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ABSTRACT

In this paper, which deals with textured images and more particularly with directional textures, a new parametric

technique is proposed to estimate the orientation �eld of textures. It consists of segmenting the image into regions

with homogeneous orientations, and estimating the orientation inside each of these regions. This allows us to

maximize the size of the samples used to estimate the orientation without being corrupted by the presence of

boundaries between regions. For that purpose, the local - hence noisy - orientations of the texture are �rst

estimated using small �lters (3×3 pixels). The segmentation of the obtained orientation �eld image then relies

on a generalization of a Minimum Description Length (MDL) based segmentation technique, to the case of π-

periodic circular data modeled with Von Mises probability density functions. This leads to a fast segmentation

algorithm without tuning parameters in the optimized criterion. The accuracy of the orientations estimated with

the proposed method is then compared with other approaches on synthetic images and an application to the

processing of real images is �nally addressed.

Keywords: Texture, orientation, circular data, Von Mises, segmentation, polygonal active grid, minimum

description length

1. INTRODUCTION

Texture is a keystone of many image analysis frameworks. Whether for classi�cation, for indexation or for seg-

mentation applications, the importance of texture descriptors cannot be overlooked when dealing with natural

images. Among such textural descriptors, pattern orientation has proved to be crucial for human image percep-

tion.1,2 Besides, machine vision systems have also bene�ted from orientation and anisotropy-based features in

many domains (e.g.3�5).

Contact: jean-pierre.dacosta@ims-bordeaux.fr, frederic.galland@fresnel.fr

1



In particular, some papers have reported the use of pattern orientations and texture anisotropies for segmen-

tation purposes. To mention a few, Bigün and Du Buf6 used complex moments in Gabor space to capture the

symmetries of the local image content within a quad tree segmentation approach. Rousson et al.7 and Luis Gar-

cía et al.,8 inspired by tensor-valued image analysis techniques, used the structure tensor9,10 as a textural feature

driving level-sets segmentation frameworks. Recently, the same authors proposed a combined segmentation ap-

proach using both tensor and color information within a common minimization framework.11 In prior works, Da

Costa et al.12,13 have also taken advantage of texture anisotropy for the segmentation of remote-sensed images.

Anisotropy was captured either by spectral Gabor features or by spatial anisotropy descriptors, and was used

either in a region growing segmentation framework12 or simply in a thresholding/regularizing scheme.13 In the

context of manuscript analysis, Grana et al.14 proposed a classi�cation algorithm to discriminate between sub

blocks of text, illustrations and background using anisotropy. Orientation distributions inside sub blocks were

captured by grey level autocorrelation and modelled using mixtures of Von Mises density functions.15

In this paper, segmentation is not considered as an aim of image analysis but as a means of estimating

orientations in textures. Our contribution is a segmentation-based parametric approach for the estimation of

orientations in directional textures, i.e. textures exclusively composed of oriented patterns.16,17 The approach

relies on a �rst step of local estimation of the orientations in the image using derivative techniques.16 The

obtained orientation �eld image is segmented into homogeneous regions, using the Minimum Description Length

(MDL) segmentation technique formerly presented in18 and generalized in this paper to π-periodic data modeled

with circular Von Mises distributions.15 A �nal orientation estimation is performed by averaging low level

orientations inside the segmented regions.

The paper is organized as follows. Section 2 is a methodological presentation dealing with orientation esti-

mation and circular data modelling. Section 3 presents a generalization of the MDL segmentation technique to

Von Mises circular data. Section 4 reports an experimental evaluation of the segmentation-based framework for

orientation estimation on synthetic and real textured images. The last section provides some conclusions.

2. ORIENTATION AND TEXTURES

2.1 Textures of interest

As orientation relates to visual perception, de�ning the concept of image orientation is not trivial. The notion

of orientation is often closely linked to the kind of patterns observed in the images. In this paper, only the

case where a unique orientation (i.e. the orientation of the underlying oriented pattern) is present at any pixel

of the image will be considered. This corresponds to the linearly symmetric model,10 to the {i1D} case � i.e.
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intrinsic dimensionality is 1 � according to Krieger and Zetzsche's nomenclature19 or to the mono-directional

texture case mentioned by Michelet et al.17 The limitation to unique orientations excludes some textures where

superimpositions or occlusions occur,20 but such textures are beyond the scope of this paper.

