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1 Introduction

A classical result of the theory of frictionless market asserts that the set
of initial capitals needed to hedge a European option ξ with the matu-
rity(=exercise) date T is a semi-infinite closed interval [x∗,∞[ whose left
extremity x∗ = supρ EρT ξ where ρ = (ρt) runs through the set of martingale
densities for the price process S. Recall that “to hedge” means to dominate
the random variable ξ by the terminal value of a self-financing portfolio. Ba-
sically, the assertion remains the same for the case of American-type option
which pay-off is an adapted càdlàg stochastic process f = (ft)t≤T . In this
case, x∗ = supρ,τ Eρτfτ where τ (an exercise date) runs through the set of
stopping times dominated by T . “To hedge” means here to dominate, on the
whole time interval, the pay-off process by a portfolio process. In both cases,
as was shown by Dmitri Kramkov [12], the results can be deduced from the
optional decomposition theorem applied to a corresponding Snell envelope.

We deliberately formulated the statements above (omitting assumptions)
in terms of density processes rather than in terms of martingale measures to
facilitate the comparison with the corresponding theorems for models with
market friction.

In the theory of markets with transaction costs hedging theorems for Eu-
ropean options are already available for discrete-time as well as for continuous-
time models. Mathematically, in discrete-time, the model is given by an
adapted cone-valued process G = (Gt)t=0,1,...,T in Rd. The portfolio (value)
process X is adapted and its increments ∆Xt = Xt − Xt−1 are selectors
of the random cones −Gt. The contingent claim ξ is a random vector. The
hedging problem is to describe the set Γ of initial values x for which one
can find a value process X such that x + XT dominates ξ in the sense of the
partial ordering induced by the cone GT . It happens that, under appropriate
assumptions,

Γ = {x ∈ Rd : Z0x ≥ EZT ξ ∀Z ∈ MT
0 (G∗)}

where MT
0 (G∗) is the set of martingales evolving in the (positive) duals G∗

t of

the cones Gt. In the financial context, Gt are solvency cones K̂t, “hat” means
that the assets are measured in physical units (the notation Kt is used for the
solvency cones when values of assets are expressed in units of a numéraire),

and the elements of MT
0 (K̂∗) are called consistent price systems. For the

continuous-time model the description remains the same but the theorem
becomes rather delicate. The reason for this is that the model formulation
is more involved and even the basic definition of value processes has several
versions. Moreover, one needs assumptions on the regularity of the cone-
valued process, see the development and extended discussion of financial
aspects in [5], [8], [10], [11], [3].

The hedging problem for the vector-valued American option U = (Ut) in
the discrete-time framework with transaction costs was investigated in the
paper [2] by Bruno Bouchard and Emmanuel Temam (see also the earlier
article [4] where the two-asset case for finite Ω was studied). It happens that
one needs a richer set of “dual variables” to describe the set Γ formed by the
initial values of self-financing portfolios dominating, in the sense of partial
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ordering, the vector-valued adapted pay-off process U . Bouchard and Temam
proved the identity

Γ =

{
x ∈ Rd : Z̄0x ≥ E

N∑

t=0

ZtUt ∀Z ∈ Zd(G
∗, P )

}

where Zd(G
∗, P ) is the set of discrete-time adapted process Z = (Zt) such

that the random variables Zt, Z̄t ∈ L1(G∗
t ) for all t ≤ T with the nota-

tion Z̄t :=
∑T

s=t E(Zs|Ft). Note that the inclusion MT
0 (G∗) ⊆ Zd(G

∗, P ) is
obvious.

In the theory of financial markets with transaction costs modelling of
portfolio processes is rather involved. It is quite convenient to consider right-
continuous portfolio processes and work in the standard framework of sto-
chastic calculus. This approach leads to satisfactory hedging theorems, e.g.,
for a model with constant transaction costs and a continuous price process,
see [8], [10], [11]. However, as was shown by Miklós Rásonyi in [13], such a
definition is not appropriate when the price process is discontinuous: in gen-
eral, the natural formulation of the hedging theorem (for European options)
fails to be true. Luciano Campi and Walter Schachermayer in [3] suggested a
more complicated definition of the portfolio processes for which the natural
formulation of hedging theorem can be preserved.

In the present note we investigate the hedging problem using the ap-
proach of Campi and Schachermayer in a slightly more general mathematical
framework. This framework is described in the next section where some ba-
sic concepts are introduced. In Section 3 we recall the definition of portfolio
processes together with some known results adjusted to our purposes and
accompanied by explicative comments. Section 4 contains the formulation of
the main theorem preceding by a discussion of objects involved. Financial
interpretation is given in the concluding Section 5.

