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Abstract

In this paper we extend the conditions on quasi-thermal-incompressible materials

presented in [1] so that they satisfy all the principles of thermodynamics, including
the stability condition associated with the concavity of the chemical potential. We
analyze the approximations under which a quasi-thermal-incompressible medium
can be considered as incompressible. We find that the pressure cannot exceed a
very large critical value and that the compressibility factor must be greater than a
lower limit that is very small. The analysis is first done for the case of fluids and
then extended to the case of thermoelastic solids.
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1 Introduction

It is well known that fully incompressible materials do not exist in nature.
However, it is important to have a mathematical model for an incompressible
medium, as an idealization of media that exhibit extreme resistance to volume
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change. In the context of isothermal mechanics, an ideal incompressible ma-
terial is a medium that can only be deformed without any change in volume.
Extensive literature has been devoted to qualitative analysis and numerical
methods for constructing solutions of incompressible fluids as limits of com-
pressible ones as the Mach number tends to zero (see for example [2,3]).
However, when the process is not isothermal, the notion of incompressibility
is not well defined. Several possibilities arise.

For compressible fluids, the pressure is a constitutive function while for incom-
pressible fluids the pressure is only a Lagrange multiplier associated with the
constraint of incompressibility. Therefore, to compare the solutions of com-
pressible and incompressible media, it is convenient to choose the pressure p
(instead of the density ρ) and the temperature T as thermodynamic variables
(see, e.g. [4,5]), the other quantities, such as specific volume V = 1/ρ and
internal energy ε, being determined by constitutive equations in the form:

V ≡ V (p, T ) , ε ≡ ε(p, T ).

Two parameters are important for a fluid: the thermal expansion coefficient α
and the compressibility factor β defined by

α =
VT
V
, β = −Vp

V
, (1)

where the subscripts T and p indicate partial derivatives with respect to vari-
ables T and p.
Experiments confirm that for fluids considered as incompressible the volume
changes little with the temperature and remains practically unchanged with
the pressure. For this reason, many authors consider as incompressible a ma-
terial for which the specific volume does not vary with the pressure but varies
only with the temperature (i.e., V ≡ V (T )).

The first model of incompressibility was proposed by Müller [6]: Here, all
the constitutive equations of an incompressible fluid do not depend on the
pressure. We think that Müller’s motivation stems from his using of variables
ρ and T : in experiments, the density of incompressible materials depends on
the temperature and it is reasonable to assume that this is the case for all
constitutive functions as for instance for the internal energy.
Nevertheless, Müller proves that the only function V ≡ V (T ) compatible
with the entropy principle is a constant. As previously indicated, this result
obviously disagrees with experimental or theoretical results as in the so-called
Boussinesq approximation (see, e.g. [7], [8]). We called this contradiction the
Müller paradox [1].

A second, less restrictive, model usually employed in the literature requires
that the only constitutive function independent of the pressure is the specific
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volume (see, for example Rajagopal et al [4,5]) and as a result the Gibbs
equation is satisfied. In a recent paper [1], we named such a material a quasi-
thermal-incompressible medium and proved that for a pressure smaller than a
critical value, the ideal medium of Müller can be recovered as a limit case.
Nonetheless, a weakness of V ≡ V (T ) as definition for incompressibility was
first noted by Manacorda [9] who showed that instabilities occur in wave prop-
agation. The instabilities are due to the non-concavity of the chemical poten-
tial and to the sound velocity c becoming imaginary; the mathematical system
of Euler equations is of elliptic type. Let us also note that in the solid case,
Dunwoody and Odgen [12] showed that conditions for infinitesimal stability
are unattainable if the trace of the strain tensor is dependent on tempera-
ture. Starting from Manacorda’s observation, other authors such as Scott et
al [10,11] proposed an alternative definition of incompressibility: instead of
V ≡ V (T ), they assumed V ≡ V (S), where S is the specific entropy; then, in
the ideal incompressible case, the Mach number becomes unbounded and the
sound velocity becomes infinite. From an experimental point of view, this as-
sumption is unrealistic because the entropy is not an observable and no direct
evaluation of V ≡ V (S) is possible. Moreover, this ideal limit case implies a
parabolic structure for the Euler equations.

