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1 Introduction

The equivalence between absence of arbitrage and the existence of a positive linear
pricing rule is central to Finance, and was pioneered by Ross (1977), in the wake of
the Black & Scholes (1973) option pricing model. Dybvig & Ross (1987) referred
to such results as “The Fundamental Theorem of Asset Pricing” (FTAP), setting the
tone for today’s terminology.

Thirty years later, the Fundamental Theorem remains an active research topic for
markets with frictions, and a practically oriented reader may look with skepticism
at another paper on this subject. Yet, there is a reason for this ongoing interest: the
path to the FTAP leads to the natural notions of admissibility and arbitrage, which
underlie all practical applications. This is a major lesson of the work of Delbaen
& Schachermayer (1994) in frictionless markets. The Fundamental Theorem seems
inevitable.

This paper proves a version of the FTAP in continuous time, for a risky asset
driven by a càdlàg and locally bounded bid-ask process. The main result is the equiv-
alence between a no-arbitrage condition, the Robust No Free Lunch with Vanishing
Risk (RNFLVR), and the existence of a Strictly Consistent Price System (SCPS),
representing a positive linear pricing rule:

Theorem 1.1 Let (S,κ) be a pair of càdlàg adapted, locally bounded processes, with
κ nonnegative. Then (RNFLVR) ⇐⇒ (SCPS).

(RNFLVR) is a robust version of the (NFLVR) condition of Delbaen & Schacher-
mayer (1994), and requires that (NFLVR) holds under an arbitrarily small perturba-
tion of the bid-ask spread. Schachermayer (2004) shows that robustness arises natu-
rally with transaction costs.

This paper formulates (RNFLVR) in terms of simple trading strategies. By con-
trast, in frictionless models (NFLVR) for simple strategies implies the semimartin-
gale property for the asset price S (Delbaen & Schachermayer 1994, Theorem 7.1).
Then, for any predictable strategy H the gain process (H ·S) becomes a well-defined
stochastic integral, and the (NFLVR) for predictable strategies implies the existence
of an equivalent local martingale measure.

Intuitively, this major difference arises from the impact of trading on wealth
dynamics. In a frictionless market, only price changes affect wealth, while trading
merely regulates their size. The result is a wide flexibility in trading patterns, repre-
sented by the large class of predictable strategies. By contrast, transaction costs entail
a direct negative impact of trading on wealth, thereby restricting the class of feasible
strategies.

The departure point of this paper is the concept of simple strategy, an almost
surely finite sequence of left transactions, occurring immediately before a stopping
time, and right transactions, occurring immediately afterwards (Definition 3.5). Rásonyi
(2003) discovered that right-continuous strategies are not sufficient if prices may
jump. Campi & Schachermayer (2006) employed both types of transactions to prove
a superreplication theorem.

A simple strategy is x-admissible if its future liquidation value (Definition 4.4) is
greater than −x. This definition embodies the idea that the current value of a position
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should reflect sure future improvements in liquidity, and it reduces to the usual defini-
tion in frictionless arbitrage-free markets. From the technical viewpoint, this notion
ensures that an admissible strategy with positive terminal value retains a positive
value at all times (Proposition 4.9). This property is in turn crucial for the closedness
of the set of admissible payoffs, which enables classic separation arguments. A Free
Lunch with Vanishing Risk (Definition 5.2) is a sequence of simple admissible strate-
gies which uniformly approximates an arbitrage payoff, and the (RNFLVR) property
requires that no such sequences exist up to small model misspecifications.

Central to wealth dynamics is the concept of cost process, which tracks the cumu-
lative cash flows generated by trading. In frictionless markets, the cost process

∫
Sdθ

is linked to the familiar gain process
∫

θdS by the integration by parts formula:∫
[0,T ]

Stdθt = ST θT −S0θ0−
∫
[0,T ]

θtdSt (1.1)

which holds for a left-continuous, finite-variation strategy θ and a semimartingale
price S. The left-hand side is a usual Stieltjes integral, while the right-hand side is as a
stochastic integral, or, in the language of Dellacherie & Meyer (1982), an elementary
stochastic integral.

In the presence of bid and ask prices, the cost is the basic concept, since it avoids
the appraisal of the risky position, which may be liquidated in the future at more fa-
vorable terms. The definition of cost is elementary for simple strategies (Definition
3.5), but its consistent extension to general (làdlàg) finite-variation strategies requires
a careful study, which seems to be of independent interest and is developed in the ap-
pendix. From the mathematical standpoint, it is clear that the class of left-continuous
strategies lacks any closedness property, hence it is unfit as domain of the integral
operator. The economic intuition is also straightforward. When asset prices move in
response to unpredictable (i.e. totally inaccessible) events, such as earthquakes, trad-
ing takes place only immediately after the event, i.e. the strategy θ is left-continuous.
However, if market-sensitive information is announced at a predictable time τ , as
for quarterly earnings announcements and monetary policy meetings, it is perfectly
feasible to trade both immediately before and immediately after the announcement.
Then all the values θτ− ,θτ ,θτ+ can be distinct, and yet economically relevant.

Building on this intuition, the appendix provides a consistent extension of the
Stieltjes integral for a càdlàg integrand S, and a predictable finite variation integrator
θ . This integral is compatible with the usual stochastic integral: in the special case
where S is a semimartingale, the integration by parts formula (1.1) continues to hold
for any predictable, finite-variation θ , when the left-hand side is understood in the
sense defined in the Appendix.

The rest of this paper is organized as follows: after a brief literature review, sec-
tion 3 introduces the main model. The next section discusses the new concept of ad-
missibility, and compares it to the frictionless case. The main result of this section is
Proposition 4.9, which characterizes admissible strategies by their terminal payoffs.
Section 5 introduces the (RNFLVR) condition, and establishes the Fatou closedness
of the payoff space. Section 6 proves the main theorem using standard arguments: the
Kreps-Yan theorem to separate the payoff space, and the argument of Jouini & Kallal
(1995) to obtain a martingale. The Appendix, which is readable without reference to
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the main text, constructs the predictable Stieltjes integral. The pathwise definition of
the integral is probability free, and only requires a measurable space. The probability
structure is needed for the construction of simple approximations.

2 Literature Review

The simple notion of arbitrage, as a positive nonzero payoff with zero price, proved
effective in finite discrete time, leading to the FTAP of Dalang, Morton & Willinger
(1990), but becomes problematic in models with infinite horizons or continuous time.
The seminal papers of Harrison & Kreps (1979) and Kreps (1981) derived the exis-
tence of pricing rules assuming a stronger condition, the absence of Free Lunches,
defined as nets, or generalized sequences, of payoffs converging to an arbitrage in a
weak sense. Harrison & Pliska (1981) highlighted the need for restrictions on trading
strategies, to avoid arbitrage through doubling schemes.

The FTAP in continuous time for general càdlàg processes was established by
Delbaen & Schachermayer (1994,1998), featuring the prominent rôle of semimartin-
gale theory in Mathematical Finance. The notion of a Free Lunch with Vanishing
Risk, a very strong approximation to an arbitrage payoff, proved key to establish
first the semimartingale property of asset prices, then the existence of equivalent lo-
cal martingale measures (in general, σ -martingale measures), formally equivalent to
positive linear pricing rules.

Arbitrage theory with transaction costs was pioneered by Jouini & Kallal (1995)
in a continuous time model. They proved that the absence of free lunches is equiv-
alent to the existence of a “shadow price”, evolving within the bid-ask spread, and
admitting an equivalent martingale measure. Subsequent work of Kabanov & Stricker
(2001a), Kabanov, Rásonyi & Stricker (2002), and Schachermayer (2004) proved dis-
crete time versions of the FTAP in increasing degrees of generality, in a numéraire-
free framework where all assets are freely exchangeable. Guasoni, Rásonyi & Schacher-
mayer (2010) characterize the absence of arbitrage with arbitrarily small transaction
costs for continuous processes.

3 The Model

Consider a market model with one risky and one risk-free asset, based on a filtered
probability space (Ω ,F ,(Ft)t∈[0,T ],P) satisfying the usual conditions, and set for
convenience Ft := FT for t ≥ T . The risk-free asset is used as numéraire, hence
its price is constantly equal to one. St − κt and St + κt denote respectively the bid
(selling) and ask (buying) prices of the risky asset. Equivalently, each share trades at
price St , and incurs a transaction fee of κt . The price-spread pair (S,κ) satisfies the
following:

Assumption 3.1 (S,κ) is a pair of càdlàg adapted, locally bounded processes, and κ

is nonnegative.

Note that S may become negative in this model. A nonnegative κ is necessary to rule
out static arbitrage by crossing the bid and ask prices.



5

Remark 3.2 Alternatively, let S≤ S be the bid and ask price processes. The relations
St := (St +St)/2 and κt = St−St = St−St link the bid-ask notation (S,S) to the price-
spread notation (S,κ). Thus, the choice of either notation does not restrict generality.

An investor trades in the risky asset according to the strategy (θt)t∈[0,T ], which repre-
sents the number of shares held at time t.

Definition 3.3 Let (σn)n≥1 be a strictly increasing sequence of stopping times, such
that supn≥1 σn > T a.s., that is P(∪n≥1{σn > T}) = 1. A simple strategy is a pre-
dictable process θ such that θ0 = θT = 0 and:

θ =
∞

∑
n=1

(
θσn1JσnK +θ

σ
+
n

1Kσn,σn+1J

)
(3.1)

For convenience, set θs = 0 for s > T .

According to this definition, a simple strategy entails a finite number of transactions,
but this number may depend on ω ∈ Ω . Each stopping time σn involves in principle
two transactions: the left transaction from θ

σ
−
n

to θσn takes place at price (S±κ)σ− ,
just before a possible jump. The right transaction from θσn to θ

σ
+
n

takes place at price
(S±κ)σ , right after the jump.

Remark 3.4 Because θ is predictable, θσ = θσ− for any totally inaccessible stopping
time. Thus, left transactions may only take place on the accessible part of σ , while
right transactions have no restrictions. This observation leads to an equivalent defini-
tion of simple strategy. Let (πn)n≥1 and (τn)n≥1 be two strictly increasing sequences
of predictable times and stopping times respectively, such that supn≥1 πn > T and
supn≥1 τn > T a.s. A simple strategy is a predictable process θ such that θ0 = θT = 0
and (recalling the notation ∆θt = θt −θt− and ∆+θt = θt+ −θt ):

θ = ∑
n≥1

∆θπn1Jπn,∞J + ∑
n≥1

∆
+

θτn 1Kτn,∞J (3.2)

The equivalence with the original definition is straightforward: (3.2) implies (3.1)
with (σn)n≥1 as the ordered sequence obtained from (πn)n≥1 and (τn)n≥1. Viceversa,
to obtain (3.2) from (3.1), set τn =σn, and choose the sequence (πn)n≥1 as the ordered
sequence obtained from an exhausting sequence of the accessible parts of σn (such
ordered sequence exists because σn is strictly increasing).

The definition of a simple strategy leads to the notion of cost:

Definition 3.5 The cost of a simple strategy θ is the random variable

C(θ) =
∞

∑
n=1

(
S

σ
−
n
(θσn −θ

σ
+
n−1

)+Sσn(θσ
+
n
−θσn)+κ

σ
−
n
|θσn −θ

σ
+
n−1
|+κσn |θσ

+
n
−θσn |

)
,

(3.3)

with the convention σ
+
0 = 0. Define the liquidation value as V (θ) = −C(θ). The

notation V (S,κ)(θ) is used when ambiguity may arise.
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The first two terms in C(θ) represent the cash flows generated by trading at price
S, which are positive for buying and negative for selling. The last two terms represent
the transaction costs, which are always positive. Equivalently, C(θ) reflects purchases
and sales respectively at bid and ask prices. To see this, regroup the terms in (3.3) as:

C(θ) =
∞

∑
n=1

[
(S+κ)

σ
−
n
(θσn −θ

σ
+
n−1

)++(S+κ)σn(θσ
+
n
−θσn)

+
]

(3.4)

−
∞

∑
n=1

[
(S−κ)

σ
−
n
(θσn −θ

σ
+
n−1

)−+(S−κ)σn(θσ
+
n
−θσn)

−
]

(3.5)

Since a strategy begins and ends with cash only, the liquidation value is −C(θ).

4 Admissibility

To introduce admissibility, it is convenient to recast the notion of simple strategy in
discrete-time notation, with the clock ticking at each transaction. This device over-
comes the cumbersome distinction between left and right transactions.

