alternatively combining three grid modication steps in order to minimize the criterion: a region merging (RegM erg) step in which neighboring regions are merged (allowing the estimation of the number of regions), a node moving (N odM ov) step in order to estimate the contour location, and a node removal (N odRem) step in which nodes are progressively removed one by one (allowing to estimate the number of nodes and thus to regularize the contour). Typically, three cycles of RegM erg, N odM ov and N odRem steps are sucient to obtain satisfactory results (see 18 for details on the optimization process). For each modication of the grid tested by the optimization algorithm, the parameters µ r and κ r must be re-estimated in order to determine wether or not this modication leads to a decrease of the MDL criterion. Most of the time consuming of the algorithm is thus due to the computation of the 2D summations over the regions of C r and S r envolved in the calculation of µ r and κ r (see eq. 10, 11 and 12). In order to obtain a fast partitioning algorithm, the implementation proposed in 31 has been used, allowing one to replace these 2D

summations by 1D summations along the contours of the regions. Using such a technique, the partitioning of a 256×256 pixel image can then be obtained in less than one second on a standard personal computer (using C programming on a 3.2 GHz processor PC under Linux).

ORIENTATION ESTIMATION

First results on synthetic images

When applying this segmentation technique on the noisy orientation image of g. 1.b (obtained by applying a 3 × 3 GOP estimator), the segmentation results shown on gures 1.e,f are obtained. It is then proposed to directly estimate the orientation inside a region Ω r using the whole pixels of this region, i.e. using as large homogeneous samples as possible. The estimation of the orientation is then straightforward as the estimation of the mean orientation inside a region Ω r is θ r = α r /2. The orientation estimated inside each region obtained by the segmentation are shown on g. 1.g. It appears that these results are better than those obtained using sliding windows, not only in term of the precision of the contours, but also in term of quality since the MAD obtained The MAD values obtained using the segmentation-based estimation method have also been reported on these graphs.

using the proposed approach is lower than those obtained with sliding windows as shown on the left part of g.

3.

Comparison experiments

The method introduced in this paper was shown in the case of g. 1.a to outperform the AGOP gradient-based orientation estimation by local sliding window averaging. However, it still has not been compared to other standard methods for orientation estimation. In the right part of g. 3, we plot the evolution of MAD value as a function of scale for various orientation estimation methods. One of them is the steerable lter E2 32 with variable size. The second method is the IRON operator 17 whose size can also be tuned. These methods and the AGOP method discussed above are compared to the proposed segmentation-based method. The textured image used for this experiment is the synthetic image of g. 4a, which is made of several patches with dierent pattern frequencies and a noise level σ = 50.

In this case, orientation estimation based on segmentation leads to lower MAD than the other tested methods, whatever the scale, i.e. lter size, of the chosen operator. The corresponding results obtained with the segmentation based method and with each of the other tested methods (when selecting a posteriori the lter size minimizing the MAD) are presented in g. 4.

However, at very high noise level, some frontiers between adjacent regions could be missed with the proposed segmentation technique, which can lead to a degradation of the precision of the estimated orientation in these regions. To illustrate this problem, the experiment of g. 4 has been reproduced on g. 5 with progressively increasing the standard deviation σ. Fig. 5 shows the evolution of the MAD as a function of σ for two estimation methods: the proposed segmentation based estimation and the best AGOP lter (i.e. the AGOP lter which either when no constraint on the region size is imposed (gray solid line) or when limiting the size of the regions that can be merged in the segmentation algorithm (black solid line).

minimizes the MAD). As soon as σ > 90, the performances of the proposed segmentation based estimation technique rapidly decreases and are outperformed by the best AGOP lter.

Nevertheless, the robustness of this segmentation based technique can be increased at high noise level by limiting the size of the regions in the segmentation step. Indeed, as soon as the regions contain enough pixels to obtain an accurate estimation of the orientation inside the region, increasing the size of the region is not useful anymore, notably since it can lead to the merging of poorly contrasted regions. Since the size of the AGOP lter has been limited to 21 × 21 pixels, it has been chosen to impose the same constraint in the segmentation algorithm. For that purpose, in the region merging step of the segmentation algorithm, the merging of two regions with sizes greater than 21 × 21 pixels (for both regions) is not allowed. The obtained results are reported on g. 5: adding such a constraint on the maximal size of the regions allows one to obtain equivalent performances as the segmentation based approach for noise level σ < 80, while keeping at least the performances of the AGOP technique for high noise levels.

Application

To illustrate the use of our approach, the algorithm is nally applied to the processing of microscopy images provided by Snecma Moteurs (Safran group) of a Titane base alloy shown in gures 6 and 7. The structures of interest in such images are the large central regions composed of needles of similar orientation. The objective is to compute needle orientation statistics inside these large regions while getting their contours. The results provided in g. 6 and 7 show that the large regions are relevantly segmented and that their orientation can be successfully retrieved.