2.2 Orientation Estimation

It is commonly accepted that anisotropy perception is closely linked to the scale at which an image is considered.

The multi-scale nature of orientation information has therefore been taken into account in many vision systems

both in spectral approaches6,10 and in spatial approaches5 which usually attempt to capture anisotropy properties

at various scales. However, in this paper we chose to focus on local orientations only, thus restricting orientation

estimation to local pixel neighborhoods. The objective is twofold. First, keeping orientation estimates local

limits border e�ects at the boundaries of regions with di�erent orientations. Secondly, as local estimates can

be processed by spatial �lters operating within very small pixel neighborhoods, strong dependences between

orientation estimates on neighboring pixels are avoided.

In the case of mono-directional textures, the use of local derivatives21,22 is a natural approach for orientation

estimation. In this paper we use the formerly proposed16 gradient operator GOP. Similar to standard 3 × 3

operators (e.g. Sobel �lter), GOP is part of a panel of �lters designed to limit both bias and noise sensitivity

while keeping the estimation process as local as possible. Local texture orientation is orthogonal to the orientation

of the gradient. It is de�ned within an interval of width π, for instance ]− π
2 ,

π
2 ], as two values that are π apart

refer to the same orientation. Such orientation data are called axial data15 i.e. π-periodic circular data.

Nevertheless, in the case of noisy images, orientation estimations are very scattered and cannot be used

directly. For example, the estimation of orientations inside the textured image of �g. 1.a is shown on �g. 1.b,

using the GOP operator. In order to reduce the noise in these images, a classical solution consists in averaging the

orientations in a small neighborhood V (x, y) around (x, y). In this paper, V (x, y) is de�ned as a sliding square

window containing NV = d × d pixels and centered on pixel (x, y). Let θ(x, y) be the orientation estimated at

pixel (x, y). Thus the double angle α(x, y) = 2θ(x, y) is a 2π-periodic variable. Its averaging α can be computed

inside V (x, y) as suggested by Mardia and Jupp:15

2θ(x, y) = α(x, y) = tan−1 S(x, y)

C(x, y)
(1)

where  C(x, y) = 1
NV

∑
(u,v)∈V (x,y) cosα(u, v)

S(x, y) = 1
NV

∑
(u,v)∈V (x,y) sinα(u, v)

(2)
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with NV the number of pixels in V (x, y). In equations 1-2, angular values are replaced by unit vectors

(cosα(u, v), sinα(u, v)) which are averaged within V (x, y). This avoids erroneous estimations provided by classi-

cal averaging when angular data close to the limits of the orientation interval occur (−π or π for instance). The

resulting orientation provided by this averaging technique (denoted AGOP in the following for Averaged GOP

operator) is closely related to the orientation of the �rst eigen vector of the structure tensor9,10 which is another

classical approach to get a regularized orientation estimation.

The averaging θ(x, y) = α(x, y)/2 of the orientation image of �g. 1.b obtained using squared sliding windows

V (x, y) with di�erent side sizes d (and thus NV = d×d pixels) are reported on �g. 1.c (d=7) and �g. 1.d (d=11).

It is notably shown on the left part of �g. 3 that the Mean Average Deviation (MAD) between the averaged

estimated orientation {θ(x, y)}(x,y) and the true orientation {θGT (x, y)}(x,y) (GT for Ground Truth) used to

generate the data (see �g. 1.h), is minimal for d=7, using the following de�nition for the MAD:

MAD =
1

N

∑
(x,y)∈Image

min(|θGT (x, y)− θ(x, y)|, π − |θGT (x, y)− θ(x, y)|) (3)

where N is the number of pixels in the image. Of course, the value d which minimizes the MAD, denoted d̃MAD

in the following, highly depends on the image considered and on the noise level. For instance, d̃MAD=11 when

the noise level is increased by a factor 2 (σ = 100) as shown in �g. 2.

In real applications, where the ground truth is unknown and thus quality criteria such as the MAD cannot

be calculated, the estimation of the size of this sliding window is a di�cult problem. In this paper, instead of

trying to �nd the best window size, it is proposed to directly recover the di�erent homogeneous regions in the

image by decomposing the orientation �eld into a patchwork of regions with homogeneous orientations. Inside

each homogeneous region, the whole pixels can then be used to re�ne the orientation estimation. The estimation

of the orientation is thus averaged on the biggest homogeneous sample of pixels, but without being corrupted by

the presence of inhomogeneities near borders.