Let θ be a simple strategy, and (σn)n≥1 the sequence of transaction times in Defi-
nition 3.3. Define the discrete filtration (F̂ )n≥0 as F̂ =(F0,Fσ

−
1
,Fσ1 ,Fσ

−
2
,Fσ2 , . . .),

that is F̂2n−1 = F
σ
−
n

and F̂2n = Fσn for n≥ 1. The corresponding prices (Ŝ, κ̂)n≥0,
defined analogously, are adapted to F̂ because (S,κ) are adapted to F . Using this
notation, any simple strategy induces a F̂ -adapted process (θ̂n)n≥0 defined as θ̂ =
(0,θσ1 ,θσ

+
1
,θσ2 ,θσ

+
2
, . . .), or θ̂2n−1 = θσn and θ̂2n = θ

σ
+
n

for n≥ 1.

F̂n represents the information available at the n-th transaction, and (Ŝn, κ̂n) the
prices at which such a transaction takes place. The “hat operator” maps predictable
to adapted processes, in the following sense:

Proposition 4.1 Let τn = σnAn := σn1An +∞1Ω\An denote the totally inaccessible
part of σn, for some An ∈Fσn = F̂2n.

i) If (θt)t≥0 is a simple strategy, then (θ̂n)n≥0 is F̂ -adapted. In addition, θ̂2n−1 =
θσn = θ

σ
−
n
= θ̂2(n−1) on An.

ii) If (ηn)n≥0 is F̂ -adapted, and η2n−1 =η2(n−1) on An, then θ =∑n≥0(∆η2n−11Jσn,∞J+

∆η2n1Kσn,∞J) is a simple strategy, and θ̂ = η (recall that ∆ηn = ηn−ηn−1).

Proof For i), observe that θσ is Fσ−-measurable because θ is predictable, and that
θσ+ is Fσ -measurable since the filtration is right-continuous. Since σnAn is totally
inaccessible, it follows that θσn = θσn− on An.

To obtain ii), it suffices to show that both terms in the definition of θ are pre-
dictable. ∆η2n1Kσn,∞J is left-continuous, hence predictable. For ∆η2n−11Jσn,∞J, ob-
serve that ∆η2n−1 = 0 on An by assumption. Since σnΩ\An is the accessible part of
σn, its graph admits the representation:

JσnΩ\AnK = ∪m≥1JπmK (4.1)
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where (πm)m≥1 is a sequence of predictable times, whose graphs (JπmK)m≥1 are pair-
wise disjoint. Thus, ∆η2n−11Jπm,∞J is predictable for each m (Jacod & Shiryaev 2003,
1.2.12), hence also ∆η2n−11Jσn,∞J = ∆η2n−1 ∑m≥1 1Jπm,∞J is predictable. ut

Definition 4.2 A random partition is an increasing sequence of stopping times Σ =
(σn)n≥1, such that supn≥1 σn > T a.s. (i.e. P(∪n≥1{σn ∧T = T}) = 1), and P(σn 6=
σn−1) > 0 for all n (i.e., any stopping time appears only once). If a stopping time
appears at most twice, that is σn = σn−1 a.s. implies that P(σn 6= σn+1) > 0, then Σ

is an extended partition.
A random or extended partition Σ ′ is finer than Σ if ∪n≥1JσnK⊂∪n≥1Jσ ′nK, that is

∪n≥1JσnK\∪n≥1Jσ ′nK is evanescent. For a random or extended partition Σ , Σ̂ denotes
the corresponding partition in discrete time notation.

Remark 4.3 The unusual choice to allow a stopping time σn to appear twice in a
partition allows to use the same stopping time both for freezing, and for closing, two
concepts to be introduced shortly.

Define the cumulative cost process (Ĉk(θ))k≥0 as:

Ĉk(θ̂) =
k

∑
n=1

(
Ŝn(θ̂n− θ̂n−1)+ κ̂n|θ̂n− θ̂n−1|

)
(4.2)

which implies that V (θ) =−C(θ) =−Ĉ∞(θ̂). By definition, V̂ (θ̂) :=V (θ).
This notation streamlines the definition of an admissible strategy by avoiding the

distinction between left and right transactions. Intuitively, a strategy is x-admissible
if, after any transaction, the clearing broker can freeze the agent’s account, and liqui-
date it to cash at a later date for a cost less than x. This condition ensures that a credit
line of x is effectively in force.

Definition 4.4 For x≥ 0, a simple strategy θ is x-admissible if, for any random par-
tition Σ defining θ , there exists some finer extended partition Σ ′ ⊇ Σ := {σn, n ∈N},
for all k≥ 0 with k∈ Σ̂ ′∩ Σ̂ , there exists another simple strategy kθ , called liquidation
strategy, such that:

i) k̂θ := kθ̂ := θ̂·∧k1{·<λk} for some F̂ -stopping time λk > k a.s. with λk ∈ Σ̂ ′, the
liquidation time.

ii) x+V (kθ)≥ 0.

A s
x denotes the set of simple x-admissible strategies, and A s =∪x>0A

s
x the set of

simple admissible strategies. A simple arbitrage is θ ∈A s such that P(V (θ)≥ 0)= 1
and P(V (θ) > 0) > 0. A market satisfies (NA-S) if θ ∈ A s and P(V (θ) ≥ 0) = 1
implies that V (θ) = 0.

Remark 4.5 Equivalently, Definition 4.4 defines an admissible strategy as a simple
strategy that can be frozen at any stopping time. Also, the statements of Definition
4.4 remain valid for any extended partition finer than Σ ′, and the extended partition
does not change the value of the strategy.
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Remark 4.6 In Definition 4.4, the freeze occurs after a fixed transaction, but it could
equivalently occur at any F̂ -stopping time σ . Indeed, if (λk)k≥1 are the liquidation
times in Definition 4.4, then λσ = ∑

∞
k=1 λk1{σ=k} is a liquidation time for σ .

Remark 4.7 The liquidation strategy kθ̂ satisfies kθ̂n = θ̂n1{n<k}+ θ̂k1{k≤n<λk}, and

induces a unique F -predictable process kθ , which satisfies k̂θ = kθ̂ and is piecewise
constant between σk and σk+1. kθ takes six possible forms, depending on whether
the freeze (k) and liquidation (λk) are left or right transactions. With k = 2nk− 1 or
k = 2nk and λk = 2ñk−1 or λk = 2ñk

θ1J0,σnk K +θ
σ
+
nk

1Kσnk ,σñk K

θ1J0,σnk K +θ
σ
+
nk

1Kσnk ,σñk J

θ1J0,σnk J +θσnk
1Jσnk ,σñk K

θ1J0,σnk J +θσnk
1Jσnk ,σñk J

If λk = k+ 1, then σnk may coincide with σñk , which amounts to freezing θ
σ
+
nk

(re-
spectively θσnk

), and liquidate immediately the position, without waiting another tick
of the clock Σ .

Compare definition (4.4) to its frictionless counterpart:

x+V (θ1[0,t])≥ 0 for all t ∈ [0,T ] (4.3)

In general, (4.3) is more restrictive, but in a frictionless, arbitrage free market, the
two definitions are equivalent:

Proposition 4.8 Let κ = 0. For any θ ∈A s
x , either:

k

∑
n=1

θ̂n−1(Ŝn− Ŝn−1)≥−x a.s. for all k ≥ 0 (4.4)

or there exists an arbitrage opportunity.

Proof If κ = 0, observe that:

V (θ) =−
∞

∑
n=1

Ŝn(θ̂n− θ̂n−1) =
∞

∑
n=1

θ̂n−1(Ŝn− Ŝn−1) (4.5)

and therefore:

V̂ (θ̂1{·<k}) =
k

∑
n=1

θ̂n−1(Ŝn− Ŝn−1) (4.6)

V (k
θ) =

(
k

∑
n=1

θ̂n−1(Ŝn− Ŝn−1)

)
+ θ̂k(Ŝλk

− Ŝk) (4.7)

If λk−1 = k is not a liquidation time, there exists A ∈ F̂k on which V (θ1{·<k})<−x.
Thus, the buy-and-hold strategy η̂n = θ̂k1A∩{k≤n<λk} is an arbitrage opportunity. ut
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The main result of this section characterizes an x-admissible strategy by its ter-
minal payoff. This property essentially confirms that Definition 4.4 is the relevant
notion of admissibility in this model.

Proposition 4.9 If (NA-S) holds, then A s
x = {θ ∈A s : x+V (θ)≥ 0 a.s.}.

The nontrivial statement is that θ ∈ A s
x if θ ∈ A s and x+V (θ) ≥ 0 a.s. In a

frictionless market, this is a straightforward consequence of absence of arbitrage and
the concatenation property V (θ) = V (θ1[0,t])+V (θ1(t,T ]). However, concatenation
fails under transaction costs, since splitting a strategy at time t creates two new trans-
actions, thereby increasing costs.

The next proof exploits the following idea: if a strategy has positive final liq-
uidation value, then after every transaction there is either a liquidation time, or an
arbitrage. The trouble is that the arbitrage is not necessarily the remaining part of the
strategy (because concatenation fails), but it may be hidden inside. Discovering the
arbitrage involves the elimination of “damaging transactions”, the ones executed at a
worse (either bid or ask) price than the average liquidation price required by the cur-
rent position. This elimination process eventually leads to either a liquidation time,
or an arbitrage.

Proof The inclusion A s
x ⊂ {θ ∈ A s : x+V (θ) ≥ 0 a.s.} is straightforward: if θ ∈

A s
x , by assumption the strategies (kθ̂)k≥0 satisfy x+V (kθ) ≥ 0 for all k ≥ 0. Since

for a.e. ω , kθ̂n(ω) = θ̂n(ω) for all n and for k ≥ k0(ω) large enough, it follows that
x+V (θ)≥ 0 a.s.

For the reverse inclusion, the following argument constructs explicitly a liqui-
dation time λk ∈ Σ̂ ′ from the initial assumption that x +V (θ) = x− Ĉ∞(θ̂) ≥ 0
and θ ∈ A s. Since θ ∈ A s

y for some y > 0, consider the finer extended partition
Σ ′ ⊇ Σ := {σn : n ∈ N} as in Definition 4.4, where Σ defines the strategy θ . The
proof proceeds in a recursive, “algorithmic” fashion, using m as counter, initially
equal to 0.

Step 1: Find arbitrage or liquidation.
After the k-th transaction, the portfolio consists of θ̂k shares and a cash position equal
to −Ĉk(θ̂). Consider the following F̂k+1-partition of Ω :

A+ = {θ̂k > 0, θ̂k+1 > 0} (stay long)

A− = {θ̂k < 0, θ̂k+1 < 0} (stay short)

A± = {θ̂k+1θ̂k ≤ 0} (long/short change)

and define η̂ = θ̂1{·≤k}, (η̂n = θ̂n for n ≤ k and η̂n = 0 for n ≥ k + 1), and ζ̂ =

θ̂1{·≥k+1}= θ̂− η̂ . We claim that x+V (η)≥ 0 a.s. on A±, otherwise ζ̂ is an arbitrage
on the event G := {x+V (η) < 0}. To see this, note that |θ̂k− θ̂k+1| = |θ̂k|+ |θ̂k+1|
on A±, and therefore Ĉ(θ̂) = Ĉ(η̂)+Ĉ(ζ̂ ). Since θ ∈A s

y , for any j≥ k there is some
liquidation time λ j ∈ Σ̂ ′ for θ̂ . Then, on G the following relations hold:

V (ζ̂·∧ j1{·<λ j}) =−C(θ̂·∧ j1{·<λ j})+C(η̂)≥ x− y

V (ζ̂ ) =(x+V (θ̂))− (x+V (η̂))> 0
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The first inequality proves that ζ̂ 1G ∈A s
y−x, and the second one that it is an arbitrage

on G. Thus, λk = k+1 is a liquidation time on A±.

On A+ (“stay long”), denote by l = Ĉk(θ̂)−x
θ̂k

the minimum average liquidation
price for solvability. Distinguish now three cases:

Al
+ =A+∩{θ̂k+1− θ̂k > 0,(Ŝ+ κ̂)k+1 < l} (buy low)

Ah
+ =A+∩{θ̂k+1− θ̂k < 0,(Ŝ− κ̂)k+1 > l} (sell high)

As
+ =A+ \ (Ah

+∪Al
−)

First, observe that on Ah
+ (“sell high”) λk = k+1 is a liquidation time by definition.