2 Basic Concepts

Standing hypotheses. We shall work from the very beginning in a slightly
more general and more transparent “abstract” setting where we are given two
cone-valued processes G = (Gt)t∈[0,T ] and G∗ = (G∗

t )t∈[0,T ] in duality, i.e.
G∗

t (ω) is the positive dual of the cone Gt(ω) for each ω and t. We suppose that
Gt = cone {ξk

t : k ∈ N} where the generating processes are càdlàg, adapted,
and for each ω only a finite number of vectors ξk

t (ω), ξk
t−(ω) are different

from zero, i.e. the cones Gt(ω) and Gt−(ω) := cone {ξk
t−(ω) : k ∈ N} are

polyhedral, hence, closed.

Throughout the paper we assume that all cones Gt contain Rd
+ and are

proper, i.e. Gt ∩ (−Gt) = {0} or, equivalently, intG∗
t 6= ∅; moreover, we

assume that the cones Gt− are also proper.

In a more specific financial setting (see [11], [3]) the cones Gt are the sol-

vency cones K̂t provided that the portfolio positions are expressed in physical
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units1. The hypothesis that the cones Gt are proper means that there is ef-
ficient friction.

It is important to note that, in general, the continuity of generators does
not imply the continuity of the cone-valued processes. The following simple
example in R2 gives an idea: the process Gt = cone {ξ1

t , ξ2
t } where ξ1

t = e1,
ξ1
t = (t−1)+e2 is not right-continuous though the generators are continuous.

To formulate the needed regularity properties of G we introduce some
notation. Let Gs,t(ω) denote the closure of cone {Gr(ω) : s ≤ r < t} and let

Gs,t+ := ∩ε>0Gs,t+ε, Gs−,t := ∩ε>0Gs−ε,t, Gs−,t+ := ∩ε>0Gs−ε,t+ε

with an obvious change when s = 0.

We assume that Gt,t+ = Gt, Gt−,t = Gt−, and Gt−,t+ = cone{Gt−, Gt}
for all t.

It is easy to see that these regularity conditions are fulfilled for the case
where the cones Gt and Gt− are proper and generated by a finite number of
generators of unit length. Indeed, let Gt = cone {ξk

t : k ≤ n} with |ξk
t | = 1

for all t. Since the dependence on ω here is not important we may argue for
the deterministic case. Let x /∈ Gt. The proper closed convex cones R+x and
Gt intersect each other only at the origin, so the intersections of the interiors
of (−R+x)∗ and G∗

t is non-empty (this is a corollary of the Stiemke lemma as
it is given in the appendix in [9]). It follows that there is y ∈ Rd such that x
belongs to the open half-space {z : yz < 0} while the balls {z : |z−ξk

t | < δ}
for sufficiently small δ > 0 lay in the complementary half-space. Since ξk

are right-continuous, the cones Gs,t+ε for all sufficiently small ε > 0 also
lay in the latter. Thus, x /∈ Gt,t+ and Gt,t+ ⊆ Gt. The opposite inclusion is
obvious. In the same way we get other two identities.

Example. Let us consider a financial market with constant proportional
transaction costs given by a matrix Λ = (λij) defining the proper solvency
cone K (in terms of a numéraire). Suppose that the components of the pos-
itive càdlàg price process S are such that inft Si

t > 0, i = 1, ..., d. Let us
consider the mapping

φt : (x1, ..., xd) 7→ (x1/S1
t , ..., xd/Sd

t ).

The generators of the cone Gt = K̂ = φtK are vectors φtxi, where xi, i ≤ N ,
are generators of the polyhedral cone K (they can be written explicitly in

terms of Λ). The generators of the cone G∗
t = K̂∗ = φ−1

t K∗ are vectors
φ−1

t zi, where zi, i ≤ M , are generators of the polyhedral cone K∗.
All above hypotheses are fulfilled for this model. Moreover, if S admits an

equivalent martingale measure with the density process ρ and if w ∈ intK∗,
then the process Z with the components Zi

t = wiSi
tρt is a martingale such

that Zt ∈ intG∗ and Zt− ∈ int (Gt−)∗ = intG∗
t− for all t. Existence of such

a martingale is the major assumption of the hedging theorem.

1 The notation Kt is reserved for the solvency cones when the portfolio positions
are expressed in terms of a numéraire.
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Remark. The argument above shows that the regularity assumptions hold

for the model specified as in [3], i.e. for the case where Gt = K̂(Πt) and

Gt− = K̂(Πt−) are proper cones generated by the bid-ask process Π = (Πt).

Comment on notation. As usual, L0(Gt,Ft) is the set of Ft-measurable
selectors of Gt, M

T
0 (G∗) stands for the set of martingales M = (Mt)t≤T with

trajectories evolving in G∗; 1 :=
∑

ei = (1, ..., 1); ||Y ||t is the total variation
of the function Y on the interval [0, t].