Due to the above considerations, the aim of our paper is to propose a more
realistic model of incompressible medium as limit case of a quasi-thermal-
incompressible material based on the following requirements:
(i) The model must respect all the principles of thermodynamics: both the
Gibbs equation and the thermodynamic stability corresponding to the con-
cavity of the chemical potential must be satisfied.
(ii) The model must fit with experiments when the compressibility factor is
not zero but it is very small.
It is noteworthy that we obtain numerical results perfectly fitting with those
obtained in paper [1]. The results are also extended to hyperelastic materials.

2 Thermodynamic restrictions

We consider the thermodynamic conditions verified by compressible fluids
when the specific volume is governed by a constitutive function written in
the form:

V ≡ V (p, T ). (2)

The entropy principle and the thermodynamic stability must be satisfied.

a) The entropy principle

In local equilibrium, the entropy principle requires the validity of the Gibbs
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equation:
TdS = dε+ p dV. (3)

In addition for Navier-Stokes-Fourier fluids, the heat conductivity and the
viscosity coefficients must be non negative although they are null for Euler
fluids. The choice of independent variables p and T induces the chemical
potential µ as a natural thermodynamic potential:

µ = ε+ p V − T S

and Eq. (3) is equivalent to

dµ = V dp− SdT.

Other thermodynamic variables derive from the chemical potential:

V = µp , S = −µT (4)

and the specific internal energy is

ε = µ− p µp − T µT , (5)

where for any function f ≡ f(p, T ), we denote

fp =

(
∂f

∂p

)

T

, fT =

(
∂f

∂T

)

p

.

The thermal equation of state (2) is determined by experiments while the
chemical potential and the entropy density can be deduced as follows:

µ =
∫
V (p, T ) dp+ µ̃ (T ), S = −

∫
VT (p, T ) dp− µ̃′ (T ), (6)

where µ̃ (T ) is a function only depending on T . From Eq. (5) we get

ε = e(T ) +
∫
V dp− p V − T

∫
V

T
dp, (7)

with

e(T ) ≡ µ̃ (T )− T µ̃ ′(T ) or equivalently µ̃(T ) = −T
∫
e(T )

T 2
dT . (8)

We summarize this as a statement:

Statement 1 - For any constitutive functions V ≡ V (p, T ) and e ≡ e(T ),
the entropy principle is satisfied if the chemical potential, entropy density and
internal energy are given by Eq. (6)1, Eq. (6)2 and (7), together with Eq. (8)2.

b) Thermodynamic stability
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The specific heat Cp is defined as the partial derivative of the specific enthalpy
h ≡ ε + p V with respect to T at constant pressure p. Consequently, Eq. (7)
yields

Cp = e′(T )− T
∫
VTT dp . (9)

Thermodynamic stability requires that the chemical potential be a concave
function of p and T :

µpp = Vp < 0,
(
µ

TT
= −Cp

T
< 0

)
(10)

and

I ≡ µ
TT
µpp − µ2

T p = −Cp Vp
T

− V 2

T > 0 ⇐⇒ Vp < −T V
2

T

Cp

. (11)

By using Eq. (1), inequality (11) can be written in terms of the thermal
expansion coefficient α and the compressibility factor β:

β > βcr, βcr =
α2TV

Cp

> 0. (12)

Statement 2 - Thermodynamic stability requires that the state functions V ≡
V (p, T ) and e ≡ e(T ) satisfy the inequalities:

Vp < −T V
2

T

Cp

, Cp > 0.

Consequently, there exists a lower bound limit βcr of β such that if β > βcr,
then the material is stable.

The adiabatic sound velocity c is:

c2 =

(
∂p

∂ρ

)

S

= −V 2

(
∂p

∂V

)

S

.