Second, on Al
+ (“buy low”), an arbitrage opportunity arises, hence P(Al

+) = 0. This
is intuitively clear, as the knowledge that the current long position θ̂k will be sold at
least at price l guarantees that any purchase below l price yields an arbitrage. To see
this formally, set ζ̂ = θ̂1{·≥k+1} as before. To check that ζ̂ is admissible, note that,
since θ ∈A s

y , it has a liquidation time λ j ∈ Σ̂ ′ for all j ≥ k+1. On Al
+ the value of

ζ̂·∧ j1{·<λ j} is equal to:

V (ζ̂·∧ j1{·<λ j}) =V (θ̂·∧ j1{·<λ j})+Ĉk(θ̂)− (Ŝ+ κ̂)k+1θ̂k

Note the term (Ŝ+ κ̂)k+1θ̂k in the right-hand side, which reflects the additional pur-
chase of θ̂k shares, necessary to build a position of θ̂k+1 shares from 0 at the k+ 1
transaction. Since y+V (θ̂·∧ j1{·<λ j})≥ 0 by assumption, on Al

+ it follows that:

V (ζ̂·∧ j1{·<λ j}) =(y+V (θ̂·∧ j1{·<λ j}))− y+Ĉk(θ̂)− (Ŝ+ κ̂)k+1θ̂k

≥− y+Ĉk(θ̂)− (Ŝ+ κ̂)k+1θ̂k

=− y+ x+ θ̂k(l− (Ŝ+ κ̂)k+1)> x− y

which proves that ζ ∈ A s
y−x (ζ 1Al

+
∈ A s

y−x). In addition, since x+V (θ) ≥ 0 by as-

sumption, setting y = x and j = ∞ in the above equation shows that ζ̂ is an arbitrage.
The situation for A− (“stay short”) is symmetric, in that liquidation is trivial on

the “buy low” case Al
− = A−∩{θ̂k+1− θ̂k > 0,(Ŝ+ κ̂)k+1 < l}, while arbitrage arises

in the “sell high” case Ah
− = A− ∩ {θ̂k+1 − θ̂k < 0,(Ŝ− κ̂)k+1 > l}. In summary,

liquidation at the (k+ 1)-th transaction is feasible on the event Bm = A± ∪Ah
+ ∪Al

−
(the counter m is used here).

Step 2: Else skip a damaging transaction.
It remains to consider the cases As

+ and As
−. Intuitively, any transaction taking place

on these events is “damaging”, since it neither buys low, nor it sells high. To skip this
transaction, while ensuring positive final liquidation, rescale now the remaining part
of the strategy. Formally, define ζ̂ as ζ̂n = θ̂n for n≤ k, and ζ̂n =

θ̂k
θ̂k+1

θ̂n for n≥ k+1.
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Then note that:

0≤x+V (θ)

=x−Ĉk(θ̂)− (Ŝ± κ̂)k+1(θ̂k+1− θ̂k)− (Ĉ∞(θ̂)−Ĉk+1(θ̂))

≤x−Ĉk(θ̂)+
θ̂k+1− θ̂k

θ̂k
(x−Ĉk(θ̂))− (Ĉ∞(θ̂)−Ĉk+1(θ̂))

=
θ̂k+1

θ̂k

(
x−Ĉk(θ̂)−

θ̂k

θ̂k+1
(Ĉ∞(θ̂)−Ĉk+1(θ̂))

)

=
θ̂k+1

θ̂k
(x+V (ζ )),

where the± in the second line equals + on (As
+∪As

−)∩{θ̂k+1− θ̂k > 0}, and equals to
− on (As

+∪As
−)∩{θ̂k+1− θ̂k < 0}. Since the strategy ζ̂ satisfies the same assumptions

as θ̂ , and coincides with θ̂ up to (and including) the k-th transaction, but with ζ̂k+m =

θ̂k, m = 1, a liquidation time for ζ̂ is also valid for θ̂ . Thus, on the event As
+ ∪As

−
replace θ̂ by ζ̂ and return to Step 1, increasing m by one.

Since the number of transactions in a simple strategy is a.s. finite, this recursion
takes place only a finite number of times, i.e. P(∪m≥1Bm) = 1. The liquidation time
is thus λk = ∑

∞
m=0(k+1+m)1Bm\∪ j<mB j .

One last check is necessary: the strategy kθ̂ must induce a F -predictable strategy
kθ . By Proposition 4.1, this is the case if kθ̂ is F̂ -adapted, and kθ̂2n−1 = kθ̂2(n−1)

on An (which defines the totally inaccessible part of σn in Proposition 4.1). kθ̂ is F̂ -
adapted because θ is F̂ -adapted and {λk = k+m} is F̂k+m-measurable (the events
A±,Ah

+,A
l
− in the construction depend only on θ̂k+i for i≤ m). For the predictability

part, observe that the original strategy satisfies θ̂2n = θ̂2n−1 on An by assumption.
Thus it suffices to check that for k = 2n−1 the operations of liquidation and scaling
in the above construction preserve this property. Indeed, the events Ah

+,A
l
− are disjoint

from {θ̂k+1 = θ̂k}, hence liquidation (i.e. setting kθ̂k+1 = 0) takes place outside An
Regarding A±, note that A±∩{θ̂k+1 = θ̂k}= {θ̂k+1 = θ̂k = 0}, and liquidation does
not alter this property, since kθ̂k+1 = kθ̂k = 0. Finally, the scaling operation ζ̂n =

θ̂k
θ̂k+1

θ̂n for n≥ k+1 entails that, on the event {θ̂k+1 = θ̂k}, the property {ζ̂k+1 = ζ̂k}

holds everywhere by definition of ζ̂ . ut

A similar, but simpler, argument shows that the set of admissible strategies is
convex. This fact is obvious in frictionless markets, but not in this setting.

Lemma 4.10 If (NA-S) holds, then A s is convex.

Proof If θ ∈A s
x and c > 0, then cθ ∈A s

cx because a liquidation time for θ is also a
liquidation time for cθ . Convexity follows by showing that if θ ∈ A s

x and η ∈ A s
y ,

then θ +η ∈ A s
x+y. To this end, consider a common finer extended partition Σ̂ ′ for

which the properties of Definition 4.4 hold for both θ and η defined by a common
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random partition Σ containing the one defining θ +η . Denote respectively by λk ∈ Σ̂ ′

and µk ∈ Σ̂ ′ the liquidation times of θ and η at time k ∈ Σ̂ ∩ Σ̂ ′.
Let λk and µk be the liquidation times of θ and η respectively. Consider first the

event {θ̂k + η̂k > 0}, and split it into four cases (excluding the trivial case λk = µk):

{θ̂k + η̂k > 0,λk < µk, η̂k ≥ 0} (4.8)

{θ̂k + η̂k > 0,λk < µk, η̂k < 0} (4.9)

{θ̂k + η̂k > 0,λk > µk, η̂k ≥ 0} (4.10)

{θ̂k + η̂k > 0,λk > µk, η̂k < 0} (4.11)

λk liquidates θ +η in the second case, otherwise η̂k1{λk≤·<µk} is an arbitrage. Simi-
larly, µk liquidates θ +η in the fourth case, otherwise θ̂k1{µk≤·<λk} is an arbitrage. In
the first and the third cases, on the even {θ̂k ≥ 0} consider the candidate liquidation
strategies ζ̂ λ = (θ̂ + η̂)·∧k1{·<λk} and ζ̂ µ = (θ̂ + η̂)·∧k1{·<µk}, and note that:

V (ζ̂ λ ) =−Ĉk(θ̂ + η̂)+(S−κ)λk
(θ̂k + η̂k) (4.12)

V (ζ̂ µ) =−Ĉk(θ̂ + η̂)+(S−κ)µk(θ̂k + η̂k) (4.13)

V (k
θ̂ + k

η̂) =−Ĉk(θ̂ + η̂)+(S−κ)λk
θ̂k +(S−κ)µk η̂k (4.14)

=
θ̂k

θ̂k + η̂k
V (ζ̂ λ )+

η̂k

θ̂k + η̂k
V (ζ̂ µ) (4.15)

Thus, in such cases V (kθ̂ + kη̂) is a convex combination of V (ζ̂ λ ) and V (ζ̂ µ). Since

V (k
θ̂ + k

η̂)≥V (k
θ̂)+V (k

η̂)≥−(x+ y) (4.16)

it follows that either V (ζ̂ λ ) ≥ −(x+ y) or V (ζ̂ µ) ≥ −(x+ y), otherwise (4.16) is
violated. Thus, the liquidation time of θ +η is a mixture of liquidation times of θ

and η . To finish the discussion on the event {θ̂k + η̂k > 0}, it remains to consider the
first and third case with θ̂k < 0. Then:

V (k
θ̂ + k

η̂) =−Ĉk(θ̂ + η̂)+(S+κ)λk
θ̂k +(S−κ)µk η̂k

x+ y−Ck(θ̂ + η̂)≥x+ y−Ck(θ̂)−Ck(η̂)≥−η̂k(S−κ)µk − θ̂k(S+κ)λk

from which it follows that:

x+ y−Ck(θ̂ + η̂)+(θ̂k + η̂k)(S−κ)µk ≥ θ̂k
(
(S−κ)µk − (S+κ)λk

)
This inequality implies that µk is a liquidation time, otherwise the right-hand side
would be a buy-and-hold arbitrage.

The discussion on the event {θ̂k + η̂k < 0} is symmetric, therefore it remains the
case {θ̂k + η̂k = 0}. By symmetry, it is enough to consider {θ̂k + η̂k = 0,θk ≥ 0}. By
assumption, x−Ck(θ)+ θ̂k(Ŝ− κ̂)λk

≥ 0 and −Ck(η)+ η̂k(Ŝ+ κ̂)µk ≥ 0. Hence:

x+ y−Ck(θ)−Ck(η)≥−θ̂k
(
(Ŝ− κ̂)λk

− (Ŝ+ κ̂)µk

)
This inequality, combined with V (k(θ +η)) =−Ck(θ +η)≥−Ck(θ)−Ck(η), im-
plies that k is a liquidation time, otherwise the right-hand side is an arbitrage. ut
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An important consequence of the definition of admissibility is that payoffs at-
tainable with zero wealth have nonpositive value under any consistent price system.
In frictionless markets, this is the supermartingale property of the gain process un-
der equivalent martingale measures. Liquidation times allow to carry out a similar
argument in the present setting.

First, note the intuitively obvious domination property: executing a given strategy
at better (bid and ask) prices achieves a better payoff. The discrete time notation
streamlines calculations.

Lemma 4.11 Let (S,κ) and (S′,κ ′) satisfy Assumption 3.1 and κ−κ ′−|S−S′| ≥ 0.
Then, for all simple strategies θ :

V (S,κ)(θ)≤V (S′,κ ′)(θ)−
∞

∑
n=1

(
κ̂n− κ̂

′
n−|Ŝn− Ŝ′n|

)
|θ̂n− θ̂n−1| ≤V (S′,κ ′)(θ). (4.17)

Proof Since V (θ) =−C(θ), the claim follows from:

Ĉ(S,κ)
∞ (θ)−Ĉ(S′,κ ′)

∞ (θ) =
∞

∑
n=1

(
(Ŝn− Ŝ′n)(θ̂n− θ̂n−1)+(κ̂n− κ̂

′
n)|θ̂n− θ̂n−1|

)
(4.18)

≥
∞

∑
n=1

(
κ̂n− κ̂

′
n−|Ŝn− Ŝ′n|

)
|θ̂n− θ̂n−1| (4.19)

ut

Adapting the definitions of Jouini & Kallal (1995) and Campi & Schachermayer
(2006) to the present setting, consistent price systems take the following form:

Definition 4.12 Let (S,κ) satisfy Assumption 3.1. A Strictly Consistent Price System
is a pair (M,Q) of a probability Q equivalent to P and a Q-local martingale M lying
within the bid-ask spread:

inf
t∈[0,T ]

(κt −|St −Mt |)> 0 a.s.

(M,Q) is a Consistent Price System if the inequality is not necessarily strict.

As announced earlier, the basic property of consistent price systems is to assign non-
positive value to simple admissible strategies starting with no initial capital. In the
following Proposition, note that V (M,0)(θ) represents the frictionless (i.e. with κ = 0)
portfolio value with price M.