3. PARTITION INTO REGIONS WITH HOMOGENEOUS ORIENTATIONS

Let θ = {θ(x, y), (x, y) ∈ [1, Nx] × [1, Ny]} be an image of orientations composed of N = Nx ×Ny pixels. This

image is assumed to be composed of a patchwork of R homogeneous regions Ωr (r ∈ [1, R]). In other words,

the pixel orientations in each region Ωr are assumed to be independent realizations of a probability density

function (PDF) P[βr], where βr denotes the parameter vector of the PDF. A partition is de�ned with the rule

(x, y) ∈ Ωr =⇒ θ(x, y) ∼ P[βr]. The goal of image partitioning is then to retrieve the underlying partition

w(x, y), so that w(x, y) = r ⇐⇒ (x, y) ∈ Ωr. The main di�culty of such a task is that the PDF P[βr], r ∈ [1, R]

are unknown.

4



Figure 1. (a) Textured image obtained by adding to a non noisy image (with grey levels between 0 and 100) a zero-mean

Gaussian noise with standard deviation σ=50. The orientation estimated using a 3 × 3 GOP estimator is shown on

(b) and the smoothing of this orientation with a d × d sliding windows is shown for d = 7 (c) and d = 11 (d). The

segmentation into homogeneous regions obtained with the proposed technique is shown on (e,f) (either displayed on (a)

or (b)) and the associated estimated orientations are shown on (g). The orientation ground truth is shown on (h). In this

case d̃MAD = 7.

Figure 2. Same as �gure 1, but with σ = 100. In this case d̃MAD = 11.
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In this section, the approach proposed in18 (initialy devoted to the segmentation of Synthetic Aperture Radar

(SAR) images) is generalized to the segmentation of orientation �eld images. It relies on the minimization of a

MDL criterion,23,24 and it has been demonstrated18,25 that in the case of Gaussian, Gamma, Poisson or Bernoulli

PDFs, it can lead to e�cient techniques to obtain a decomposition of the image into statistically homogeneous

regions. In the present case of orientation images, such approaches have to be extended to circular data.

3.1 The Von Mises PDF for circular data

Among all the PDF proposed in the literature to model 2π-periodic circular data,26 a lot of interest has been

devoted to the Von Mises PDF,15 which has also been used for image processing to model orientation data

in textures.14,27 This PDF is unimodal and symmetric and is entirely de�ned by two parameters: its mean

orientation and its concentration. In this paper, the π-periodic PDF of the orientation θ(x, y) will be directly

derived from this model, by considering that α(x, y) = 2θ(x, y) is distributed according to the standard 2π-

periodic Von Mises PDF, leading to

P[µr,κr](α) =
1

2πI0(κr)
eκr cos(α−µr). (4)

where I0 is the modi�ed Bessel function of the �rst kind and order 0, and where µr ∈] − π, π] and κr ≥ 0 are

respectively the mean orientation and the concentration of α inside Ωr. The mean orientation of θ = α/2 is thus

equal to µr/2 (modulo π).

In the following, the purpose will thus be to generalize the MDL-based partitioning technique proposed in18,25

to such circular data.

3.2 Determination of the MDL criterion adapted to Von Mises data

According to18,25 the MDL criterion ∆(θ, w), which represents the code length needed to encode the whole image

using the partition w, is the sum of three terms:

∆(θ, w) = ∆G(w) + ∆P (β|w) + ∆L(θ|w, β) (5)

where ∆G is the code length needed to encode the partition w, ∆P is the code length needed to encode the PDF

parameters βr in each region Ωr de�ned by w, and ∆L is the code length needed to encode the pixel orientation

θ(x, y) inside each region Ωr knowing β = {βr}r∈[1,R]. Let us now detail the expression of these three terms, as

a function of the partition w.

Following18 it is proposed to model the partition w with a polygonal grid, i.e. a set of nodes linked by

segments to de�ne the di�erent regions Ωr. In this case, the code length ∆G needed to encode a given partition
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w can be approximated with18

∆G(w) = n(logN + log p) + log p+ 2p+ p log(4d̄xd̄y) (6)

where p is the number of segments of the polygonal grid, n the minimum number of Eulerian graphs needed to

describe the grid, and d̄x and d̄y the mean lengths of the horizontal and vertical projections of the grid segments

and N the number of pixels of the image (see18 and28 for details).