From Eq. (4) we obtain

dV = µpT dT + µpp dp, dS = −µTT dT − µTp dp. (13)

When dS = 0, Eq. (13)2 substituted in Eq. (13)1 yields p as a function of V
and we get:

c2 = −µ
2

p µTT

I
. (14)

Therefore, when the chemical potential is a concave function of p and T ,
we automatically get c2 > 0 and the differential system for Euler fluids is
hyperbolic. Taking account of Eqs. (6)1, (8)2, (9), (11) and (12), Eq. (14)
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yields the sound velocity in the form:

c =

√
V

β − βcr
.

We observe that when V ≡ V (T ) the model of incompressibility corresponds
to β = 0 and for Euler fluids the differential system is elliptic; when V ≡
V (S), the model of incompressibility corresponds to β ≡ βcr and the system
is parabolic. In our case β > βcr, the differential system is hyperbolic and the
fluid is stable.

3 Quasi-Thermal-Incompressible Materials

For the so-called incompressible fluids, the volume changes little with the tem-
perature and changes very little with the pressure. Experiments confirm this
assumption.
In the neighborhood of a reference state (p

0
, T

0
, V

0
), we choose a small dimen-

sionless parameter δ (δ ≪ 1) such that:

δ = α
0
T

0
, (15)

and moreover, we assume that β
0
is of order δ2:

β
0
p
0
= O(δ2), (16)

where α
0
and β

0
are the thermal expansion coefficient and the compressibility

factor at the reference state.

Definition 1 - A compressible fluid satisfying the thermodynamic conditions
of Section 2 is called an Extended-Quasi-Thermal-Incompressible fluid (EQTI)
if there exist V̂ (T ) and ε̂(T ) such that

V (p, T ) = V̂ (T )+O(δ2) with V̂ ′(T ) = O(δ) and ε(p, T ) = ε̂(T )+O(δ2). (17)

This means that an EQTI material is a stable compressible fluid that approx-
imates an incompressible fluid to order δ2 in the sense of Müller’s definition.
Conditions (15)-(16) together with Eq. (17)1 yield the representation of V (p, T ):

V (p, T ) = V
0
+ δW (T )− δ2U(p, T ), (18)

where W (T ) and U(p, T ) are two constitutive functions chosen in agreement
with conditions in Section 2. From Eqs. (6)1 and (18) we deduce:

µ = µ̃ (T ) + p V
0
+ δ p W (T ) + δ2µ̂(p, T ), µ̂(p, T ) = −

∫
U(p, T ) dp.
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Since we can incorporate its limit value in µ̃ (T ) without loss of generality, we
can chose the function µ̂ so that limp−>0 µ̂(p, T ) = 0. From Eq. (7) we obtain:

ε(p, T ) = e(T )− δ T W ′(T ) p+O(δ2). (19)

Due to Eq. (19), in order to satisfy Eqs. (17)2 we require that the pressure
cannot exceed a critical value:

p≪ pcr(T ) with pcr(T ) =
1

δ

e(T )

T W ′(T )
. (20)

We observe that the critical value is large and of order δ−1. In incompressible
materials, the pressure cannot exceed a critical value depending on tempera-
ture. Inequality (20) implies

ε(p, T ) = e(T ) +O(δ2). (21)

Moreover, from Eqs. (1) and (15) we obtain

α = δ
W ′(T )

V
0

+O(δ2), W ′(T
0
) =

V
0

T
0

; β = δ2
Up(p, T )

V
0

.

From Eqs. (9) and (12) we get

βcr = δ2
T W ′2(T )

V
0
Cp

, Cp ≃ e′(T ),

and the thermodynamic stability is ensured when

Up(p, T ) >
T W ′2(T )

Cp

, Cp ≃ e′(T ) > 0. (22)

Finally, from Eq. (14) we deduce that the dominant part in sound velocity is
of order δ−1:

c ≃ V
0

δ

√√√√ Cp

Up Cp − TW ′2
. (23)

We can conclude with

Statement 3 - An EQTI fluid given by constitutive functions (18) and (21),
satisfying inequality (22) is a good approximation of an incompressible fluid as
V and ε differ to order δ2 from functions depending only on T , provided the
pressure is smaller than a critical pressure pcr given by Eq. (20). The sound
velocity given by Eq. (23) is real.