Proposition 4.13 Let (M,Q) be a consistent price system. Then EQ[V (M,0)(θ)] ≤ 0
for all θ ∈A s.

The proof of this property requires a lemma:

Lemma 4.14 Let (Mt)0≤t≤T be a local martingale, θ a simple strategy and denote
by Nn = ∑

n
k=1 θ̂k(M̂k− M̂k−1). Then (N2n)n≥0 is a F̂2n-local martingale.
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Proof First, suppose that M is a true martingale, and θ is bounded. The claim amounts
to E[N2n−N2(n−1)|F̂2(n−1)] = 0. Since θ

σ
−
n
= θ

σ
+
n−1

, it follows that:

N2n−N2(n−1) =θ
σ
−
n
(M

σ
−
n
−Mσn−1)+θσn(Mσn −M

σ
−
n
) (4.20)

=θ
σ
+
n−1

(Mσn −Mσn−1)+∆θσn∆Mσn (4.21)

Thus, the first term has the martingale property:

E[θ
σ
+
n−1

(Mσn −Mσn−1)|F̂2(n−1)] = θ
σ
+
n−1

E[Mσn −Mσn−1 |Fσn−1 ] = 0

Since ∆θσn is F
σ
−
n

-measurable, the second term satisfies:

E[∆θσn∆Mσn |Fσn−1 ] = E
[
∆θσnE[∆Mσn |Fσ

−
n
]
∣∣Fσn−1

]
To prove that the right-hand side is zero, consider An ∈Fσn which decomposes the
stopping time σn into its totally inaccessible part σnAn and accessible part σnΩ\An .
Since ∆θσn = 0 a.s. on An, it suffices to show that E[∆Mσn |Fσ

−
n
] = 0 on Ω \An to

complete the proof for θ bounded and M a martingale.
To this end, recall that Fσn− is generated by events of the form A∩ {t < σn}

for A ∈Ft , and that the stopping times (σn)n satisfy {∆θ 6= 0} ⊂ ∪nJσnK. Because
(σn)Ω\An is accessible (Jacod & Shiryaev 2003, 1.2.23?), (σn)Ω\An ⊂ ∪kJτkK for a
sequence of predictable times (πk)k. Thus,

{∆θ 6= 0}∩ J(σn)Ω\AnK = ∑
k

Jπ̃kK (4.22)

where π̃k := (πk)∆θπk 6=0 are still predictable times because {∆θπk 6= 0} ∈Fπk−.
In addition, ∆Mσn 1A∩{t<σn}1Ω\An =∆Mσn1A∩{t<σn}1{σn=(σn)Ω\An} because ∆Mσn =

0 on {σn = ∞}. In view of (4.22), it follows that:

∆θσn∆Mσn1A∩{t<σn}1Ω\An = ∑
k

∆θπ̃k
∆Mπ̃k

1A∩{t<π̃k}1{π̃k=(σn)Ω\An}

= ∑
k

∆θπ̃k
∆Mπ̃k

1A∩{t<π̃k}1{π̃k≤(σn)Ω\An}
1{π̃k≥(σn)Ω\An}∩{∆θσn 6=0}

But (A∩{t < π̃k})∈Fπ̃k− by definition, and {π̃k≤ (σn)Ω\An}∈Fπ̃k− because {(σn)Ω\An <
π̃k} ∈Fπ̃k−. Moreover, since θπ̃k

is Fπ̃k− measurable, (4.22) implies that:

{π̃k ≥ (σn)Ω\An}∩{∆θσn 6= 0}= ∪ j{π̃ j ≤ π̃k} ∈Fπ̃k−

Then, taking the conditional expectation of (4.23) with respect to Fπ̃k− yields that
E
[
∆θσn∆Mσn1A∩{t<σn}1Ω\An

]
= 0, whence E [∆θσn∆Mσn |Fσn−] = 0.

In general, take a sequence of stopping times τ j ↑ ∞ localizing M, such that θ τ j

is bounded for each j. Since, for a.e. ω , τ j(ω)< T only for finitely many j, assume
without loss of generality that (τ j) j≥1 ⊂ (σ j) j≥1. Then it follows that there are F̂ -

stopping times τ̂ j, taking only even values s.t. (N
τ̂ j
2n)n≥0 is a F̂ -martingale. The claim

follows. ut
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Remark 4.15 Note that (Nk)k≥1 may not be F̂ -martingale, because on the totally
inaccessible part of σn the equality E[∆Mσn |Fσ

−
n
] = 0 may fail.

Proof of Proposition 4.13 Since θ is simple admissible, by Definition 4.4 it allows a
sequence (kθ)k≥1 of liquidation strategies satisfying V (S,κ)(kθ) ≥ −x. Furthermore,
by Lemma 4.11:

V (M,0)(k
θ)≥V (S,κ)(k

θ)≥−x. (4.23)

Since (M,0) is a frictionless, arbitrage-free market for simple strategies, Proposition
4.8 implies admissibility in the frictionless sense:

j

∑
n=1

k
θ̂n−1(M̂n− M̂n−1)≥−x a.s. for all j,k ≥ 1. (4.24)

and as k ↑ ∞:

N2 j :=
2 j

∑
n=1

θ̂n−1(M̂n− M̂n−1)≥−x a.s. for all j ≥ 1. (4.25)

Take a localizing sequence (τ j) j≥1 for (N2n)n≥0. Lemma 4.14 implies that E[N
τ j
2 j ]≤ 0

for all j, and Fatou’s lemma concludes the proof. ut

The rest of this section shows that both left and right transactions are neces-
sary in Definition 3.3. Two examples make this point, showing that L-simple (simple
and left-continuous) admissible strategies cannot approximate R-simple (simple and
right-continuous) admissible strategies, and viceversa. Thus, simple strategies must
include both types of transactions. Transaction costs are inessential in both examples,
hence we set κ = 0.

Example 4.16 Consider the parametric family of densities fθ (x) = 1[−1,1]
θ

eθ−e−θ
eθx,

which correspond to Esscher transforms of a uniform distribution on [−1,1]. All den-
sities in this family are supported by [−1,1], and the expectations span the interval
(−1,1) as the parameter θ varies in (−∞,∞).

Now define a sequence of random variables (εn)n≥1 by setting the density of ε1
equal to f0 (i.e. uniformly distributed on [−1,1]) and the density of εn+1, conditional
on Gn := σ((εk)k≤n), equal to fθn , where θn(εn) is chosen such that E[εn+1|Gn] = εn.
Since (εn)n≥1 is a bounded martingale by construction, it converges a.s. to some
random variable ε∞ whose support contains {−1,1} (even conditionally on Gn, for
each n ∈ N, a.s.).

Finally, set Ft = σ(εn,1− 1
n ≤ t) and S = ε∞1J1,2J. Since the support of ∆S1 = ε∞

contains {−1,1} conditionally on Ft for all t ∈ (0,1), any L-simple approximation of
the R-simple strategy θ = 1

ε∞
1J1,2J can be at best 1-admissible. But θ is an arbitrage,

hence 0-admissible. Since the definition of x-admissibility in section 4 will require
that a general x-admissible strategy should be approximated by x+ 1/n-admissible
simple strategies, the present example shows that it is impossible to consider L-simple
admissible strategies alone.
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Example 4.17 Set St = −1Jτ1+τ2,2J, where τ1,τ2 are two independent exponential
random variables with parameter λ . The filtration Ft is generated by τ1 and τ1 + τ2:

Ft := σ(τ1∧ t,(τ1 + τ2)∧ t).

The L-simple strategy θ = 1K1/2,τ1K has zero payoff, hence it is 0-admissible. Con-
sider any R-simple admissible strategy η , and denote by τ ′1 = inf{t > τ1 : ηt 6= η

τ
−
1
}.

P(η
τ
−
1
= ητ1) = 1 since τ1 is totally inaccessible, and P(τ ′1 > τ1) = 1 by right-

continuity. Observe that P(τ1 + τ2 < τ ′1) > 0. Indeed, by contradiction suppose that
τ ′1 ≤ τ1 + τ2 a.s. Then τ ′1 would be Fτ1 -measurable, i.e. τ ′1 = u(τ1) (cf. Dellacherie
& Meyer (1978, Theorem 105)), and this implies that:

0 = P(τ ′1 > τ1 + τ2|τ1) = P(τ2 < u(τ1)− τ1|τ1) = 1− e−λ (u(τ1)−τ1) > 0 (4.26)

which is absurd. But ητ1+τ2 = η
τ
−
1

on the event {τ1 + τ2 < τ ′1}. Since θ
τ
−
1
= 1, it

follows that any R-simple approximation is at best 1-admissible.

5 (RNFLVR) and Finite Variation Strategies

Let PV denote the set of predictable finite variation processes. For each θ ∈PV ,
‖θ‖ denotes the corresponding pathwise total variations (see Appendix A.2 for de-
tails). The cost of a predictable finite variation process θ is defined in terms of the
predictable Stieltjes integral constructed in the Appendix:

C(θ)t =
∫
[0,t]

Sdθ +
∫
[0,t]

κd‖θ‖ a.s., V (θ) :=−C(θ). (5.1)

A general admissible strategy is now defined as one that is approximated arbitrarily
well with simple admissible strategies. The cost of such a strategy is the limit of the
cost of the approximations.

Given a predictable process θ and a random partition Σ , the Σ -approximation of
θ is the simple strategy

θ
Σ = ∑

n≥1

(
θσn1JσnK +θ

σ
+
n

1Kσn,σn+1J

)
(5.2)

Definition 5.1 A predictable process θ of finite variation is an admissible strategy
if, for any ε > 0 there exists a simple strategy θ ε ∈ A s such that |θ ε − θ | ≤ ε and
|V (θ ε)−V (θ)| ≤ ε . Denote the space of admissible strategies by A .

Definition 5.2

i) (S,κ) satisfies (NFLVR) if, for any sequence (θ n)n≥1 such that θ n ∈ A s
1/n and

V (θ n) converges a.s. to some limit V ∈ [0,∞] a.s., then V = 0 a.s.
ii) (S,κ) satisfies (RNFLVR) if there exists a pair (S′,κ ′) satisfying (NFLVR) and

such that the bid-ask spread of (S′,κ ′) is a.s. strictly contained within that of
(S,κ), pathwise uniformly:

inf
t∈[0,T ]

(κt −κ
′
t −|St −S′t |)> 0 a.s. (5.3)
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Remark 5.3 Equation (5.3) is equivalent to:

inf
t∈[0,T ]

((S+κ)t − (S′+κ
′)t)> 0 and inf

t∈[0,T ]
((S′−κ

′)t − (S−κ)t)> 0 a.s.

which means that the inner bid and ask prices never touch their outer counterparts.
Observe also that (RNFLVR) implies the efficient friction condition:

inf
t∈[0,T ]

κt > 0 a.s.

so the bid-ask spread is always strictly positive, in pathwise uniform sense.

The next Lemma follows from Definition 5.2 with essentially the same argument
as Proposition 3.1 in Delbaen & Schachermayer (1994):

Lemma 5.4 If (S,κ) satisfies (NFLVR), then C s
x := {V (θ) : θ ∈A s

x }−L0
+ is bounded

from above in L0 for all x > 0, i.e. limn→∞ supF∈C s
x

P(F > n) = 0.

Proof It suffices to prove the claim for x = 1. By contradiction, suppose there exists
α > 0 and a sequence (θ n)n≥1 ⊂ A s

1 such that P(V (θ n) > n) > α for all n. Then
the sequence (ηn)n≥1 defined by ηn

t = θ n
t /n satisfies ηn ∈ A s

1/n for all n ≥ 1, and
P(V (ηn) > 1) > α . Up to a sequence of convex combinations (Lemma B.1), V (ηn)
converges to V∞ ∈ [0,∞] a.s. The (NFLVR) condition implies that V∞ = 0. It follows
that n−1 +min(V (ηn),1) converges a.s. to f = 0. On the other hand, the Lebesgue
theorem yields E f = limn E min(V (ηn),1) where

E[n−1 +min(V (ηn),1)]≥ E[n−1 +min(V (ηn),1)]1V (ηn)>1 ≥ α

hence a contradiction. ut

The previous lemma, combined with the domination property (Lemma 4.11), im-
plies that the total variations of x-admissible strategies are bounded in probability.
Henceforth, ‖θ‖T denotes the pathwise total variation of the process θ on [0,T ].