Let B be a càdlàg adapted process of bounded variation. We shall denote
by Ḃ the optional version of the Radon–Nikodym derivative dB/d||B|| with
respect to the total variation process ||B||. In particular, this notation will
be used for B = Y+ where Y+ = (Yt+).

We denote by D = D(G) the subset of MT
0 (intG∗) formed by martingales

Z such that not only Zt ∈ L0(intG∗
t ,Ft) but also Zt− ∈ L0(int (Gt−)∗,Ft) for

all t ∈ [0, T ]. In the financial context the elements of D are called consistent
price systems.

Coherent price systems. Let ν be a finite measure on the interval [0, T ]
and let N denote the set of all such measures. For an Rd

+-valued process Z

we denote by Z̄ν the optional projection of the process
∫
[t,T ]

Zsν(ds), i.e. an

optional process such that for every stopping time τ ≤ T we have

Z̄ν
τ = E

(∫

[τ,T ]

Zsν(ds)
∣∣∣Fτ

)
.

The process Z̄ν can be represented as a difference of a martingale and a
left-continuous process whose components are increasing:

Z̄ν
t = E

(∫

[0,T ]

Zsν(ds)
∣∣∣Ft

)
−

∫

[0,t[

Zsν(ds).

We associate with ν the product-measure P ν(dω, dt) = P (dω)ν(dt) on
the space (Ω × [0, T ],F ×B[0,T ]); the average with respect to this measure is
denoted by Eν .

Let Z(G∗, P, ν) denote the set of adapted càdlàg processes Z ∈ L1(P ν)
such that Zt, Z̄

ν
t ∈ L0(G∗

t ,Ft) for all t ≤ T . We call the elements of this set
coherent price systems. In the case where Z is a martingale, Z̄ν

τ = ν([τ, T ])Zτ

and, hence, MT
0 (G∗) ⊆ Z(G∗, P, ν).

3 The Model and Prerequisites

We define the portfolio processes following the paper [3]. For the reader
convenience, we give also full proofs of the basic properties.

Let Y be a d-dimensional predictable process of bounded variation start-
ing from zero and having trajectories with left and right limits (French ab-
breviation: làdlàg). Put ∆Y := Y −Y−, as usual, and ∆+Y := Y+ −Y where
Y+ = (Yt+). Define the right-continuous processes

Y d
t =

∑

s≤t

∆Ys, Y d,+
t =

∑

s≤t

∆+Ys
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(the first is predictable while the second is only adapted) and, at last, the
continuous one:

Y c := Y − Y d − Y d,+
− .

Recall that Ẏ c denotes the optional version of the Radon–Nikodym derivative
dY c/d||Y c||.

Let Y be the set of such process Y satisfying the following conditions:

1) Ẏ c ∈ −G dP d||Y c||-a.e.;
2) ∆+Yτ ∈ −Gτ a.s. for all stopping times τ ≤ T ;
3) ∆Yσ ∈ −Gσ− a.s. for all predictable2 stopping times σ ≤ T .

Let Yx := x + Y, x ∈ Rd. We denote by Yx
b the subset of Yx formed by

the processes Y bounded from below in the sense of partial ordering, i.e. such
that Yt +κY 1 ∈ L0(Gt,Ft), t ≤ T , for some κY ∈ R. In the financial context

(where G = K̂) the elements of Yx
b are the admissible portfolio processes.

To use classical stochastic calculus we shall operate with the following
right-continuous adapted process of bounded variation

Y+ := Y c + Y d + Y d,+,

and use the relation Y+ = Y +∆+Y . Since the generators are right-continuous,
the process Y+ inherits the boundedness from below of Y (by the same con-
stant process κY 1). Note that ||Y+||t = ||Y ||t− + |∆Yt + ∆+Yt|.

In the sequel we shall use a larger set portfolio processes depending on
Z ∈ MT

0 (G∗), namely,

Yx
b (Z) := {Y ∈ Yx : there is a scalar martingale M such that ZY ≥ M}.

Lemma 3.1 If Z ∈ MT
0 (G∗) and Y ∈ Yx

b (Z), then both processes ZY+ and
ZY are supermartingales and

E

(
− ZẎ c · ||Y c||T −

∑

s≤T

Zs−∆Ys −
∑

s<T

Zs∆
+Ys

)
≤ Z0x − EZT YT . (3.1)

Proof. With the right-continuous process Y+ (having the same left limits as
Y ) the standard product formula is readily applied:

ZtYt+ = Z0x + Y− · Zt + ZẎ c · ||Y c||t +
∑

s≤t

Zs∆Ys +
∑

s≤t

Zs∆
+Ys.