The code length needed to encode the PDF parameters βr inside each region can be approximated with:24

∆P (β|w) =

R∑
r=1

card(βr)

2
log(Nr) (7)

where Nr is the number of pixels inside region Ωr and where card(βr) is the size of the parameter vector βr, i.e.

the number of PDF parameters that need to be encoded. In the present case, the parameter vector of the Von

Mises PDF is βr = (µr, κr), and thus card(βr) = 2.

The last term ∆L represents the code length needed to describe the pixel orientation θ(x, y) inside each region

using an entropic code:29

∆L(θ|w, β) =

R∑
r=1

−L(Ωr|βr) (8)

where L(Ωr|βr) is the log-likelihood of the sample {α(x, y), (x, y) ∈ Ωr}, knowing the PDF parameter βr. In the

case of Von Mises PDF, one directly obtains:15

L(Ωr|βr) = Nr
(
log 2π + κrRr cos(αr − µr)− log I0(κr)

)
(9)

where

αr = tan−1 Sr

Cr

Rr =

√
Cr

2
+ Sr

2
(10)

and  Cr = 1
N

∑
(x,y)∈Ωr

cosα(x, y)

Sr = 1
N

∑
(x,y)∈Ωr

sinα(x, y)
(11)

Since βr = (µr, κr) is generally unknown, it has to be estimated. Following15 the parameters µr and κr of the

Von Mises PDF can be estimated in the Maximum Likelihood (ML) sense, leading to the following ML estimates

µ̂r and κ̂r:

µ̂r = αr

κ̂r = A−1(Rr)
(12)

where A(κ) = I1(κ)/I0(κ) and I1(κ) = I ′0(κ). In the following, for numerical computation, the approximation

A−1(Rr) ≈ (1.28− 0.53Rr
2
) tan(πRr/2) proposed in30 (with maximum relative error of 0.032) will be used.
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When replacing βr by its ML estimates β̂r = (µ̂r, κ̂r) in the log-likelihood of eq. 9, the following generalized

log-likelihood Lθ(Ωr|β̂r) is obtained:

L(Ωr|β̂r) = Nr
(
log 2π + κ̂rRr − log I0(κ̂r)

)
(13)

The MDL criterion associated to a given partition thus contains neither unknown PDF parameter, nor tuning

parameter to balance between its di�erent terms. It is then required to �nd the partition which minimizes this

criterion. Following the optimization process proposed in,18 starting from an initial regular thin grid delimiting

8×8 pixel regions (as shown in �g. 6.c and 7.c), the algorithm consists in alternatively combining three grid

modi�cation steps in order to minimize the criterion: a region merging (RegMerg) step in which neighboring

regions are merged (allowing the estimation of the number of regions), a node moving (NodMov) step in order

to estimate the contour location, and a node removal (NodRem) step in which nodes are progressively removed

one by one (allowing to estimate the number of nodes and thus to regularize the contour). Typically, three cycles

of RegMerg, NodMov and NodRem steps are su�cient to obtain satisfactory results (see18 for details on the

optimization process). For each modi�cation of the grid tested by the optimization algorithm, the parameters µ̂r

and κ̂r must be re-estimated in order to determine wether or not this modi�cation leads to a decrease of the MDL

criterion. Most of the time consuming of the algorithm is thus due to the computation of the 2D summations

over the regions of Cr and Sr envolved in the calculation of µ̂r and κ̂r (see eq. 10, 11 and 12). In order to obtain

a fast partitioning algorithm, the implementation proposed in31 has been used, allowing one to replace these 2D

summations by 1D summations along the contours of the regions. Using such a technique, the partitioning of a

256×256 pixel image can then be obtained in less than one second on a standard personal computer (using C

programming on a 3.2 GHz processor PC under Linux).