Lemma 5.5 Let (S,κ) satisfy (RNFLVR). Then {‖θ‖T : θ ∈ A s
x } is bounded in L0

for all x > 0.

Proof Rearranging (4.17), for any θ ∈A s
x the following holds:

‖θ‖T inf
n≥1

(κ̂n− κ̂
′
n−|Ŝn− Ŝ′n|)≤

∞

∑
n=1

(
κ̂n− κ̂

′
n−|Ŝn− Ŝ′n|

)
|θ̂n− θ̂n−1| ≤ x+V (S′,κ ′)(θ)

Note that infn≥1(κ̂n− κ̂ ′n−|Ŝn− Ŝ′n|)≥Y := inft∈[0,T ](κt−κ ′t −|St−S′t |)> 0. Lemma
5.4 implies that the set {‖θ‖TY : θ ∈ A s

x } and hence also {‖θ‖T : θ ∈ A s
x } are

bounded in L0. ut

Denote by Cx = {V (θ)T : θ ∈A }−L0
+ the set of claims dominated by outcomes

of admissible portfolios. Recall that (Xn)n≥1 ⊂ L0 Fatou converges to X if Xn con-
verges to X a.s., and Xn ≥−c a.s. for all n and some c > 0.
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Proposition 5.6 Under (RNFLVR), C ∩{Z : ‖Z‖∞ ≤ x} is Fatou closed for each x >
0.

Proof Let (Xn)n≥1 ⊂ C Fatou converge to X . It suffices to find some θ ∈ A such
that V (θ) ≥ X a.s. By assumption, Xn = V (θ n)− fn ≥ −x for some θ n ∈ A and
fn ≥ 0 a.s. In particular, V (θ n)≥−x. By assumption, there exists θ̃ n ∈A s such that
|θ̃ n−θ n| ≤ n−1 and |V (θ̃ n)−V (θ n)| ≤ n−1, and therefore θ̃ n ∈A s

x+ 1
n

by Proposition

4.9. Since (θ̃ n)n≥1 ⊂ A s
x+ 1

n
, (‖θ̃ n‖T )n≥1 is bounded in L0 by Lemma 5.5. Thus, by

Lemma B.4, up to a sequence of convex combinations θ̃ n converge a.s. to some θ ∈
PV , θ̃ n

+→ θ+ and ‖θ̃ n‖ converges pointwise to ‖θ‖. To show that θ ∈Ax, consider
ε > 0, and the strategy θ ε given by Corollary A.13, which satisfies |θ ε −θ | ≤ ε and
|V (θ ε)−V (θ)| ≤ ε . Consider a given partition Σ defining θ ε . By assumption (cf.
remark 4.5), for any stopping time σ ∈ Σ , there exists liquidation times σn∗ ≥ σ and
σn∗
+ ≥ σ verifying

Vσ (θ̃
n)+ θ̃

n
σ (S±κ)σn∗ +

(
x+

1
n

)
≥ 0

Vσ+(θ̃
n)+ θ̃

n
σ+(S±κ)σn∗

+
+

(
x+

1
n

)
≥ 0.

Now, define the stopping times σ∗ := infn σn∗ and σ∗+ := infn σn∗
+ . Notice that a.s.

there exists a decreasing subsequence such that σn∗→ σ∗ and σn∗
+ → σ∗+. Also, since

S and κ are càdlàg, Theorem A.9 iii) implies that:

V (θ)σ +θσ (S±κ)σ∗ + x≥ 0 (5.4)
V (θ)σ++θσ+(S±κ)σ∗+ + x≥ 0. (5.5)

Further, define the finer extended partition Σ ∗ := Σ ∪{σ∗,σ∗+ : σ ∈ Σ}. By definition,
θσ = θ ε

σ and θσ+ = θ ε
σ+

if σ ∈ Σ . Thus, from (5.4) it follows that:

V (θ ε)σ +θ
ε
σ (S±κ)σ∗ + x+ ε ≥ 0

V (θ ε)σ++θ
ε
σ+(S±κ)σ∗+ + x+ ε ≥ 0.

These inequalities shows that θ ε ∈ A s
x+ε . Indeed, the statements of Definition 4.4

hold respectively with Σ̂ , the partition defining the strategy θ̂ ε , and the finer extended
partition Σ̂ ∗. Now, θ ε ∈ A s yields that θ ∈ A , and V (θ̃ n)+ n−1 ≥ Xn implies that
V (θ)≥ X . ut

The following Proposition is needed for the implication (SCPS)⇒ (RNFLV R).

6 Proof of Main Result

This section proves Theorem 1.1. The proof employs the usual separation method,
combined with the following argument, in the spirit of Jouini & Kallal (1995), which
is proved after the main theorem.
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Let (S,κ) satisfy (RNFLVR), and let (S′,κ ′) be its corresponding bid-ask pair.
Then, the auxiliary pair (Ŝ, κ̂) := ([S+ S̃]/2, [κ + κ̃]/2) satisfies (RNFLVR). Indeed:

inf
t∈[0,T ]

(κ̃t− κ̂t−|S̃t− Ŝt |) = inf
t∈[0,T ]

(κt− κ̂t−|St− Ŝt |) = inf
t∈[0,T ]

(κt − κ̃t −|St − S̃t |)
2

> 0

Lemma 6.1 If Q is equivalent to P and EQ

[
V (Ŝ,κ̂)(θ)

]
≤ 0 for all θ ∈ A (Ŝ,κ̂) with

V (Ŝ,κ̂)(θ)∈ L∞, then there exists a Q-local martingale M such that (M,Q) is a strictly
consistent price system for (S,κ).

Proof of Theorem 1.1 (SCPS)⇒ (RNFLVR): It suffices to check that S̃ = M and
κ̃ = 0 satisfies (NFLVR). First, note that (5.3) follows immediately:

inf
t∈[0,T ]

(
κt − κ̃t −|St − S̃t |

)
= inf

t∈[0,T ]
(κt −|St −Mt |)> 0 a.s.

To check that (NFLVR) holds, let (θ n)n≥1 be such that θ n ∈ A s
1/n and V (M,0)(θ n)

converge a.s. to some V . Proposition 4.13 implies that EQ[V (M,0)(θ n)]≤ 0. Thus, by
Fatou’s lemma EQ[V ]≤ 0 and V = 0 a.s.

(RNFLVR)⇒ (SCPS): Consider the convex set C (with respect to (Ŝ, κ̂)). Then
the convex Cx := C ∩{Z : ‖Z‖∞ ≤ x} is Fatou closed for x > 0 by Proposition 5.6
and Lemma B.2 implies that C := C ∩ L∞ is σ(L∞,L1)-closed. By Theorem B.3,
there exists a probability Q, equivalent to P such that EQ [C] ≤ 0, and Lemma 6.1
concludes the proof. ut

The rest of this section proves Lemma 6.1. The arguments are standard, and in-
cluded only for completeness. The next lemma is due to Jouini & Kallal (1995) (cf.
also Choulli & Stricker (1998) and Cherny (2007)).

Lemma 6.2 Let (Xt)t∈[0,T ] be a supermartingale and (Yt)t∈[0,T ] a submartingale,
such that X ≤ Y a.s. Then there exists a martingale (Mt)t∈[0,T ] such that X ≤M ≤ Y
a.s.

Proof For finitely many time instants 0≤ t0 < · · ·< tn ≤ T , set Mt0 = Yt0 and recur-
sively define Mtn+1 = αnXtn+1 +(1−αn)Ytn+1 , where the Ftn -measurable αn satisfies:

Mtn = αnE
[

Xtn+1

∣∣Ftn
]
+(1−αn)E

[
Ytn+1

∣∣Ftn
]

The proof of the induction only requires that Mtn ∈ [E(Xtn+1 |Ftn);E(Ytn+1 |Ftn)] but
this is important to get the existence of the coefficients. Then M is a martingale for
the filtration (Fti)0≤i≤n and Xti ≤Mti ≤Yti for i = 0, . . . ,n. From the discrete case just
considered, each dyadic partition Dn = {kT/2n : 0≤ k ≤ 2n} yields a martingale Mn

with respect to the discrete filtration (Ft)t∈Dn , such that:

Xt ≤Mn
t ≤ Yt for all t ∈ Dn (6.1)

In particular, XT ≤Mn
T ≤ YT for all n ≥ 1, therefore (Mn

T )n≥1 is bounded in L1, and
by Komlós Theorem it converges up to a sequence of convex combinations to some
random variable M almost surely and in L1 (due to the integrability of YT ). Then
define the martingale Mt = E [MT |Ft ], and passing to the limit in (6.1) as n→ ∞

yields Xt ≤Mt ≤ Yt a.s. for all t ∈ [0,T ]. ut
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The next Lemma extends Theorem 4.5 in Cherny (2007) to the present setting:

Lemma 6.3 Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be two càdlàg bounded processes. The fol-
lowing conditions are equivalent:

i) There exists a càdlàg martingale (Mt)t∈[0,T ] such that:

X ≤M ≤ Y a.s. (6.2)

ii) For all stopping times σ ,τ such that 0≤ σ ≤ τ ≤ T a.s., the following hold:

E [Xτ |Fσ ]≤ Yσ and E [Yτ |Fσ ]≥ Xσ a.s. (6.3)

Proof
i)⇒ ii): (6.2) and the optional sampling theorem imply that:

E [Xτ |Fσ ]≤ E [Mτ |Fσ ] = Mσ ≤ Yσ

and the second equation in (6.3) follows similarly.
ii)⇒ i): Denoting by Ot the set of stopping times with values in the interval [t,T ],

define the auxiliary processes:

X ′t = ess supτ∈Ot
E [Xτ |Ft ] and Y ′t = ess infτ∈Ot E [Yτ |Ft ]

Note that σ1A + τ1Ω\A ∈ Ot if σ ,τ ∈ Ot and A ∈Ft . Now, observe that the family
E [Xτ |Ft ] ,τ ∈Ot is directed upwards, hence there is a sequence τn ∈Ot attaining the
essential supremum, i.e. X ′t = lim ↑n E(Xτn |Ft) for u < t. Thus, X ′ is a supermartin-
gale:

E(X ′t |Fu) = lim ↑n E(Xτn |Fu)≤ X ′u. (6.4)

Likewise, Y ′ is a submartingale, and they both admit càdlàg versions (this follows as
in Proposition 4.3 in Kramkov (1996)). ii) implies that, for all σ ,τ ∈ Ot :

E [Xτ |Ft ]−E [Yσ |Ft ] = E [E [Xτ −Yσ |Fτ∧σ ]|Ft ] =

= E
[
(Xτ −E [Yσ |Fτ ])1{τ≤σ}+(E [Xτ |Fσ ]−Yσ )1{σ<τ}

∣∣Ft
]
≤ 0 a.s.

and hence X ′t ≤ Y ′t a.s. for all t ∈ [0,T ]. Lemma 6.2 concludes the proof. ut

Proof of Lemma 6.1 Take τn a sequence of stopping times with τn ↑ ∞ s.t. Ŝτn , κ̂τn

are bounded processes. Then, for any stopping times σ < τ and A ∈Fσ the strategy
θ =±1A∩Kσ ,τK is admissible for (Ŝτn , κ̂τn). For brevity, write Š := Ŝτn and κ̌ := κ̂τn in
the next few lines. For each n, (which is implicit in the notation):

EQ
[(
(Š− κ̌)τ − (Š+ κ̌)σ

)
1A
]
≤ 0, EQ

[(
(Š+ κ̌)τ − (Š− κ̌)σ

)
1A
]
≤ 0

Since these equations hold for any A ∈Fσ , it follows that:

EQ
[
(Š+ κ̌)τ

∣∣Fσ

]
≤ (Š− κ̌)σ , EQ

[
(Š− κ̌)τ

∣∣Fσ

]
≤ (Š+ κ̌)σ

and Lemma 6.3 implies the existence of a Q-martingale M such that:

|Ŝτn
t −Mn

t | ≤ κ̂
τn
t a.s. for all t ∈ [0,T ]
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By the construction in Lemma 6.2, Mn
t and Mn+1

t coincide on [0,τn]. Thus, the local
martingale Mt on [0,T ] resulting from this construction satisfies:

|Ŝt −Mt | ≤ κ̂t , t ∈ [0,T ].

Finally, (6) implies the required property:

inf
t∈[0,T ]

(κt −|St −Mt |)≥ inf
t∈[0,T ]

(κt − κ̂t −|Ŝt −St |)> 0

ut

7 Conclusion

This paper proves the Fundamental Theorem of Asset Pricing under transaction costs
in continuous time for potentially discontinuous – but locally bounded – prices.