Taking into account that Y = Y− + ∆Y , we rewrite this identity as

ZtYt+ = Z0x + Y · Zt + ZẎ c · ||Y c||t +
∑

s≤t

Zs−∆Ys +
∑

s≤t

Zs∆
+Ys.

2 Since Y is a predictable process, the set {∆Y 6= 0} can be represented as
a disjoint union of graphs of predictable stopping times. Hence, 3) implies that
∆Yτ ∈ −Gτ− a.s. for all stopping times τ ≤ T .



7

Since Y+ = Y + ∆+Y , we obtain from here the product formula for ZY
(which is “non-standard” since Y may not be càdlàg):

ZtYt = Z0x + Y · Zt + ZẎ c · ||Y c||t +
∑

s≤t

Zs−∆Ys +
∑

s<t

Zs∆
+Ys.

By virtue of requirements on Y the stochastic integral Y ·Z is a local martin-
gale while the last three terms define decreasing processes (by our standing
assumption Zs− ∈ (Gs−)∗). Recalling that the process ZY is bounded from
below by a martingale, we deduce from here that the local martingale Y ·Z is
bounded from below by a martingale and, hence, is a supermartingale, hence
integrable. It follows that the terminal values of the mentioned decreasing
processes are integrable. Therefore, ZY is a supermartingale. By the Fatou
lemma its right-continuous limit, i.e. the process ZY+ is a supermartingale.
Finally, taking the expectation of the last identity above and using the in-
equality Y · ZT ≤ 0, we get the required bound (3.1). ✷

Lemma 3.2 Suppose that Y n ∈ Y and for all ω (except of a null set)
limn Y n

t (ω) = Yt(ω) for all t ∈ [0, T ], where Y is a process of bounded varia-
tion. Then the process Y belongs to Y.

This assertion follows immediately from the alternative description of Y given
in the lemma below.

Lemma 3.3 Let Y be a predictable process of bounded variation. Then

Y ∈ Y ⇔ Yσ − Yτ ∈ L0(Gσ,τ ) for all stopping times σ, τ, σ ≤ τ ≤ T.

Proof. (⇒) Follows obviously from the representation

Yτ − Yσ =

∫ τ

σ

Ẏ c
r d||Y c||r +

∑

σ<r≤τ

∆Yr +
∑

σ≤r<τ

∆+Yr.

(⇐) First, we provide an “explicit” formula for Ẏ c using the classical
approach due to Doob, see [6], V.5.58. For the reader’s convenience we recall
the idea. Put tk = tnk = k2−nT , fix ω (omitted in the notation) and consider
the sequence of functions

Xn(t) =
∑

k

Ytn

k+1
+ − Ytn

k
+

||Y+||tn

k+1
− ||Y+||tn

k

I]tn

k
,tn

k+1
](t), [0, T ].

This sequence is a bounded martingale with respect to the dyadic filtration
on [0, T ] and the finite measure d||Y+||. So, it converges (almost everywhere
with respect to this measure) to a limit X∞ which is the Radon–Nikodym
derivative dY+/d||Y+|| and which may serve also as the Radon–Nikodym
derivative dY c/d||Y c||.

Thus,

Ẏ c = lim sup
n

∑

k

Ytn

k+1
+ − Ytn

k
+

||Y+||tn

k+1
− ||Y+||tn

k

I]tn

k
,tn

k+1
] dP d||Y c||-a.e.
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It follows that −Ẏ c
t ∈ Gt−,t+ (a.e.). By assumption, Gt−,t+ = cone{Gt−, Gt}.

But for each ω the set {t : Gt(ω) 6= Gt−(ω)} is at most countable and the
property 1) in the definition of Y is fulfilled.

For a stopping time τ we put τn := τ + 1/n. Then τn ↓ τ

∆+Yτ = lim
n

(Yτn − Yτ ) ∈ −Gτ,τ+ = −Gτ .

For a predictable stopping time σ one can find an announcing sequence
of stopping times σn ↑ σ with σn < σ on the set {σ > 0}. Thus, on this set

∆Yσ = lim
n

(Yσ − Yσn) ∈ −Gσ−,σ = −Gσ−.

The lemma is proven. ✷

Lemma 3.4 Let Z ∈ D. Let A be a subset of Y0
b (Z) for which there is a

constant κ such that YT + κ1 ∈ L0(GT ,FT ) for all Y ∈ A. Then there exists
a probability measure Q ∼ P such that supY ∈A EQ||Y ||T < ∞.