Remark: We notice that in the limit case of isothermal processes for which
W (T ) ≡ 0 and U ≡ U(p), we have βcr ≡ 0 and inequality (22)1 and the sound
velocity become U ′(p) > 0 and c = V0/(δ

√
U ′), respectively. In this case again,

the EQTI requires that V is not constant but is function of p in the form
V = V0 − δ2U(p).
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3.1 Linear dependence of V with respect to T and p

The most significant case is the linear expansion of V near (T
0
, p

0
):

V = V
0
{1 + α (T − T

0
)− β (p− p

0
) } with e = Cp T . (24)

In this case, the scalars α, β and Cp are positive constants. Expression (24) is
a particular case of Eq. (18) under the identifications:

αT
0
= δ, W (T ) =

V
0

T
0

(T − T
0
), U(p, T ) =

β

α2

V
0

T 2

0

(p− p
0
). (25)

Then, the fluid is EQTI if

α T
0
= δ ≪ 1 and β > βcr with βcr = δ2

V
0

Cp T
0

, (26)

together with

p≪ pcr, with pcr =
1

δ

Cp T
0

V
0

. (27)

Relation (23) and relation (25) yield the adiabatic sound velocity:

c
0
=

√
CpV

0

β Cp − α2V
0
T

0

or β =
V

0

c2
0

+ α2
T

0
V

0

Cp

. (28)

Consequently, a fluid can be considered as incompressible if the pressure is
smaller than a critical pressure which is of order α−1. This is similar to con-
clusions in paper [1]. In addition, to ensure the convexity of the chemical
potential, the compressibility factor must be very small but not identically
null: β must be greater than a critical value βcr which is of order α2. From
Eq. (28), the value of the sound velocity allows to calculate the value of β.
We finally observe that, in the Boussinesq approximation, β 6= 0 induces an
additional term depending on p in the density expansion near (T

0
, p

0
):

ρ = ρ
0
{1 − α (T − T

0
) + β (p− p

0
) }.

Therefore, these considerations should be useful to revisit and to justify more
rigorously the Boussinesq approximation. We point out that in this case we
obtain constitutive equations that may be implicit in the direction pointed
out in [13].

3.2 Case of liquid water

Numerical values for liquid water are obtained in [14]:

p
0
= 105 Pascal; V

0
= 10−3 m3/kg; T

0
= 293 ◦K; Cp = 4.2× 103Joule/kg ◦K;
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c = 1420 m/sec ; α = 2.07× 10−4/ ◦K; βcr = 3× 10−12/ Pascal.

Inequality (27) reads

p≪ pcr = 2× 1010 Pascal = 2× 105 atm,

which is the same critical pressure as in paper [1]. We observe that Eq. (28)
yields β = 4.98 × 10−10/ Pascal which automatically satisfies the inequality
(26). Liquid water is indeed a very good example of an EQTI liquid.

4 Quasi-thermal-incompressibility for hyperelastic media

4.1 Generalities

As done in paper [1] and by taking up the definition of pressure presented by
Flory in 1953 for rubber gum [15,16] and extended for hyperelastic media by
Gouin and Debiève in 1986 [17] and Rubin in 1988 [18], we can extend the
results from fluids to thermo-elastic materials. With this aim we define

C̃ =
1

(detC)
1

3

C or C = J
2
3 C̃ , (29)

where C = F
T
F is the right Cauchy stress deformation tensor, F is the

deformation gradient, J = detF = ρ
0
/ρ and ρ

0
is the reference density. The

specific free energy can be expressed in the form:

ψ ≡ f(ρ, C̃, T ) ,

where the independent variables ρ and C̃ are used instead of C. Since det C̃
=1, the variable ρ corresponds to the change of volume, while the tensorial
variable C̃ is associated with the distortion of the medium: we call C̃ the
pure deformation of the hyperelastic body. This point is fundamental for the
decomposition of the stress tensor. If f is independent of C̃, then we are back
to the fluid case. It is convenient to introduce the function g such that:

g(ρ,C, T ) ≡ f

(
ρ,

1

(detC)
1

3

C, T

)
.