4. ORIENTATION ESTIMATION

4.1 First results on synthetic images

When applying this segmentation technique on the noisy orientation image of �g. 1.b (obtained by applying

a 3 × 3 GOP estimator), the segmentation results shown on �gures 1.e,f are obtained. It is then proposed to

directly estimate the orientation inside a region Ωr using the whole pixels of this region, i.e. using as large

homogeneous samples as possible. The estimation of the orientation is then straightforward as the estimation of

the mean orientation inside a region Ωr is θr = αr/2. The orientation estimated inside each region obtained by

the segmentation are shown on �g. 1.g. It appears that these results are better than those obtained using sliding

windows, not only in term of the precision of the contours, but also in term of quality since the MAD obtained
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Figure 3. Left: MAD value as a function of the square size d of the sliding windows, in the case of the texture of �g. 1.a.

Right: MAD value as a function of the scale parameter for various orientation operators applied to the texture of �g. 4.a.

The MAD values obtained using the segmentation-based estimation method have also been reported on these graphs.

using the proposed approach is lower than those obtained with sliding windows as shown on the left part of �g.

3.

4.2 Comparison experiments

The method introduced in this paper was shown in the case of �g. 1.a to outperform the AGOP gradient-based

orientation estimation by local sliding window averaging. However, it still has not been compared to other

standard methods for orientation estimation. In the right part of �g. 3, we plot the evolution of MAD value

as a function of scale for various orientation estimation methods. One of them is the steerable �lter E232 with

variable size. The second method is the IRON operator17 whose size can also be tuned. These methods and the

AGOP method discussed above are compared to the proposed segmentation-based method. The textured image

used for this experiment is the synthetic image of �g. 4a, which is made of several patches with di�erent pattern

frequencies and a noise level σ = 50.

In this case, orientation estimation based on segmentation leads to lower MAD than the other tested meth-

ods, whatever the scale, i.e. �lter size, of the chosen operator. The corresponding results obtained with the

segmentation based method and with each of the other tested methods (when selecting a posteriori the �lter size

minimizing the MAD) are presented in �g. 4.

However, at very high noise level, some frontiers between adjacent regions could be missed with the proposed

segmentation technique, which can lead to a degradation of the precision of the estimated orientation in these

regions. To illustrate this problem, the experiment of �g. 4 has been reproduced on �g. 5 with progressively

increasing the standard deviation σ. Fig. 5 shows the evolution of the MAD as a function of σ for two estimation

methods: the proposed segmentation based estimation and the best AGOP �lter (i.e. the AGOP �lter which
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Figure 4. Comparison experiment: (a) Synthetic patchy image in the range 0 − 100 with additive noise of standard

deviation σ = 50. (b) Orientation estimated using a 3 × 3 GOP estimator. (c) Segmentation into homogeneous regions

obtained with the proposed technique. (d) Orientation deduced from (c). (e) Best result obtained with the E2 steerable

�lter (size 11). (f) Best result obtained with the AGOP method (averaging on a 11×11 window). (g) Best result obtained

with the IRON operator (size 15). (h) True orientation on each patch.
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Figure 5. Variation of the MAD when the standard deviation σ of the noise added on the image of �g. 4.a increases. The

orientation is estimated using the best AGOP �lter (dashed black line) and the proposed segmentation based approach,

either when no constraint on the region size is imposed (gray solid line) or when limiting the size of the regions that can

be merged in the segmentation algorithm (black solid line).
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minimizes the MAD). As soon as σ > 90, the performances of the proposed segmentation based estimation

technique rapidly decreases and are outperformed by the best AGOP �lter.

Nevertheless, the robustness of this segmentation based technique can be increased at high noise level by

limiting the size of the regions in the segmentation step. Indeed, as soon as the regions contain enough pixels to

obtain an accurate estimation of the orientation inside the region, increasing the size of the region is not useful

anymore, notably since it can lead to the merging of poorly contrasted regions. Since the size of the AGOP

�lter has been limited to 21 × 21 pixels, it has been chosen to impose the same constraint in the segmentation

algorithm. For that purpose, in the region merging step of the segmentation algorithm, the merging of two regions

with sizes greater than 21 × 21 pixels (for both regions) is not allowed. The obtained results are reported on

�g. 5: adding such a constraint on the maximal size of the regions allows one to obtain equivalent performances

as the segmentation based approach for noise level σ < 80, while keeping at least the performances of the AGOP

technique for high noise levels.

4.3 Application

To illustrate the use of our approach, the algorithm is �nally applied to the processing of microscopy images

provided by Snecma Moteurs (Safran group) of a Titane base alloy shown in �gures 6 and 7. The structures of

interest in such images are the large central regions composed of needles of similar orientation. The objective

is to compute needle orientation statistics inside these large regions while getting their contours. The results

provided in �g. 6 and 7 show that the large regions are relevantly segmented and that their orientation can be

successfully retrieved.