Proof. Fix Z ∈ D and consider the random variable

α := inf
t≤T

inf
x∈Gt, |x|=1

Ztx = inf
t≤T

Ztxt,

where xt = xt(ω) is the point on the unit sphere at which the interior infimum
is attained. If tn ↓ t0 and the sequence xtn

tends to some x0, then the point
x0 ∈ ∩ε>0Gt0,t0+ε = Gt0,t0+. By our assumption, Gt0,t0+ = Gt0 . If tn ↑ t0
and the sequence xtn

tends to some x0, then x0 ∈ Gt0− by virtue of a
similar argument. On various ω the infimum in t can be obtained either on
a decreasing sequence of tn (in this case, α = Zt0xt0) or on a increasing one
(in this case, α = Zt0−xt0). The assumption on Z guaranties that in both
cases the values of α are strictly positive.

It is easily seen that the left-hand side of (3.1) dominates

Eα

(
|Ẏ c| · ||Y c||T +

∑

s≤T

|∆Ys| +
∑

s<T

|∆+Ys|

)
= Eα||Y ||T

and, therefore,

Eαe−α||Y ||T ≤ Eα||Y ||T ≤ Z0x − EZT YT ≤ Z0x + κEZT 1.

It follows that the measure Q with the density dQ/dP = αe−α/(Eαe−α) is
the required one. ✷

Recall that a sequence an is Césaro convergent if ān := n−1
∑n

k=1 ak

converges. The Komlós theorem asserts that if ξn are random variables with
supn E|ξn| < ∞ then there exist ξ ∈ L1 and a subsequence ξn′

such that all
its subsequences are Césaro convergent to ξ a.s.

Lemma 3.5 Let An be a sequence of predictable increasing processes starting
from zero and with supn EAn

T < ∞. Then there is an increasing process

A with AT ∈ L1 and a subsequence An′

which is Césaro convergent to A
pointwise at every point of [0, T ] for all ω except a P -null set.
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Proof. Let T := {k2−nT : k = 0, ..., 2n, n ∈ N}. Using the Komlós theorem

and the diagonal procedure we find a subsequence such that An′

r is Cesaro
convergent a.s. to Ao

r ∈ L1 (with all further subsequences) for all r ∈ T. We
can always choose a common null set Ω0 and assume that Ao

r(ω) is increasing
in r for each ω 6∈ Ω0. Let us consider its left-continuous envelope, defined
on the whole interval, i.e. the process At := lim infr↑t Ao

t (r ∈ T and r < t).
By the same argument as in the theory of weak convergence of probability
distribution functions, we conclude that if the sequence of functions An′

(ω)
converges at all points of T in Césaro sense to Ao(ω), then it converges,
in the same sense, to the function A(ω) at all points of continuity of the
latter. The crucial observation is that one can sacrifice the left-continuity
of A but “improve” the convergence property. To this aim let us consider a
sequence of stopping times τk exhausting the jumps of the process A (i.e.
such that {∆+A > 0} ⊆ ∪k[τk] where [τk] is the graph of τk). Refining the

subsequence of An′

we may assume that each sequence of random variables
An′

τk
also converges in Césaro sense. Replacing Aτk

by these limiting values
we obtain the required process which is a pointwise Césaro limit of a certain
subsequence of An (thus, predictable). ✷

Remark. The above lemma from [3] is the key element of our proof and it
merits to be well-understood. It is worthy to make a look at its deterministic
counterpart which is just a version of the Helly theorem. The latter is usu-
ally formulated for left-continuous (or, more frequently, for right-continuous)
monotone functions. The proof is easy: combining the Bolzano–Weierstrass
theorem and the diagonal procedure one defines a monotone function Ao on
T and a subsequence An′

convergent to Ao on T. Let A be the left enve-
lope of Ao. Due to monotonicity, the same subsequence will converge to all
points of [0, T ] where A is continuous and this gives the standard version
of the Helly theorem. Of course, the convergence may fail at the denumer-
able set where A is discontinuous. Repeating the arguments, one can find a
further subsequence having limits also at each point of discontinuity of A.
Replacing the values of A by these limits, we get an increasing function ap-
proximated by the refined subsequence at all points of the interval. The proof
in the stochastic setting follows the same lines with the classical compactness
argument replaced by a reference to the Komlós theorem.

4 Hedging of American options

Let U = (Ut)t∈[0,T ] be an Rd-valued càdlàg process for which there is a con-

stant κ such that Ut + κ1 ∈ L0(Gt,Ft) for all t. In the context of financial
modelling such a process is interpreted as (the pay-off of) an American op-
tion. Let AT

0 (.) be the set of American options which can be dominated by
a portfolio with zero initial capital, i.e. by an element of Y0

b .
Define the convex set

Γ := {x ∈ Rd : ∃Y ∈ Yx
b such that Y ≥G U} = {x ∈ Rd : U − x ∈ AT

0 (.)},

and the closed convex set

D := D(P ) := {x ∈ Rd : Z̄ν
0 x ≥ EνZU ∀Z ∈ Z(G∗, P, ν), ∀ν ∈ N}.
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It is easy to check that D(P ) = D(P̃ ) if P̃ ∼ P . Indeed, let x ∈ D(P ),

ν ∈ N , and Z̃ ∈ Z(G∗, P̃ , ν). Define ρt = E(dP̃/dP |Ft) and consider the

process Zt = ρtZ̃t. It is in Z(G∗, P, ν) and

EρT

∫

[0,T ]

Z̃tUtν(dt) = E

∫

[0,T ]

ρtZ̃tUtν(dt) = E

∫

[0,T ]

ZtUtν(dt) ≤ xEνZ

Since EνZ = ẼνZ̃, it follows that x ∈ D(P̃ ).