The treatment focuses on a single risky asset mainly to ease notation. With the
exception of Proposition 4.9, these results hold virtually unchanged for models with
several assets trading against a common numéraire. The extension of Proposition 4.9
to several risky assets becomes exceedingly complicated, as each risky asset may
require a different liquidation time. Such an extension is not treated here.

The main conceptual difference between this model (which follows Jouini &
Kallal (1995)) and the pure exchange models initiated by Kabanov (1999) is in the
role of the numéraire. Exchange models are by construction numéraire free and –
unlike frictionless models – define admissibility symmetrically with respect to all
assets. This symmetry is possible because in such models relative prices are always
positive.

In the bid-ask model considered here, the numéraire is the only measure of value,
since prices can be positive as well as negative. A trading strategy is admissible when
its eventual liquidation leads to a bounded loss. Boundedness crucially depends on
the choice of numéraire, as in the frictionless theory.

A Predictable Stieltjes integral

The usual Stieltjes integral
∫

Sdθ is well-defined for continuous integrands S and
integrators θ of finite variation. This subsection defines an extension of the Stielt-
jes integral to càdlàg integrands, which makes the integral operator continuous with
respect to the pointwise convergence of integrators.

The discussion is divided into three parts: the first subsection recalls some prop-
erties of predictable finite variation processes, available in most textbooks under the
extra assumption of càdlàg processes, relaxed here to làdlàg. The second subsection
defines the integral, and establishes its Lebesgue- and Fatou-type properties. Since the
integral is defined pathwise, the first two subsections are probability-free, requiring
only a filtered measurable space with a right-continuous filtration. Thus, the special
case of deterministic integrand and integrator is included in this setting. The third
subsection establishes an approximation result for the predictable integral, which re-
quires an underlying probability measure, since it relies on the decomposition of a
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stopping time into its accessible and totally inaccessible parts. This part requires a
filtered probability space satisfying the usual conditions.

A.1 Predictable finite variation processes

This subsection recalls some properties of finite variation processes, dropping the
extra assumption of right-continuity, which appears in most textbooks.

Consider a measurable space (Ω ,F ), endowed with a right-continuous filtration
(Ft)t≥0 such that F∞ = F . On the set Ω ×R+, the predictable σ -algebra is gener-
ated by the class of adapted and left-continuous processes. Denote by PV the class of
predictable processes with pathwise finite variation; by D the class of adapted càdlàg
processes and by L the class of adapted làglàd (right-limited and left-limited) pro-
cesses. Since a function of finite variation has right and left limits at all points, it
follows that PV ⊂L . A sequence of processes Xn converges pointwise to a process
X if Xn(ω, t)→ X(ω, t) for all (ω, t) ∈Ω ×R+.

Proposition A.1 Let θ ∈PV and let ‖θ‖ denote its pathwise total variation. Then:

i) ‖θ‖ ∈PV ;
ii) if (θ n)n≥1 ⊂PV converge pointwise to θ , then:

‖θ‖ ≤ liminf
n→∞

‖θ n‖ pointwise

The proof requires a representation of the set of jumps of predictable finite varia-
tion processes. The finite-variation property avoids the use of section theorems. Re-
call that a random set A⊂Ω × [0,∞) is thin if A⊂ ∪n≥1JτnK for a sequence of stop-
ping times (τn)n≥1.

Lemma A.2 Let X ∈PV . Then the sets {X 6= X−} and {X 6= X+} are thin, and
{X 6= X−} is predictable.

Proof For n, p≥ 0, define the stopping times Sn,p by induction as Sn,0 = 0 and:

Sn,p+1 =

{
inf{t > Sn,p : |Xt −XS+n,p |> 2−n} for even p

inf{t ≥ Sn,p : |Xt −XSn,p |> 2−n} for odd p

By definition, Sn,p < Sn,p+2. Define also the random sets:

An,p =

{
{XSn,p 6= XS−n,p ,Sn,p < ∞} for even p

{XS+n,p 6= XSn,p ,Sn,p < ∞} for odd p

and observe that An,p ∈FSn,p . This is obvious for p even, while for p odd the right-
continuity of the filtration implies that XS+n,p is FSn,p -measurable, whence the claim.
Then, set Tn,p = Sn,p1An,p +∞1Ω\An,p , which is a stopping time since An,p ∈FSn,p . As
X has finite variation, limp→∞ Sn,p = ∞ and therefore:

{X 6= X−}= ∪n,p even[[Tn,p]] and {X+ 6= X}= ∪n,p odd[[Tn,p]],

so the sets {X 6= X+} and {X− 6= X} are thin. Also, X− is left-continuous, therefore
the set {X 6= X−} is predictable. ut
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Proof of Proposition A.1. The proof of i) is similar to the càdlàg case (Delbaen &
Schachermayer 2006, Theorem 12.2.1). By Lemma A.2, there is an exhausting se-
quence of stopping times (σk)k≥1 for the set of jumps of θ . For a fixed n≥ 1, denote
by Πn = (τk)0≤k≤Nn the finite ordered sequence of stopping times obtained from the
set (k2−n)0≤k≤2nT ∪ (σk)k≤n, and define the processes:

Vt(θ ,Πn) =
Nn

∑
k=1
|θτk∧t −θτk−1∧t | (A.1)

V (θ ,Πn) is predictable because θ is, and since V (θ ,Πn) converges to ‖θ‖ pointwise,
also ‖θ‖ is predictable and i) follows.

For ii), denote by Π = (τk)0≤k≤n a finite ordered sequence of stopping times, and
define V (θ ,Π) as in (A.1). The pointwise convergence of (θ n)n≥1 to θ implies that:

lim
n→∞

Vt(θ
n,Π) =Vt(θ ,Π) for all t,Π

By i) it follows that ‖θ‖t = supΠ Vt(θ ,Π), and therefore:

liminf
n→∞

‖θ n‖t = liminf
n→∞

sup
Π

Vt(θ
n,Π)≥ sup

Π

lim
n→∞

Vt(θ
n,Π) = sup

Π

Vt(θ ,Π) = ‖θ‖t

which proves ii). ut

A.2 The Predictable Stieltjes Integral

This section defines the integral
∫ t

0 Sdθ for each θ ∈PV and S ∈ D . Without addi-
tional assumptions on θ and S, such an integral may not exist in the standard Stieltjes
sense. A simple example demonstrates the problem:

Example A.3 Consider the deterministic S = θ = 1J1,2J. Then S is not Stieltjes inte-
grable with respect to θ , because there are arbitrarily fine subdivisions such that the
corresponding Riemann sums are either 0 or 1. Indeed, some Riemann sums include
the jump ∆S1∆θ1, while others do not.

However,
∫

Sdθ is a Stieltjes integral if θ is left-continuous:

Lemma A.4 Let S be a càdlàg function and θ a function of finite variation. Then∫
[0,T ] Sdθ− exists as a Stieltjes integral.

The proof requires a simple Lemma.

Lemma A.5 Let S be a càdlàg (deterministic) function such that |∆St | ≤ s for all
t. Then for all η > s there exists δ > 0 such that |Su− St | ≤ η for all u, t such that
|t−u| ≤ δ .

Proof By the càdlàg assumption, for all t ∈ [0,T ] there exists some δt > 0 such that
|Su−St | < (η − s)/2 for u ∈ [t, t + δt) and |Su−St− | < (η − s)/2 for u ∈ (t− δt , t).
Therefore |Su− St | < η for all u ∈ Ut = (t − δt , t + δt). By compactness, the open
covering of (Ut)t∈[0,T ] admits a finite subcovering (Uti)

n
i=1, and the thesis follows

with δ = min1≤i≤n δti . ut
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Proof of Lemma A.4. Recall two basic facts (cf. Wheeden & Zygmund (1977)). First,
the Stieltjes integral

∫
f dg exists if and only if for all ε > 0 there exists a δ > 0 such

that for any pair of partitions Γ ,Γ ′ with mesh smaller than δ , the corresponding
Riemann sums differ by less than ε . Second, if two functions f and g have a finite
number of jump discontinuities, then the integrals

∫
f dg and

∫
gd f are defined if and

only if at each (common) discontinuity point one function is right-continuous and the
other is left-continuous.

For a given ε > 0, set Jε
t = ∑s≤t ∆Ss1{|∆Ss|>ε}, and Sε = S−Jε . Since S is càdlàg,

it has a finite number of jumps larger than any given size, therefore Jε is piecewise
constant and right-continuous. By construction, Sε is càdlàg with jumps bounded by
ε . Since S is càdlàg and θ− left-continuous, by the previous observation Jε is Stieltjes
integrable with respect to θ−. For Sε , consider two partitions Γ = (ti)n

i=0,Γ
′= (si)

m
i=0,

and denote by Γ ∪Γ ′ = (ri)
l
i=0. Let ui ∈ [ti−1, ti], vi ∈ [si−1,si] arbitrary points. The

corresponding Riemann sums satisfy:

IT (Sε ,θ−;Γ )− IT (Sε ,θ−;Γ ′) = ∑
ti≤T

Sui(θt−i
−θt−i−1

)− ∑
si≤T

Svi(θs−i
−θs−i−1

) =

= ∑
ri≤T

(St(ri)−Ss(ri−1))(θr−i
−θr−i−1

)

where t(r j) = ui with i such that [r j−1,r j]⊂ [ti−1, ti] and s(r j) is defined analogously.
If the meshes of Γ and Γ ′ are smaller than δ , then |t(r)−s(r)| ≤ δ for all r. Applying
Lemma A.5 with s = ε and η = 2ε for some small δ , it follows that:

|IT (Sε ,θ−;Γ )− IT (Sε ,θ−;Γ ′)| ≤ ∑
ri≤T

∣∣St(ri)−Ss(ri−1)

∣∣∣∣θr−i
−θr−i−1

∣∣≤ 2ε‖θ‖T

Since Jε is Stieltjes integrable, |IT (Jε ,θ−;Γ )− IT (Jε ,θ−;Γ ′)| ≤ 2ε‖θ‖T up to a
smaller δ ′ < δ . Adding up, for any ε > 0 there is some δ ′ > 0 such that:

|IT (S,θ−;Γ )− IT (S,θ−;Γ ′)| ≤ 4ε‖θ‖T

for any pair of partitions Γ ,Γ ′ with mesh smaller than δ ′, which amounts to pathwise
integrability in the sense of Stieltjes. ut

The predictable Stieltjes integral is defined as follows:

Definition A.6 For an arbitrary finite variation θ and càdlàg S, define:

IT (S,θ) :=
∫
[0,T ]

Sudθu :=
∫
[0,T ]

Sdθ−− ∑
s≤T

(θs−θs−)∆Ss. (A.2)

The first term is a well-defined Stieltjes integral by Lemma A.4, and the second term
is absolutely convergent:

∑
s≤T

(θs−θs−)∆Ss ≤ ∑
s≤T
|θs−θs−|2S∗T ≤ 2‖θ‖T S∗T < ∞

since S∗T = supt∈[0,T ] |St | is finite by the càdlàg assumption.
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Remark A.7 The case for definition (A.2) rests on both mathematical and economic
arguments. Proposition A.16 below justifies (A.2) from the viewpoint of stochastic
analysis, connecting the predictable Stieltjes integral to the usual stochastic integral
via integration by parts.

From the economic viewpoint, consider S ∈ D and θ ∈PV , regarding S as the
asset price, and θt (resp. θt−, θt+) as the number of shares held at time t (resp. im-
mediately before, after t). Intuitively, a jump of S at a predictable time τ corresponds
to a shock whose size is unknown but whose timing is known before its occurrence
(e.g. the announcement of macroeconomic data). Viceversa, a totally inaccessible τ

corresponds to a shock with sudden timing (e.g. a natural catastrophe). The definition
of
∫

Sdθ should reflect the different natures of such jumps.
On a predictable jump, the investor may rebalance her portfolio “immediately”

before τ (and change from position θτ− to θτ ) and react after the price has changed
from Sτ− to Sτ (by moving from θτ to θτ+). On an unpredictable (i.e. τ totally inac-
cessible) jump, necessarily θτ− = θτ , because θ is predictable (there is no possibility
to prepare for τ), but there is still a possibility of rebalancing from θτ to θτ+ . Thus,
the cost of the portfolio θ should be:

Sτ−(θτ −θτ−)+Sτ(θτ+ −θτ) = Sτ(θτ+ −θτ−)−∆Sτ(θτ −θτ−) (A.3)

in the case of predictable τ and

Sτ(θτ+ −θτ) = Sτ(θτ+ −θτ−) (A.4)

in the unpredictable case. These formulas are indeed consistent with (A.2).1

Looking at (A.3) and (A.4) under a different angle, the predictability of θ dictates
that

∫
Sdθ should include ∆Sτ(θτ+−θτ) at all predictable stopping times, and should

not include it at totally inaccessible times.