CONCLUSION

In this paper, a new segmentation based parametric approach for the estimation of orientation in textures has been proposed. This approach relies on an unsupervised MDL based segmentation technique that has been generalized to the case of π-periodic circular data modeled with Von Mises pdf. Local orientations are computed on each image pixel using a derivative approach. Then pixels are mapped into regions by the segmentation algorithm. Pixels are then assigned the mean orientation of the region they belong to.

Through a series of experiments using synthetic data, the approach appears to process the data successfully in most cases. By maximizing the size of the regions where orientation averaging takes place, accurate orientation inside the regions are estimated and precise boundaries between regions are also determined. On the dierent images analyzed in this paper, this approach allows one to obtain lower MAD than with the standard orientation estimation techniques that have been tested. Among the various perspectives, a validation of this technique on The MAD values obtained using the segmentation-based estimation method have also been reported on these graphs. 
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 1 Figure 1. (a) Textured image obtained by adding to a non noisy image (with grey levels between 0 and 100) a zero-mean Gaussian noise with standard deviation σ=50. The orientation estimated using a 3 × 3 GOP estimator is shown on (b) and the smoothing of this orientation with a d × d sliding windows is shown for d = 7 (c) and d = 11 (d). The segmentation into homogeneous regions obtained with the proposed technique is shown on (e,f) (either displayed on (a) or (b)) and the associated estimated orientations are shown on (g). The orientation ground truth is shown on (h). In this case d M AD = 7.
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 2 Figure 2. Same as gure 1, but with σ = 100. In this case d M AD = 11.
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 3 Figure 3. Left: MAD value as a function of the square size d of the sliding windows, in the case of the texture of g. 1.a. Right: MAD value as a function of the scale parameter for various orientation operators applied to the texture of g. 4.a.
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 45 Figure 4. Comparison experiment: (a) Synthetic patchy image in the range 0 -100 with additive noise of standard deviation σ = 50. (b) Orientation estimated using a 3 × 3 GOP estimator. (c) Segmentation into homogeneous regions obtained with the proposed technique. (d) Orientation deduced from (c). (e) Best result obtained with the E2 steerable lter (size 11). (f) Best result obtained with the AGOP method (averaging on a 11 × 11 window). (g) Best result obtained with the IRON operator (size 15). (h) True orientation on each patch.
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 6 Figure 6. (a) Microscopy image of a Titane base alloy (360 × 277 pixels) provided by Snecma Moteurs (Safran group). (b) Orientation estimated using a 3 × 3 GOP operator. (c) Initial grid delimiting 8 × 8 pixel regions used to initialize the segmentation algorithm. (d,e) Segmentation results obtained with the proposed approach (either displayed on (a) or (b)) -computational time: 1.4 s. (f) Corresponding orientations estimated inside each regions.
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 7 Figure 7. Same as g. 6 but on another Titane base alloy microscopy image provided by Snecma Moteurs (Safran group).
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 captions1 Figure captions Figure 1. (a) Textured image obtained by adding to a non noisy image (with grey levels between 0 and 100) a zero-mean Gaussian noise with standard deviation σ=50. The orientation estimated using a 3 × 3 GOP estimator is shown on (b) and the smoothing of this orientation with a d × d sliding windows is shown for d = 7 (c) and d = 11 (d). The segmentation into homogeneous regions obtained with the proposed technique is shown on (e,f) (either displayed on (a) or (b)) and the associated estimated orientations are shown on (g). The orientation ground truth is shown on (h). In this case d M AD = 7.
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 3 Figure 3. Left: MAD value as a function of the square size d of the sliding windows, in the case of the texture of g. 1.a. Right: MAD value as a function of the scale parameter for various orientation operators applied to the texture of g. 4.a.
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 4 Figure 4. Comparison experiment: (a) Synthetic patchy image in the range 0 -100 with additive noise of standard deviation σ = 50. (b) Orientation estimated using a 3 × 3 GOP estimator. (c) Segmentation into homogeneous regions obtained with the proposed technique. (d) Orientation deduced from (c). (e) Best result obtained with the E2 steerable lter (size 11). (f) Best result obtained with the AGOP method (averaging on a 11 × 11 window). (g) Best result obtained with the IRON operator (size 15). (h) True orientation on each patch.
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 5 Figure 5. Variation of the MAD when the standard deviation σ of the noise added on the image of g. 4.a increases. The orientation is estimated using the best AGOP lter (dashed black line) and the proposed segmentation based approach, either when no constraint on the region size is imposed (gray solid line) or when limiting the size of the regions that can be merged in the segmentation algorithm (black solid line).
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 6 Figure 6. (a) Microscopy image of a Titane base alloy (360 × 277 pixels) provided by Snecma Moteurs (Safran group). (b) Orientation estimated using a 3 × 3 GOP operator. (c) Initial grid delimiting 8 × 8 pixel regions used to initialize the segmentation algorithm. (d,e) Segmentation results obtained with the proposed approach (either displayed on (a) or (b)) -computational time: 1.4 s. (f) Corresponding orientations estimated inside each regions.
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 7 Figure 7. Same as g. 6 but on another Titane base alloy microscopy image provided by Snecma Moteurs (Safran group).
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