Proposition 4.1 Γ ⊆ D.

Proof. Let x ∈ Γ . Then there exists Y in Y0
b such that the process x + Y

dominates U , i.e. x + Yt − Ut ∈ L0(Gt,Ft) for all t ∈ [0, T ]. It follows that
x + Yt+ − Ut ∈ L0(Gt,Ft). By duality, for any Z ∈ Z(G∗, P, ν) and ν ∈ N
we have that

E

∫

[0,T ]

Ztxν(dt) + E

∫

[0,T ]

ZtYt+ν(dt) ≥ E

∫

[0,T ]

ZtUtν(dt).

It remains to verify that EνZY+ ≤ 0. Using the Fubini theorem and the
property of the optional projection given by Th.VI.2.57 in [6] we have:

E

∫

[0,T ]

ZtYt+ν(dt) = E

∫

[0,T ]

Zt

(∫

[0,t]

Ẏ+sd||Y+||s

)
ν(dt)

= E

∫

[0,T ]

Ẏ+s

(∫

[s,T ]

Ztν(dt)

)
d||Y+||s

= E

∫

[0,T ]

Ẏ+sZ̄
ν
s d||Y+||s.

It is easy to see that

∫

[0,T ]

Ẏ+sZ̄
ν
s d||Y+||s =

∫

[0,T ]

Ẏ c
s Z̄ν

s d||Y c||s +
∑

s≤T

Z̄ν
s ∆Ys +

∑

s≤T

Z̄ν
s ∆+Ys.

Since Ẏ c
s and ∆+Ys take values in the cone −Gs and Z̄ν

s takes values in G∗
s,

the first and the third terms of the above identity are negative. The increment
∆Ys takes values in −Gs−. If Gs− = Gs for all s, the second term is also
negative and we conclude. As we do not assume the continuity of the process
G, the proof requires a bit more work.

Let us suppose for a moment that the random variable ||Y d||T is bounded.
To get the needed inequality EνZY+ ≤ 0 it is sufficient to check that the
expectation of the second term is negative. We proceed as follows. Recall
that Z̄ν = Mν − R where Mν is a martingale and the process

Rt =

∫

[0,t[

Zuν(du)
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is left-continuous. The last property implies that ∆Z̄ν = ∆Mν . It follows
that ∑

s≤T

Z̄ν
s ∆Ys =

∑

s≤T

Z̄ν
s−∆Ys +

∑

s≤T

∆Mν
s ∆Ys.

The first sum in the right-hand side is obviously negative while the expecta-
tion of the second one is zero. This follows from the classical property (see,
e.g. [7], Lemma I.3.12): if M is a positive martingale and B is a predictable
increasing process starting from zero, then

EMT BT = E

∫

[0,T ]

MsdBs = E

∫

[0,T ]

Ms−dBs.

We can easily remove the condition of the boundedness of ||Y d||. Indeed, a
finite predictable increasing process is locally bounded, see [6], Ch. VIII.11.
Hence, there is a sequence of stopping times τn increasing stationary to T
(i.e. with P (τn = T ) → 1) such that ||Y d||τn ≤ Cn. Let Un be a process
coinciding with U on [0, τn[ and taking the value x + Yτn on [τn, T ]. It
follows from the above arguments that Z̄νx ≥ EνZUn and the result follows
from the Fatou lemma. ✷

Theorem 4.2 Suppose that D 6= ∅. Then Γ = D.

Proof. We fix Z̃ ∈ D and define the set of hedging endowments corresponding
to portfolios with the “relaxed” admissibility property, namely, we put

Γ (Z̃) := {x ∈ Rd : ∃Y ∈ Yx
b (Z̃) such that Y ºG U}.