The pathwise definition of the integral (A.2) extends to a linear map from pro-
cesses into processes.

Proposition A.8 The function (S,θ) 7→ I·(S,θ)

IT (S,θ) =
∫
[0,T ]

Sdθ−− ∑
s≤T

(θs−θs−)∆Ss (A.5)

maps D×PV into L .

Proof It is necessary to check that ω 7→ IT (S,θ)(ω) is FT -measurable for all T > 0,
and that the paths t 7→ It(S,θ) have right and left limits. For the latter property, ob-
serve that the integral in (A.5) is left-continuous with right limits, while the summa-
tion in (A.5) is right-continuous with left limits.

For the measurability part, note that the second term in (A.5) is trivially FT -
measurable, hence it suffices to check the first term, which is a pathwise Stieltjes

1 Note that in the present paper there are also transaction costs represented by the process κ hence the
additional cost term

∫
[0,T ] κud‖θ‖u appears, see Definition 4.4. Remember also that

∫
[0,T ] St dθt (as well as∫

[0,T ] κud‖θ‖u) represent the cost of trading with strategy θ on the interval [0,T ], cf. Definition 4.4.
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integral by Lemma A.4. Thus, it is the limit of Riemann sums along a deterministic
grid: ∫

[0,T ]
Sdθ− = lim

n→∞

bnTc

∑
k=0

S k
n
(θ k+1

n
− −θ k

n
−) (A.6)

and therefore it is FT -measurable. ut

The following Theorem establishes the main properties of the predictable Stieltjes
integral. First, if θ is simple (i.e. constant on a sequence of intervals, some of which
may collapse to points), then

∫
Sdθ is consistent with the definition of cost process

in the main text. Second, the integral satisfies the natural bound (A.8). Finally, the
integral satisfies a dominated convergence theorem and a Fatou property with respect
to the pointwise convergence of the integrator θ .

Theorem A.9 The map I in (A.2) satisfies the following properties:

i) If (τn)n≥0 is a sequence of stopping times, and θ =∑
∞
n=1

(
θτn1JτnK +θ

τ
+
n

1Kτn,τn+1J

)
is predictable, then:

IT (S,θ) = ∑
τi≤T

S
τ
−
i
(θτi −θ

τ
−
i
)+ ∑

τi<T
Sτi(θτ

+
i
−θτi) (A.7)

ii) IT is linear both in S and in θ , and, denoting by S∗T = supt∈[0,T ] |St |:

|IT (S,θ)| ≤ ‖θ‖T S∗T (A.8)

iii) If θ n→ θ pointwise and supn≥1 ‖θ n‖T < ∞, then I(S,θ n)→ I(S,θ) pointwise.
iv) If (θ n)n≥1 are as in iii) and S≥ 0, then liminfn→∞ I(S,‖θ n‖)≥ I(S,‖θ‖) point-

wise.

Proof i): (A.7) follows immediately from (A.2).
For ii), the linearity in θ and S is immediate from (A.2), which also implies the

estimate:

|IT (S,θ)| ≤
∣∣∣∣∫

[0,T ]
Sdθ−

∣∣∣∣+ ∣∣∣∣∑
t≤T

(θt −θt−)∆St

∣∣∣∣≤ ‖θ‖T S∗T +‖θ‖T 2S∗T = 3‖θ‖T S∗T

(A.9)

Now, define the sequence of stopping times (σ ε
n )n≥0:

σ
ε
0 = 0 and σ

ε
n+1 = inf{t > σ

ε
n : |St −Sσ ε

n |> ε} (A.10)

and set Sε = ∑
∞
j=0 Sσ ε

j
1Jσ ε

j ,σ
ε
j+1J, which is piecewise constant and right-continuous,

and satisfies |St −Sε
t | ≤ ε for all t ∈ [0,T ]. By linearity in S and (A.9), for any ε > 0

the following holds:

|IT (S,θ)| ≤|IT (Sε ,θ)|+3ε‖θ‖T
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Fix T > 0, and from now on assume θ0 = θs = 0 for s≥ T without loss of generality.
To calculate IT (Sε ,θ), first observe that (with the convention σ−1 = 0):∫

[0,T ]
Sε dθ− = ∑

n≥0
Sε

σn(θσ
−
n+1
−θ

σ
−
n
) =−∑

n≥0
θ

σ
−
n
(Sσn −Sσn−1),

∑
t∈[0,T ]

(θt −θt−)∆Sε
t = ∑

n≥0
(θσn −θ

σ
−
n
)(Sε

σn −Sε

σ
−
n
) = ∑

n≥0
(θσn −θ

σ
−
n
)(Sσn −Sσn−1).

and therefore:

I(Sε ,θ) =−∑
n≥0

[
θ

σ
−
n
(Sσn −Sσn−1)+(θσn −θ

σ
−
n
)(Sσn −Sσn−1)

]
=−∑

n≥0
θσn(Sσn −Sσn−1) = ∑

n≥0
Sσn−1(θσn −θσn−1).

(A.11)

Consequently,

|IT (Sε ,θ)|=
∣∣∣∣ ∑

σn≤T
Sσn−1(θσn −θσn−1)

∣∣∣∣≤ S∗T‖θ‖T

and ii) follows since ε > 0 is arbitrary.
iii): By the linearity in S, it suffices to consider the case of θ n converging pointwise
to zero. ii) implies that:

|IT (S,θ n)| ≤ |IT (Sε ,θ n)|+ ε‖θ n‖T

The calculations in the proof of ii) show that the term |IT (Sε ,θ n)| depends only on
finitely many values of θ , thus for large n it becomes arbitrarily small. As M :=
supn≥1 ‖θ n‖T is finite,

limsup
n→∞

|IT (S,θ n)| ≤ εM

and convergence follows since ε is arbitrary.
iv): By the same argument as in the proof of Proposition A.1 ii), for s(ω)< t(ω) the
following holds:

liminf
n→∞

(‖θ n‖t −‖θ n‖s)≥ ‖θ‖t −‖θ‖s,

in the pointwise sense. Then, recalling (A.11), S≥ 0 implies that:

liminf
n→∞

IT (Sε ,‖θ n‖) = liminf
n→∞

∑
k≥1

Sσk−1(‖θ
n
σk
‖−‖θ n

σk−1
‖)

≥∑
k≥1

Sσk−1(‖θσk‖−‖θσk−1‖) = IT (Sε ,‖θ‖)

Since |IT (S,‖θ n‖)−IT (Sε ,‖θ n‖)| ≤ ε‖θ n‖T and |IT (S,‖θ‖)−IT (Sε ,‖θ‖)| ≤ ε‖θ‖T ,
it follows that:

ε

(
sup

n
‖θn‖T +‖θ‖T

)
+ liminf

n→∞

∫
[0,T ]

Sd‖θn‖ ≥
∫
[0,T ]

Sd‖θ‖.

and the thesis follows as ε ↓ 0. ut
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A.3 Approximations of predictable integrals

The previous subsection shows that the integral θ 7→ IT (S,θ) is continuous with re-
spect to the pointwise convergence. This result is probability free.

A much more precise result holds in a filtered probability space satisfying the
usual conditions, if S is locally bounded: both θ and IT (S,θ) admit almost surely uni-
form approximations. Any underlying probability admits an approximating sequence,
but this sequence may depend on the probability itself. In this regard, approximating
sequence are analogous to announcing sequences for predictable times.

Consider a filtered probability space (Ω ,F ,(Ft)t≥0,P).

Theorem A.10 Let θ ∈PV and S ∈D be locally bounded. Then, for all ε > 0 there
exists a strictly increasing sequence of stopping times (σn)n≥0 such that supn≥1 σn >
T , and a predictable process θ ′′ of the form:

θ
′′ =

∞

∑
n=0

(
θσn1JσnK +θ

σ
+
n

1Kσn,σn+1J

)
(A.12)

satisfying θ ′′ ∈PV , |θ ′′−θ | ≤ ε , |
∫

Sdθ ′′−
∫

Sdθ | ≤ ε and ‖θ ′′‖ ≤ ‖θ‖ pointwise
on [0,T ] (outside a P-zero set).

The proof of this theorem requires a property of predictable finite variation processes:

Proposition A.11 Any θ ∈PV is locally bounded.

Proof Let τn = inf{t > 0 : |θt | > n}, so that limn→∞ τn = ∞ a.s. Then |θ |1[[0,τn[[ is
bounded, i.e. |θ | is prelocally bounded. A prelocally bounded predictable process is
also locally bounded by section 11 of Chapter 8 in Dellacherie & Meyer (1982). ut

Proof of Theorem A.10. Fix T > 0. Note that θ ∈PV implies that ‖θ‖ is locally
bounded by Proposition A.11, while S is locally bounded by assumption. Thus, there
exists a sequence of stopping times (υM)M≥1,υM ≤ T such that |St |,‖θ‖t ≤ M for
t ∈ J0,υMK, and it suffices to prove the claim on J0,υMK. Indeed, if θ M satisfies the
claim for εM = ε2−(M+1), then θ ′′ = θ 11J0,υ1K + ∑

∞
M=2 θ M1KυM−1,υMK satisfies the

claim on [0,T ]. Thus, from now on assume that S = S1J0,υMK + SυM 1KυM ,∞K. Define
the sequence of stopping times (ρm)

∞
m=0:

ρ0 = 0 ρm+1 = inf{t > ρm : |St −Sρm | ≥ δ}∧T.

Since S is càdlàg, supm ρm > υM a.s. on {υM < T}.
Step 1: Construction of the approximation on Kρm−1,ρmK.

For m≥ 1, set εm = ε

2M 2−(m+1), and define the stopping times (σn)n≥0 as follows2:

σ0 =ρm−1 (A.13)
v0 =0 (A.14)

σn+1 = inf{t ≥ σn : ‖θ‖t ≥ vn + εm}∧ρm (A.15)
vn+1 = inf{‖θ‖t : ‖θ‖t ≥ vn + εm, t ≤ ρm} (A.16)

2 The clock σn ticks each time that the total variation ‖θ‖ increases by at least εm, stopping at ρm.
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Since θ has finite variation, the random set ∪n≥0JσnK has finite sections. Consider
An ∈Fσn such that τn := (σn)An is the totally inaccessible part of σn. The sequence
(τn)n≥1 is strictly increasing, because (σn)Gn is predictable for Gn := {‖θ‖σn ≥
vn−1 + εm}, hence An ⊂ {‖θ‖σn < vn−1 + εm,‖θ‖σ

+
n
≥ vn−1 + εm}.

The predictable set B = ∪n≥0(JσnK\ JτnK) admits an exhausting sequence of pre-
dictable times (πn)n≥0. Since B has finite sections, this sequence is strictly increasing
up to ordering.3 Consider first the process:

θ
′ =

∞

∑
n=0

(
θπn1JπnK +θ

π
+
n

1Kπn,πn+1J

)
(A.17)

which is predictable because each πn is predictable (cf. Jacod & Shiryaev (2003,
1.2.12)). Then, set:

θ
′′ = θ

′+
∞

∑
n=0

(θ
τ
+
n
−θ

′
τ
+
n
)(1Kτn,σn+1K∩Jτn+1K +1Kτn,σn+1J\Jτn+1K) (A.18)

which is again predictable, since JσnK \ JτnK ⊂ ∪k≥0JπkK. Thus, θ ′ constructs an ap-
proximation on the accessible parts of JσnK, and θ ′′ adjusts it on the totally inacces-
sible parts of JσnK. This two-step procedure is necessary, because the accessible part
of JσnK is not identified by a single predictable time. θ ′′ satisfies, for all n:

θ
′′
π
+
n
= θ

π
+
n
,θ ′′

τ
+
n
= θ

τ
+
n

(A.19)

θ
′′
πn = θπn (A.20)

θ
′′
π
−
n
= θ

π
+
n−1

,θ ′′
τ
−
n
= θ

τ
+
n−1

(A.21)

θτn = θ
τ
−
n
,θ ′′τn = θ

′′
τ
−
n

(A.22)

(A.19), (A.20) and (A.21) hold by construction, and (A.22) holds because τn is totally
inaccessible and θ ,θ ′′ are predictable. Finally, note that (A.20) implies that θρm = θ ′′ρm
on the accessible part of ρm.