5. CONCLUSION

In this paper, a new segmentation based parametric approach for the estimation of orientation in textures has

been proposed. This approach relies on an unsupervised MDL based segmentation technique that has been

generalized to the case of π-periodic circular data modeled with Von Mises pdf. Local orientations are computed

on each image pixel using a derivative approach. Then pixels are mapped into regions by the segmentation

algorithm. Pixels are then assigned the mean orientation of the region they belong to.

Through a series of experiments using synthetic data, the approach appears to process the data successfully in

most cases. By maximizing the size of the regions where orientation averaging takes place, accurate orientation

inside the regions are estimated and precise boundaries between regions are also determined. On the di�erent

images analyzed in this paper, this approach allows one to obtain lower MAD than with the standard orientation

estimation techniques that have been tested. Among the various perspectives, a validation of this technique on
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Figure 6. (a) Microscopy image of a Titane base alloy (360 × 277 pixels) provided by Snecma Moteurs (Safran group).

(b) Orientation estimated using a 3× 3 GOP operator. (c) Initial grid delimiting 8× 8 pixel regions used to initialize the

segmentation algorithm. (d,e) Segmentation results obtained with the proposed approach (either displayed on (a) or (b))

- computational time: 1.4 s. (f) Corresponding orientations estimated inside each regions.

Figure 7. Same as �g. 6 but on another Titane base alloy microscopy image provided by Snecma Moteurs (Safran group).
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other directional textures is possible. Remote sensed images of agricultural scenes (vineyards, row crops, planted

forests, etc.), 3D tomographic images of �ber reinforcements in composite materials, or multidirectional textures

are such examples.
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Figure captions

Figure 1. (a) Textured image obtained by adding to a non noisy image (with grey levels between 0 and 100) a zero-mean

Gaussian noise with standard deviation σ=50. The orientation estimated using a 3 × 3 GOP estimator is shown on

(b) and the smoothing of this orientation with a d × d sliding windows is shown for d = 7 (c) and d = 11 (d). The

segmentation into homogeneous regions obtained with the proposed technique is shown on (e,f) (either displayed on (a)

or (b)) and the associated estimated orientations are shown on (g). The orientation ground truth is shown on (h). In this

case d̃MAD = 7.

Figure 2. Same as �gure 1, but with σ = 100. In this case d̃MAD = 11.

Figure 3. Left: MAD value as a function of the square size d of the sliding windows, in the case of the texture of �g. 1.a.

Right: MAD value as a function of the scale parameter for various orientation operators applied to the texture of �g. 4.a.

The MAD values obtained using the segmentation-based estimation method have also been reported on these graphs.

Figure 4. Comparison experiment: (a) Synthetic patchy image in the range 0 − 100 with additive noise of standard

deviation σ = 50. (b) Orientation estimated using a 3 × 3 GOP estimator. (c) Segmentation into homogeneous regions

obtained with the proposed technique. (d) Orientation deduced from (c). (e) Best result obtained with the E2 steerable

�lter (size 11). (f) Best result obtained with the AGOP method (averaging on a 11×11 window). (g) Best result obtained

with the IRON operator (size 15). (h) True orientation on each patch.

Figure 5. Variation of the MAD when the standard deviation σ of the noise added on the image of �g. 4.a increases. The

orientation is estimated using the best AGOP �lter (dashed black line) and the proposed segmentation based approach,

either when no constraint on the region size is imposed (gray solid line) or when limiting the size of the regions that can

be merged in the segmentation algorithm (black solid line).

Figure 6. (a) Microscopy image of a Titane base alloy (360 × 277 pixels) provided by Snecma Moteurs (Safran group).

(b) Orientation estimated using a 3× 3 GOP operator. (c) Initial grid delimiting 8× 8 pixel regions used to initialize the

segmentation algorithm. (d,e) Segmentation results obtained with the proposed approach (either displayed on (a) or (b))

- computational time: 1.4 s. (f) Corresponding orientations estimated inside each regions.

Figure 7. Same as �g. 6 but on another Titane base alloy microscopy image provided by Snecma Moteurs (Safran group).
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