Since Yx
b (Z̃) ⊇ Yx

b , this set is larger than Γ . On the other hand, if a portfolio

Y dominate U , it is bounded from below. Hence, Γ (Z̃) = Γ .
Let Tm := {tk = tmk : tk = k2−mT, k = 0, ..., 2m}; then T = ∪m≥1T

m.
Define the convex set ATm(.) of American options W which can be hedged

at the dates from Tm by a portfolio belonging to the class Y0
b (Z̃), i.e. such

that Yt − Wt ∈ Gt, t ∈ Tm, for some Y ∈ Y0
b (Z̃). Let us consider ATm(.) as

a subset of the space L0(P ⊗ νm) := L0(Ω× [0, T ],F ×B[0,T ], P ⊗ νm) where
the probability measure νm is the uniform distribution on Tm, i.e. it charges
only the points of Tm with weights 1/(2m +1). From the point of view of this
space, W is just the random vector (W0,W1/2m , ..., WT ) (the components of
the latter are d-dimensional). For such random vectors (with fixed m ≥ 1)
we extend the concept of the Fatou-convergence in the same spirit as was
developed in the problem of hedging of European options. Note that ATm(.),

in general, depends on Z̃.

We say that a sequence Wn is Fatou-convergent in L0(P ⊗ νm) to W if
there is a constant κ such that Wn

r + κ1 ∈ L0(Gr,Fr) (i.e., Wn
r ºGr

−κ1)
for all r ∈ Tm, n ≥ 1, and Wn

r → Wr a.s., n → ∞, for all r ∈ Tm. The
subsequent definitions Fatou-closed and Fatou-dense are obvious.

Lemma 4.3 The set ATm(.) is Fatou-closed in L0(P ⊗ νm).
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Proof. Let Wn ∈ ATm(.) be a sequence Fatou-converging to W and let Y n be

a corresponding sequence of dominating elements from Y0
b (Z̃). Our aim is to

show that W also can be dominated by some element Y0
b (Z̃) at the points of

Tm. Using the preceding results (see Lemmas 3.4 and 3.5) we can replace Wn

and Y n by appropriate sequences of arithmetic means and suppose without
loss of generality that Y n converges to some predictable process Y of bounded
variation almost surely at each point t ∈ [0, T ]. Using Lemma 3.2 we conclude

that Y ∈ Y0. It remains to check that Z̃Y dominates a martingale. By virtue
of Lemma 3.1 the prelimit processes Z̃Y n are supermartingales. Since Y n

T

dominates WT ºGT
−κ1, we have that Z̃T Y n

T ≥ −κZ̃T . It follows that

the supermartingale Z̃Y n dominates the martingale −κZ̃ and so does the
supermartingale Z̃Y . ✷

Lemma 4.4 The set ATm(.) ∩ L∞(P νm

) is Fatou-dense in ATm(.).

Proof. Let W ∈ ATm(.) be dominated at the points of Tm by a portfolio

Y ∈ Y0
b (Z̃). Let κ be a constant such that Wt + κ1 ∈ Gt for t ∈ Tm. Put

Wn := WI{|W |≤n} − κI{|W |>n}.

Then Wn ∈ L∞(P ⊗ νm) and tends to W as n → ∞. Since

Yt − Wn
t = (Yt − Wt)I{|Wt|≤n} + (Yt + κ1)I{|Wt|>n} ∈ Gt, t ∈ Tm,

Wn ∈ ATm(.). ✷

Let L0
b(P ⊗ νm) be the cone in L0(P ⊗ νm) formed by the elements W

(interpreted as random vectors) which are adapted and bounded from below
in the sense of partial ordering, i.e. such that Wr + c1 ∈ L0(Gr,Fr) for all
r ∈ Tm. The notation L1(G∗, P ⊗ νm) has an obvious meaning.

The following lemma is Theorem 4.3 from [11] formulated in the notation
adjusted to the considered situation (where one take W0 = 0).

Lemma 4.5 Let A be a convex subset in L0
b(P ⊗ νm) which is Fatou-closed

and such that the set A∞ := A ∩ L∞(Rd, P ⊗ νm) is Fatou-dense in A.
Suppose that there is W0 ∈ A∞ such that W0 −L∞(G,P ⊗ νm) ⊆ A∞. Then

A =
{
W ∈ L0

b(P ⊗ νm) : Eνm

ZW ≤ f(Z) ∀Z ∈ L1(G∗, P ⊗ νm)
}

(4.2)

where f(Z) = supY ∈A Eνm

ZY .