Step 2: Prove the equality:∫
Kσn−1,σnK

Sdθ −
∫

Kσn−1,σnK
Sdθ

′′ =
∫

Kσn−1,σnJ
Sdθ − (θ

σ
−
n
−θ

σ
+
n−1

)(S
σ
−
n
+∆Sσn1JτnK) (A.23)

To see this, observe that:∫
Kσn−1,σnK

Sdθ =S
σ
−
n
(θσn −θ

σ
−
n
)+Sσn(θσ

+
n
−θσn)+

∫
Kσn−1,σnJ

Sdθ∫
Kσn−1,σnK

Sdθ
′′ =S

σ
−
n
(θ ′′σn −θ

′′
σ
−
n
)+Sσn(θσ

+
n
−θ

′′
σn)

where the second equality exploits (A.19). Hence, the following equality holds:∫
Kσn−1,σnK

Sdθ −
∫

Kσn−1,σnK
Sdθ

′′ = S
σ
−
n
(θσn −θ

′′
σn −θ

σ
−
n
+θ

′′
σ
−
n
)−Sσn(θσn −θ

′′
σn)+

∫
Kσn−1,σnJ

Sdθ

3 Set C0 = /0, π ′n = min{t : (ω, t) ∈ B\Cn}, and Cn = ∪0≤k<nJπ ′kK, which is predictable because B\Cn
is predictable and Jπ ′nK⊂ B\Cn, by 1.2.38 of Jacod & Shiryaev (2003).
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First, recall that θ ′′
σ
−
n
= θ

σ
+
n−1

. On JτnK = JσnK∩An the first term in the right-hand
side vanishes by (A.22), and the claim follows. On JσnK\ JτnK, the second term in the
right hand side vanishes by (A.20), while the first one reduces to S

σ
−
n
(θ ′′

σ
−
n
−θ

σ
−
n
).

Step 3: Prove the estimate:∣∣∣∣∫Kρm,ρm+1K
Sdθ −

∫
Kρm,ρm+1K

Sdθ
′′
∣∣∣∣≤ δ (‖θ‖

ρ
−
m+1
−‖θ‖

ρ
+
m
)+ ε2−(m+1) (A.24)

First, rewrite (A.23) as:∫
Kσn−1,σnK

Sdθ −
∫

Kσn−1,σnK
Sdθ

′′ =
∫

Kσn−1,σnJ
(S−S′σn)dθ

where S′σn = Sσn1JτnK + S
σ
−
n

1JσnK\JτnK. Denote by Nm = max{n : σn < ρm+1}, which
implies that σNm+1 = ρm+1. By (A.23) it follows that:∫

Kρm,ρm+1K
Sdθ −

∫
Kρm,ρm+1K

Sdθ
′′ =

Nm+1

∑
n=1

(∫
Kσn−1,σnK

Sdθ −
∫

Kσn−1,σnK
Sdθ

′′
)

=

(
Nm

∑
n=1

∫
Kσn−1,σnJ

(S−S′σn)dθ

)
+
∫

KσNm ,ρm+1J
(S−S

ρ
−
m+1

)dθ −∆Sρm1JτNm+1K(θρ
−
m+1
−θ

σ
+
Nm
)

Now, observe that |S−S
ρ
−
m+1
| ≤ δ and |S−S′σn | ≤ δ for n≤Nm, because |S−Sρm | ≤ δ

on Jρm,ρm+1J. Also, ‖∆Sρm‖ ≤ 2M because |S| ≤ M, and |θ
ρ
−
m+1
− θ

σ
+
Nm
| ≤ εm =

ε2−(m+1), and the claim follows.
Step 4: Conclusion. Setting δ = ε/M, and recalling that ‖θ‖ is bounded by M, it

follows that:∣∣∣∣∫
[0,T ]

Sdθ −
∫
[0,T ]

Sdθ
′′
∣∣∣∣≤ ∑

m≥1

∣∣∣∣∫Kρm−1,ρmK
Sdθ −

∫
Kρm−1,ρmK

Sdθ
′′
∣∣∣∣

≤ ε

M ∑
m≥1

(‖θ‖
ρ
−
m
−‖θ‖

ρ
+
m−1

)+ ε ∑
m≥1

2−(m+1) ≤ 2ε

ut

The next corollary shows that the interpolation of θ not only approximates
∫

Sdθ ,
but any finer Riemann sum.

Corollary A.12 Let θ ,S,(σn)n≥0, and θ ′′ be as in Theorem A.10. Let (σ̃n)n≥0 be
finer than (σn)n≥0 (i.e. for all n≥ 0, there exists ñ(n) such that σn = σñ(n) a.s.), and
define θ̃ ′′ as in (A.12), with σ̃n in the place of σn.

Then |θ ′′− θ̃ ′′| ≤ ε , |
∫

Sdθ ′′−
∫

Sdθ̃ ′′| ≤ ε and ‖θ ′′‖ ≤ ‖θ̃ ′′‖ pointwise on [0,T ]

Proof ‖θ ′′‖≤ ‖θ̃ ′′‖ is trivial. To see that |θ ′′− θ̃ ′′| ≤ ε holds, note that θ̃ ′′
σ̃ñ(n)

= θ ′′σn =

θσn , and recall that ‖θ‖ increases by less than εm on Jσn−1,σnK ⊃ Jσñ(n−1),σñ(n)K,
whence |θ ′′− θ̃ ′′| ≤ |θ ′′−θ |+ |θ − θ̃ ′′| ≤ 2εm < ε .

To see that |
∫

Sdθ ′′−
∫

Sdθ̃ ′′| ≤ ε , observe that the equality (A.23) and the in-
equality (A.24) continue to hold with θ̃ ′′ in the place of θ , again because θ ,θ ′′, θ̃ ′′

coincide on JσnK. It follows that also the estimate in Step 4 above continues to hold,
whence the claim. ut
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The next corollary is a straightforward consequence of Theorem A.10:

Corollary A.13 Let θ ∈PV and assume that (S,κ) ∈D are locally bounded. Then
for all ε > 0 there exists θ ′′ as in Proposition A.10, which satisfies |θ ′′− θ | ≤ ε ,
|
∫

Sdθ ′′−
∫

Sdθ |+ |
∫

κd‖θ ′′‖−
∫

κd‖θ‖| ≤ ε , and ‖θ ′′‖ ≤ ‖θ‖ pointwise on [0,T ].

Repeating the above proof in a deterministic setting yields the following deter-
ministic statement.4

Corollary A.14 Let θ be a finite variation function, and S a càdlàg function. Then,
for all ε > 0 there exists a sequence of time instants (τn)n≥0 such that the integrand
θ ′′ defined in (A.12) satisfies |θ ′′− θ | ≤ ε , |

∫
Sdθ ′′−

∫
Sdθ | ≤ ε and ‖θ ′′‖ ≤ ‖θ‖

pointwise.

A simple consequence is that the integral I in (A.2) is the unique extension of
the simple integrals (A.7), which satisfies a Lebesgue-type theorem with respect to
pointwise convergence of the integrator.

Proposition A.15 The integral (A.2) is the unique extension of (A.7) to the class of
all finite variation functions θ which satisfies iii) in Theorem A.9.

Proof Take θn given by Corollary A.14 with the choice ε = 1/n. Let Ĩ be an arbi-
trary extension of the restriction of I to simple θ which satisfies iii) of Theorem A.9.
Then necessarily Ĩ(S,θ) = limn→∞ I(S,θn), and this latter limit is I(S,θ), by Corol-
lary A.14. ut

When S is a semimartingale, integration by parts links the predictable Stieltjes
integral to the usual stochastic integral:

Proposition A.16 Let θ ∈PV and S a càdlàg semimartingale. Then:∫ T

0
Sudθu = θT ST −θ0S0−

∫ T

0
θudSu, (A.25)

where the first integral is in the predictable Stieltjes sense and the second one is a
usual stochastic integral.

Proof Without loss of generality, assume θ0 = θT = 0. Then the stochastic integral
exists, as θ is locally bounded by Proposition A.11. Consider first θ simple. By linear-
ity of the integrals, it suffices to treat the left- and right-continuous cases separately,
and localization allows us to assume ‖θ‖,θ bounded.

First, consider θ left-continuous with finitely many jumps (τ j)0≤ j≤n. Then:

IT (S,θ) =
n

∑
j=0

Sτ j(θτ j+1 −θτ j) =−
n

∑
j=0

θτ j(Sτ j −Sτ j−1) =−
∫ T

0
θudSu, (A.26)

by the definition of (elementary) stochastic integrals, with the convention τ−1 = 0.
This argument shows the statement for θ , and extends easily to arbitrary simple left-
continuous θ .

4 But a pathwise application of Corollary A.14 does not prove Proposition A.10, which requires the
predictability of θ ′′.
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Take now θ right-continuous. Without loss of generality, suppose (see the proof
of Theorem A.10) that the jump times τ j are predictable with announcing sequences
τ j−1 ≤ τk

j < τ j, k ≥ 1. Set

γ(k) :=
∞

∑
j=0

(
θτ j 1Kτ j ,τ

k
j+1K +E(θτ j+1 |Fτk

j+1
)1Kτk

j+1,τ j+1K

)
.

Note that θτ j+1 is Fτ j+1−-measurable (see 1.2.4 of Jacod & Shiryaev (2003)), hence
the conditional expectation converges a.s. to θτ j+1 as k→ ∞, by the martingale con-
vergence theorem. Hence γ(k)→ θ pointwise (possibly outside a P-zero set).

It follows from the previous step, by the dominated convergence theorem for
stochastic integrals, and by Theorem A.9 iii) that

−
∫ T

0
θudSu = lim

k→∞
−
∫ T

0
γu(k)dSu = lim

k→∞
I(S,γ(k)) = I(S,θ).

For general θ ∈PV , take an approximation θ n constructed in Theorem A.10
with ε := 1/n. The above arguments imply that IT (S,θ n) = −

∫ T
0 θ n

u dSu for all n.
IT (S,θ n)→ IT (S,θ) by Theorem A.10 and the stochastic integrals of θ n converge to
that of θ by dominated convergence (note that |θn| ≤ |θ |+1/n). ut

B Appendix

For completeness, this appendix recalls the statements of some now classical tools in
Mathematical Finance. First, a compactness lemma for bounded sets in L0

+:

Lemma B.1 (Delbaen & Schachermayer (1994, Lemma A1.1)) Let ( fn)n≥1 be a
sequence of [0,∞)-valued measurable functions on a probability space (Ω ,F ,P).
There exists a sequence gn ∈ conv(( fk)k≥n) such that (gn)n≥1 converges almost surely
to a [0,∞]-valued function g. If conv(( fn)n≥1) is bounded in L0, then g is finite almost
surely.

Second, an important consequence of the Krein-Smulian Theorem (cf. Delbaen &
Schachermayer (1994), Kabanov & Last (2002, Lemma 4.4)):

Lemma B.2 Let C ⊂ L∞ be a convex set. Then C is σ(L∞,L1)-closed if and only if
C∩{Z : ‖Z‖∞ ≤ x} is closed in probability for all x > 0.

Third, a version of the Kreps (1981)-Yan (1980) separation theorem (cf. Schacher-
mayer (1994) or Kabanov & Stricker (2001b)):

Theorem B.3 Let−L∞
+⊂C⊂L∞ be a convex cone, closed in the σ(L∞,L1)-topology,

such that C∩L∞
+ = {0}. Then there exists a probability Q equivalent to P such that

EQ [C]≤ 0.

Finally, a compactness lemma for finite variation processes (cf. Guasoni (2002, Lemma
3.4), Campi & Schachermayer (2006, Proposition 14)). Note that Lemma A.2 allows
to avoid section theorems.

Lemma B.4 Consider (θ n)n≥1 ⊂PV such that (‖θ n‖T )n≥1 is bounded in L0. Then
there exists θ ∈PV and a sequence (ηn)n≥1 ⊂PV of convex combinations ηn ∈
conv(θ n,θ n+1, . . .) converging to θ pointwise such that also ‖ηn‖→ ‖η‖ pointwise.
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