Consequently, the free energy of an hyperelastic material can be defined as
ψ ≡ g(ρ,C, T ) where g is a homogeneous function of degree zero with respect
to C. We deduce the Cauchy stress tensor of the medium in the form [17]:

t = −p 1+ τ , with p = ρ2
∂g

∂ρ
, τ = 2ρF

∂g

∂C
F

T and tr τ = 0 , (30)
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where tr is the trace operator. If g is independent of C, p corresponds to
the thermodynamic pressure. As proved in [17], p must be considered as the
pressure of the hyperelastic material. Let us note that the pressure and the
change of volume are observable: they can be experimentally measured by
using a spherical elastic test-apparatus submitted to isotropic stresses.
The Gibbs equation in the case of elastic materials is [19,20]:

TdS = dε− 1

2ρ
0

S · dC , (31)

where the dot represents the scalar product between matrices and S =
J F

−1
t (F T )−1 is the second Piola-Kirchhoff stress tensor. By inserting Eq.

(30)1 into S, Eq. (31) yields the Gibbs relation:

TdS = dε+ p dV − J− 2
3 τ̃ · dC, (32)

with τ̃ given by:

τ̃ =
1

2 ρ
J

2
3 F

−1
τF

−1
T

.

If we take account of Eq. (29),

dC =
2

3
ρ C̃ dV + J

2
3 dC̃,

and that

τ̃ · C̃ =
1

2 ρ
F

−1
τF

−1
T

.C =
1

2 ρ
tr
(
F

−1
τF

−1
T

F
T

F

)
≡ 1

2 ρ
tr τ = 0, (33)

we obtain the Gibbs relation (32) in the final form

TdS = dε+ p dV − τ̃ · dC̃ . (34)

As in the fluid case, we introduce the chemical potential µ = ε+p V−TS−τ̃ ·C̃.
Thanks to the orthogonality condition (33), µ takes the same form as for fluids:

µ = ε+ p V − TS.

Equation (34) implies

dµ = V dp− SdT + τ̃ · dC̃. (35)

Consequently, the change of variables from (V, T ) into (p, T ) is natural and
the variable C̃ does not change. Equation (35) implies:

V = µp , S = −µ
T
, τ̃ = µ

C̃
, ε = µ− Tµ

T
− p µp , (36)

with

µp =

(
∂µ

∂p

)

T, C̃

, µT =

(
∂µ

∂T

)

p, C̃

, µ
C̃
=

(
∂µ

∂C̃

)

p, T

.
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Let us assume that the specific volume is written as a function of p, T, C̃:

V ≡ V (p, T, C̃).

By integration of Eq. (36)1, we obtain

µ =
∫
V (p, T, C̃) dp+ µ̂(T, C̃), S = −

∫
VT (p, T, C̃) dp− µ̂T (T, C̃) , (37)

where µ̂ is an additive function depending only on T and C̃. By substituting
in Eq. (36)4, we get:

ε = e(T, C̃) +
∫
V (p, T, C̃) dp− p V − T

∫
V

T
dp , (38)

with the additional function

e(T, C̃) = µ̂−T µ̂T or equivalently µ̂(T, C̃) = −T
∫
e(T, C̃)

T 2
dT+k(C̃), (39)

where k(C̃) is an arbitrary function of C̃. The additional function is in the
same form than for fluids. Therefore

Statement 4 - For any constitutive functions V ≡ V (p, T, C̃), and e ≡
e(T, C̃), the entropy principle is satisfied if the chemical potential, the entropy
density and the internal energy are given by Eqs. (37)1, (37)2 , (38) with Eq.
(39)2, respectively.