With the above preliminaries we can complete the proof of Theorem 4.2
by establishing the remaining inclusion D ⊆ Γ = Γ (Z̃). Indeed, take a point
x ∈ D. Suppose that U − x /∈ ATm(.) for some m. By virtue of Lemma
4.5 there exists Z ∈ L1(G∗, P ⊗ νm) such that Eνm

Z(U − x) > f(Z). But
f(Z) = 0 as ATm(.) is a cone. We can identify Z with a right-continuous
adapted process taking value Ztk

at the points tk. Since Eνm

ZY ≤ 0 for all
Y ∈ ATm(.), the process Z ∈ Z(G∗, P, νm). Thus, x /∈ D, a contradiction.
This means that U−x ∈ ATm(.) for all m, i.e. there exist admissible portfolio
processes Y n dominating U−x at the points of Tn. In particular, the sequence
Y n

T is bounded from below by a constant vector and, by virtue of Lemma 3.4,
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the total variations ||Y n||T are bounded in a certain L1(Q) with Q ∼ P . Using
Lemma 3.5, we may assume without loss of generality that the sequence Y n

converges to some predictable process Y of bounded variation almost surely
at each point t ∈ [0, T ]. Recall that Ut + κ1 ∈ Gt. The limiting process
Y dominates U − x at all points from T. Using the right continuity of the
processes, we obtain that Y+ dominates U − x on the whole interval and so
does the “larger” process Y . So, x ∈ Γ . ✷

Remark. Theorem 4.2 implies as a corollary a hedging theorem for càdlàg
portfolio processes under assumption that the cone-valued process G is con-
tinuous. Indeed, let X 0 be the set of all càdlàg processes X of bounded
variation with X0 = 0 and such that dX/d||X|| ∈ −G dP d||X||-a.e. The
notations X x and X x

b are obvious. Let

ΓX := {x ∈ Rd : ∃X ∈ X x
b such that X ≥G U}.

Similar (but simpler) arguments than that used in the proof of Proposition
4.1 show that ΓX ⊆ D.

Suppose that all generators ξk of G are continuous processes. It is easy to
check that if the process Y ∈ Y0 then Y+ ∈ X 0. Thus, Γ ⊆ ΓX and Theorem
4.2 implies that if D(G) 6= ∅, then ΓX = D.

5 Financial Interpretation: Coherent Price Systems

In the final section of this note we want to attract the reader’s attention to the
financial interpretation of the obtained result. In the hedging theorems for
European options the important concept is a consistent price system which
replaces the notion of the martingale density of the classical theory sometimes
referred to as “stochastic deflator” or “state-price density”. The words “price

system” mean that it is a process evolving in the duals K̂∗
t to the solvency

cones K̂t while “consistent” alludes that this process is a martingale. Hedging
theorems are results claiming that a contingent claim ξ (in physical units) can
be super-replicated starting from an initial endowment x by a self-financing
portfolio if and only if the “value” Z0x of this initial endowment is not less
than the expected “value” of the contingent claim EZT ξ for any consistent
price system Z (we write the word “value” in quotation marks to emphasize
its particular meaning in the present context). In other words, consistent
price systems allow the option seller to relate benefits from possessing x at
time t = 0 and the liabilities ξ at time t = T and provide information whether
there is a portfolio ending up on the safe side.

The situation with the American option is different. As it was observed by
Chalasani and Jha, already in the simplest discrete-time models consistent
price systems form a class which is too narrow to evaluate American claims
correctly. The phenomenon appears because one cannot prohibit the option
buyer to toss a coin and take a decision, to exercise or not, in dependence of
the outcome. A financial intuition suggests that the expected “value” of an
American claim is an expectation of the weighted average of “values” of assets
obtained by the option holder for a variety of exercise dates. This expected
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“value” should be compared with the “value” of the initial endowment. The
main question is: what is the class of price systems which should be involved
to compute the “values” to be compared? Our result shows, that in a rather
general continuous-time model, the comparison can be done with the systems
for which the expected weighted average of future prices knowing the past is
again a price system. The structure of such a price system is coherent with
the option buyer actions and we propose to call it coherent price system and
use the abbreviation CoPS.

It is well-known that without transaction costs the rational exercise strat-
egy of the buyer is the optimal solution of a stopping problem which exists
in the class of pure stopping times. This explains why in the models of fric-
tionless markets there is no need to go beyond the class of consistent price
systems. For markets with transaction costs the rational exercise strategies
of the option buyer is an open problem.

A reader acquainted with set-valued analysis may ask a question why
we limit ourselves by considering a rather particular cone-valued process
defined via a countable family of generators. Indeed, it seems that the natural
mathematical framework is a model given by a general cone-valued process
G satisfying certain continuity conditions. A possible generalizations of this
kind and a development of the theory of set-valued processes are of interest
and can be subjects of further studies.

Remark. To the present, the pay-off of American options was usually mod-
elled by a right-continuous (or left-continuous) process. Though we believe
that this class is sufficient for financial applications, the problem of the dual
description of the set of hedging endowments for the processes only admit-
ting right and left limits is mathematically interesting. It is solved in the
preprint [1] by Bouchard and Chassagneux which appeared when our paper
was under refereeing. Their dual variables are different from those introduced
here and the relations between two descriptions are left by the authors of [1]
as a subject of further studies.
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