In nonlinear theories, the concavity of the entropy density may be valid only
in some domain of state variables. In particular this is the case in nonlinear
elasticity where the concavity is in contradiction with the objectivity principle
if the deformation is large [19] (see also [21,22]). The concavity of the chemical
potential is valid only for sufficient small deformations in the neighborhood
of undeformed configuration. In the decomposition of the stress tensor given
by Eq. (30), the pressure p is the main observable variable and the pure
deformation C̃ does not affect the change of variables between internal energy
and chemical potential. Consequently, taking C̃ constant we conclude that
inequalities (10-11) are necessary conditions for stability.

4.2 Quasi-Thermal-Incompressible Solids

In experiments, the specific volume of incompressible solids changes if the
temperature varies. In the literature it is usually assumed that J ≡ J(T )
(or equivalently V ≡ V (T )). Therefore, it is natural to define EQTI solids
similarly to the definition given for fluids.
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Definition 2 - A compressible solid satisfying thermodynamic conditions as-
sociated with the entropy principle and stability is called an Extended-Quasi-
Thermal-Incompressible solid if there exist V̂ (T ) and ε̂(T, C̃) such that

V (p, T, C̃) = V̂ (T )+O(δ2) with V̂T = O(δ) and ε(p, T, C̃) = ε̂(T, C̃)+O(δ2).

Assuming for solids the linear expansion (24) for V , we derive a similar result
as for fluids:

Statement 5 - A thermoelastic material with constitutive equation (24) is a
stable EQTI and tends to an incompressible material under the conditions

β > βcr with βcr = δ2
V

0

CpT
0

, and p≪ pcr, with pcr =
1

δ

CpT
0

V
0

,

where V
0
and δ = αT

0
≪ 1 are positive constants, while Cp may depend on

the pure deformation C̃.

4.3 Case of pure gum rubber

As in paper [1], we consider the case of rubber as example of hyperelastic
material. To verify the conditions EQTI, we get experimental values from the
literature: numerical values for rubber are obtained in [14,23]:

p
0
= 105 Pascal; Cp = 1.9× 103Joule/kg ◦K; V

0
= 1.08× 10−3m3/kg;

T
0
= 273 ◦K; c = 54m/sec; α = 7× 10−3/ ◦K; β = 4.5× 10−7/ Pascal;

βcr = 7.6× 10−9/ Pascal; pcr = 2.5× 108 Pascal = 2.5× 103 atm.

We can immediately verify that rubber is also a good example of an EQTI
medium. Let us note that the considered values for rubber are a little different
from those in [1]; this is due to the fact that the sound velocity was measured
at 273◦K and not at 325◦K, as in [1].

5 Conclusion

Our goal was to present a model expressing the limit case of incompress-
ible materials and fitting with the principles and conditions of thermodynam-
ics. Earlier models were thermodynamically deficient. Here, we present a new
model (which we call Extended-Quasi-Thermal-Incompressible model) start-
ing from two simple requirements:
(i) An incompressible medium does not physically exist but it is the limit case
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of a compressible medium that verifies all thermodynamic conditions.
(ii) On physical grounds, the volume changes little with the temperature and
does not practically change with the pressure.
As result, the conditions for the pressure are the same than in previous pa-
per [1] but an additional condition associated with the compressibility factor
must be verified. We point out that a decomposition of the stress tensor for
hyperelastic media into a pressure term associated with the change of volume
and a null-trace part associated with the pure deformation of the medium
leads to analogous conditions of EQTI for fluids and hyperelastic materials.
Let us note that on a phenomenological basis a theory where the elasticity
parameters depend on the pressure has been developed in [24,25].

From a mathematical standpoint, the difficult question of proving that the
solutions depend continuously on δ and that the limit exists as δ tends to
zero, remains an open problem.
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